JPS6055447B2 - How to recover uranium from wet phosphoric acid - Google Patents

How to recover uranium from wet phosphoric acid

Info

Publication number
JPS6055447B2
JPS6055447B2 JP6043282A JP6043282A JPS6055447B2 JP S6055447 B2 JPS6055447 B2 JP S6055447B2 JP 6043282 A JP6043282 A JP 6043282A JP 6043282 A JP6043282 A JP 6043282A JP S6055447 B2 JPS6055447 B2 JP S6055447B2
Authority
JP
Japan
Prior art keywords
uranium
phosphoric acid
hemihydrate
wet
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6043282A
Other languages
Japanese (ja)
Other versions
JPS58181729A (en
Inventor
浩二 青野
隆一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP6043282A priority Critical patent/JPS6055447B2/en
Publication of JPS58181729A publication Critical patent/JPS58181729A/en
Publication of JPS6055447B2 publication Critical patent/JPS6055447B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はリン鉱石を硫酸、リン酸などの鉱酸で分解して
得られる湿式リン酸から、その中に含有される微量のウ
ランを、石コウを媒体として回収する方法に関するもの
てある。
[Detailed description of the invention] The present invention recovers trace amounts of uranium contained in wet phosphoric acid obtained by decomposing phosphate rock with mineral acids such as sulfuric acid and phosphoric acid using gypsum as a medium. There is also information on methods.

天然リン鉱石中には一般に100〜200ppmのウラ
ンが含まれており、これをリン酸と硫酸の混酸て湿式分
解する、いわゆる湿式リン酸の製造工程でその大部分は
リン酸液中に移行する。
Natural phosphate rock generally contains 100 to 200 ppm of uranium, and most of it is transferred to the phosphoric acid solution during the so-called wet phosphoric acid manufacturing process, in which this is wet-decomposed using a mixed acid of phosphoric acid and sulfuric acid. .

リン酸液中のウランの含有濃度はあまり高くはないが、
生産されるリン酸液の絶対量が非常に大きいため、湿式
リン酸からウランを回収する試みは従来より行なわれて
いる。湿式リン酸からのウランの工業的回収方法として
は、溶媒抽出法、イオン交換法、沈殿法、吸着法等が知
られている。
Although the concentration of uranium in the phosphoric acid solution is not very high,
Since the absolute amount of phosphoric acid solution produced is very large, attempts have been made to recover uranium from wet phosphoric acid. As industrial methods for recovering uranium from wet phosphoric acid, solvent extraction methods, ion exchange methods, precipitation methods, adsorption methods, etc. are known.

溶媒抽出法は現在、世界的に工業化が進んでいる方法て
はあるが、抽出工程でスラッジが生成するのを防止する
ために前処理としてリン酸を精製する必要があり、設備
費が高額であり、また抽出溶媒が高価なのでその損失を
避けるため煩雑な操作をしなければならないという欠点
がある。また、イオン交換法ではリン酸の前処理の必要
性のほか、イオン交換カラムに供給するリン酸液の濃度
が、通常生産される湿式リン酸の濃度よりも低い領域で
操作しなければならない等の問題があり、まだ広く実用
化されるに至つていない。沈殿法、吸着法はウラン回収
剤が高価であつたり、その損失が問題になる等の理由で
、これも更に改善の必要がある。一方、本発明者らは既
にリン鉱石を硫酸で分解する湿式リン酸製造法において
、石コウを生成する反応工程で酸化剤を共存させ、溶液
中のウランを6価にすることを特徴とするウラン含有率
の高い湿式リン酸の製造法(特開昭57−27911号
)さらに湿式リン酸に半水石コウおよび/または半水石
コウを生成する化合物を添加し、全て半水石コウに軟化
させ、湿式リン酸と半水石コウを分離し、分離した半水
石コウを水和し、次いで水和石コウを分離し、分離液に
沈殿剤を加えウランを不溶性沈殿として回収することを
特徴とする、湿式リン酸からウランを回収する方法(特
願昭56−2424鏝)、および後者発明の工程の改善
に係るもので工業的な回収方法(特願昭56−1620
77号)を提案した。
Solvent extraction is a method that is currently being industrialized worldwide, but it requires purification of phosphoric acid as a pretreatment to prevent sludge formation during the extraction process, and the equipment costs are high. Moreover, since the extraction solvent is expensive, complicated operations are required to avoid its loss. In addition to the need for pretreatment of phosphoric acid in the ion exchange method, the concentration of the phosphoric acid solution supplied to the ion exchange column must be operated at a lower concentration than the normally produced wet phosphoric acid. There are some problems with this method, and it has not yet been widely put into practical use. Precipitation and adsorption methods require further improvement because the uranium recovery agent is expensive and its loss is a problem. On the other hand, the present inventors have already developed a wet phosphoric acid production method in which phosphate rock is decomposed with sulfuric acid, which is characterized by allowing an oxidizing agent to coexist in the reaction step for producing gypsum to make the uranium in the solution hexavalent. Method for producing wet phosphoric acid with high uranium content (Japanese Unexamined Patent Publication No. 57-27911) Furthermore, adding hemihydrate phosphoric acid and/or a compound that produces hemihydrate phosphoric acid to the wet phosphoric acid, softening it to hemihydrate phosphoric acid, It is characterized by separating wet phosphoric acid and hemihydrate sulfur, hydrating the separated hemihydrate spar, then separating the hydrated spar, adding a precipitant to the separated liquid, and recovering uranium as an insoluble precipitate. A method for recovering uranium from wet phosphoric acid (Japanese Patent Application No. 56-2424), and an industrial recovery method related to improvement of the process of the latter invention (Japanese Patent Application No. 56-1624).
No. 77) was proposed.

本発明は湿式リン酸からウランを回収するこれらの方法
において簡単な操作で高い回収率を得る方法を達成し、
完成したものである。なお特開昭55−1444P号公
報には、半水石コウに4価のウランが取り込まれ易いこ
とを利用して半水一ニ水法湿式リン酸製造工程に組み込
んだウランの溶媒抽出法が開示されているが、この方法
はウラン回収法ととリン酸製造法が一体となつたもので
、かつ半水二水法のリン酸製造工程においてのみ適用さ
れるものであつた。そのため、二水法、無水法、半水法
、二水一半水法等の他の湿式リン酸製造法には適用でき
ないし、石コウを媒体とする処理て得られるウラン含有
液は、なお多量のP2O5とH2SO,を含有し、該液
からウランを取り出す際にP2O5の損失を防ぐため溶
媒抽出という限られた方法および条件をとる必要があり
、この溶媒抽出法は用いる抽出溶媒が高価であり、設備
費が高額てある。本発明はこれら従来のリン酸液からの
ウラン回収法の欠点を解消したもので、種々の湿式リン
酸製造法で得られたリン酸(以下湿式リン酸という)あ
るいは湿式リン酸にSiO2源、アルカリ源を添加し、
湿式リン酸中の弗素をケイ弗酸アルカリとして除去した
弗素含有量の少ないリン酸(以下脱弗リン酸という)に
硫酸を添加し、得られた混酸にアルカリ金属化合物およ
び水和石コウを添.加し、半水石コウとした後、好まし
くは該硫酸に対して少なくとも当量のリン鉱石を添加し
、湿式分解を行なつて全て半水石コウとした後、半水石
コウを分離し、該半水石コウの水和による二水石コウを
分離し、分離母液に沈殿剤を加え、ウラン・を不溶性沈
殿として回収することを特徴とする、湿式リン酸あるい
は脱弗リン酸からの工業的なウランの回収方法に関する
The present invention achieves a method for recovering uranium from wet phosphoric acid, which achieves a high recovery rate with simple operations,
It is completed. Furthermore, JP-A No. 55-1444P discloses a solvent extraction method for uranium that is incorporated into the wet phosphoric acid production process using the hemihydrite method, taking advantage of the fact that tetravalent uranium is easily incorporated into hemihydrate. However, this method was a combination of a uranium recovery method and a phosphoric acid production method, and was applicable only to the phosphoric acid production process of the hemihydro-dihydromethod. Therefore, it cannot be applied to other wet phosphoric acid production methods such as the dihydrous method, anhydrous method, hemihydrous method, dihydric and hemihydrous method, and the uranium-containing liquid obtained by processing using gypsum as a medium is still large. In order to prevent the loss of P2O5 when extracting uranium from the liquid, it is necessary to use a limited method and conditions of solvent extraction, and the extraction solvent used in this solvent extraction method is expensive. However, equipment costs are high. The present invention eliminates the drawbacks of these conventional uranium recovery methods from phosphoric acid solutions, and uses phosphoric acid obtained by various wet phosphoric acid production methods (hereinafter referred to as wet phosphoric acid) or wet phosphoric acid with a SiO2 source and Add an alkaline source,
Sulfuric acid is added to phosphoric acid with a low fluorine content (hereinafter referred to as defluorinated phosphoric acid) in which fluorine in wet phosphoric acid is removed as an alkali silifluoride, and an alkali metal compound and hydrated gypsum are added to the resulting mixed acid. .. After adding phosphate rock to form hemihydrate powder, preferably add at least an equivalent amount of phosphate rock to the sulfuric acid, perform wet decomposition to obtain hemihydrate powder, and then separate the hemihydrate powder to obtain the hemihydrate powder. Industrial recovery of uranium from wet phosphoric acid or defluorophosphoric acid, which is characterized by separating dihydrite from hydration of ko and adding a precipitant to the separated mother liquor to recover uranium as an insoluble precipitate. Regarding the method.

このように、本発明の方法はウラン回収工程とリン酸製
造工程とを全く別の工程として切り離したものであるた
め、いかなる方法で製造された湿式リン酸にも適用でき
る、石コウを抽出剤とし、水で逆抽出したウラン回収液
はP2O5、H2SO4等の成分を含まず、ウランが濃
厚状態で存在するため沈殿法で容易にウランを回収する
ことができ、沈殿剤は安価であり、また、その操作も溶
媒抽出法と比べ非常に簡単である。
In this way, the method of the present invention separates the uranium recovery process and the phosphoric acid production process as completely separate processes, so it can be applied to wet phosphoric acid produced by any method, and uses gypsum as an extractant. The uranium recovery solution obtained by back-extracting with water does not contain components such as P2O5 and H2SO4, and uranium exists in a concentrated state, so uranium can be easily recovered by the precipitation method. The operation is also much simpler than the solvent extraction method.

これに対し、前記特開昭55−14441@公報記載の
方法では、この沈殿・法を適用すると、リン酸製造工程
に悪い影響を与え、ウランを沈殿回収することは不可能
である。以下本発明についてさらに詳細に説明する。本
発明の実施にあたつて、リン鉱石を硫酸とリン酸の混酸
で分離する湿式リン酸製造法において、石コウを生成す
る反応工程で酸化剤を共存させ溶液中のウランを6価に
し、次いで生成石コウ類を分離した湿式リン酸あるいは
、さらに湿式リン酸中の弗素含有量を低下させた脱弗リ
ン酸を原料として用いるのが好ましい。酸化剤としては
KClO3、NaClO3、H2O2、KMnO,、H
NO,、塩酸、02、空気などが例として挙げられる。
原料として脱弗リン酸が特に好ましいのはリン酸中の弗
素含有量がウラン回収率に影響を与え、弗素含有量が少
ないリン酸を原料とした方がウラン回収率がより高くな
るという事実による。必要ならば脱弗リン酸にさらにS
iO2源およびアルカリ源を添加し、弗素イオンをケイ
弗酸イオンとして固定しても更に良い結果が得られる。
この弗素含有量とウラン回収率の相関の理由は明確では
ないが、弗素イオンが多く存在するとウランとカルシウ
ムの置換反応が多少阻害されるためであろうと考えられ
る。このように、リン酸中のフッ素イオンは少ない程ウ
ラン回収には効果的であるが、その限度はほぼ0.5%
以下であれば高いウラン回収率を示すことが実験的に明
らかとなつた。また、原料リン酸に石コウを作用させる
に当つては、6価のウランに比べ4価のウランが半水石
コウに取り込まれ易いので、金属鉄などの還元剤の添加
、電解還元等の方法により6価のウランを4価に還元し
ておくことが望ましい。次に原料リン酸に硫酸を添加し
、混酸組成となす。添加する硫酸量は混酸中のH2SO
4量が25重量パーセント以下、好ましくは5〜15重
量パーセントである。次に該混酸中へアルカリ金属化合
物を添加溶解させ、混酸中のアルカリ金属イオン濃度を
上昇せしめる。
On the other hand, in the method described in JP-A-55-14441@, when this precipitation method is applied, it has a negative effect on the phosphoric acid production process, and it is impossible to recover uranium by precipitation. The present invention will be explained in more detail below. In carrying out the present invention, in a wet phosphoric acid production method in which phosphate rock is separated with a mixed acid of sulfuric acid and phosphoric acid, an oxidizing agent is coexisted in the reaction step to produce gypsum to make the uranium in the solution hexavalent. Next, it is preferable to use wet phosphoric acid from which the generated gypsum is separated, or defluorinated phosphoric acid, which is obtained by further reducing the fluorine content in the wet phosphoric acid, as a raw material. Oxidizing agents include KClO3, NaClO3, H2O2, KMnO,, H
Examples include NO, hydrochloric acid, 02, and air.
The reason why defluorinated phosphoric acid is particularly preferred as a raw material is due to the fact that the fluorine content in phosphoric acid affects the uranium recovery rate, and the uranium recovery rate is higher when phosphoric acid with a lower fluorine content is used as a raw material. . If necessary, add more S to defluorophosphate.
Even better results can be obtained by adding an iO2 source and an alkali source to fix fluoride ions as silifluoride ions.
The reason for this correlation between fluorine content and uranium recovery rate is not clear, but it is thought that the presence of a large amount of fluorine ions may inhibit the substitution reaction between uranium and calcium to some extent. In this way, the smaller the amount of fluorine ions in phosphoric acid, the more effective it is for uranium recovery, but the limit is approximately 0.5%.
It has been experimentally shown that a high uranium recovery rate can be achieved if the amount is below. In addition, when applying gypsum to the raw material phosphoric acid, since tetravalent uranium is more easily incorporated into hemihydrate uranium than hexavalent uranium, methods such as adding a reducing agent such as metallic iron, electrolytic reduction, etc. It is desirable to reduce hexavalent uranium to tetravalent uranium. Next, sulfuric acid is added to the raw material phosphoric acid to form a mixed acid composition. The amount of sulfuric acid added is H2SO in the mixed acid.
The amount of 4 is up to 25 weight percent, preferably 5 to 15 weight percent. Next, an alkali metal compound is added and dissolved in the mixed acid to increase the concentration of alkali metal ions in the mixed acid.

このアルカリ金属化合物としては特に限定しないが、入
手容易なNa化合物としてNaOH、Na2cO3、N
aHCO,、NaCl..NaNO,あるいはK化合物
としてKOH..K2SO4、K2CO3、KHCOJ
lKCl、KNO3等のいずれかを添加溶解せしめれば
よい。その添加量としては、混酸中のアルカリ金属イオ
ン濃度を0.1%以上上昇させるのが好ましく、上限は
特に制約されないが通常は5%程度までで、それ以上で
はそれ相応の顕著な効果はないが、0.1%以下ではそ
の効果が少ない。混酸にアルカリ金属化合物を添加溶解
させる簡単な工程を組込むだけで高いウラン回収率が得
られることは本発明の大きな特徴である。このアルカリ
金属イオン濃度とウラン収率の相関の理由は明確ではな
いが、アルカリ金属イオンが多く存在するとウランとカ
ルシウムの置換反応が促進されるためであろうと考えら
れる。次に該混酸に水和石コウ(二水石コウ)を添加す
る。二水石コウは半水化工程でウランの捕捉剤として働
くものである。二水石コウは後工程の水和工程て生成す
る副生二水石コウの一部を循環使用するのが好ましいが
、他の工程からの二水石コウでも有効である。その添加
量は混酸の組成によつても異なるが、一般には半水化工
程でのスラリー濃度が5〜(代)重量%になるように添
加する。次の半水化工程では、混酸と水和石コウのスラ
リーを二水石コウが半水石コウに転移する温度に保持す
る。転移温度は85〜90℃程度である。生成した半水
石コウは10ppm〜5000ppmのウランを含有す
るが、母液は硫酸を25%以下含む混酸組成であり、そ
のまま半水石コウを分離しただけでは製品リン酸とはな
らない。このため次の工程として混酸と半水石コウを含
むスラリー中へリン鉱石を添加し、湿式分解反応により
余剰の硫酸と反応させると同時にリン鉱石中のウランを
も半水石コウ中へ捕捉させる。リン鉱石の添加量は混酸
中のH2SO4濃度にみ合う分だけ添加し、反応後の母
液が製品リン酸組成となるように調整する。反応温度は
半水化工程と同じく85〜90℃前後で充分である。添
加二水石コウおよびリン鉱石に由来する全ての半水石コ
ウはリン酸と分離した後、次のウラン脱離工程に送られ
る。ウラ7脱離工程以降は前記先行発明(特願昭56−
24242号)と同じである。すなわち、ウランを捕捉
した半水石コウは水中で分散水和させ、半水石コウが二
水石コウへ転移する過程でウランを固相から液相側へ吐
き出させる。
The alkali metal compound is not particularly limited, but easily available Na compounds include NaOH, Na2cO3, N
aHCO, , NaCl. .. NaNO, or KOH as a K compound. .. K2SO4, K2CO3, KHCOJ
Either one of lKCl, KNO3, etc. may be added and dissolved. As for the amount of addition, it is preferable to increase the alkali metal ion concentration in the mixed acid by 0.1% or more, and although there is no particular upper limit on the upper limit, it is usually around 5%, and if it is more than that, it will not have a correspondingly significant effect. However, if it is less than 0.1%, the effect is small. A major feature of the present invention is that a high uranium recovery rate can be obtained simply by incorporating a simple step of adding and dissolving an alkali metal compound in a mixed acid. The reason for this correlation between alkali metal ion concentration and uranium yield is not clear, but it is thought that the presence of a large amount of alkali metal ions promotes the substitution reaction between uranium and calcium. Next, hydrated stone (dihydrate stone) is added to the mixed acid. Dihydrate works as a scavenger for uranium in the hemihydration process. It is preferable to reuse a part of the by-product dihydrate produced in the subsequent hydration process, but dihydrate produced from other processes is also effective. The amount added varies depending on the composition of the mixed acid, but it is generally added so that the slurry concentration in the hemihydration step is 5 to 5% by weight. In the next hemihydration step, the slurry of mixed acid and hydrated quartz is maintained at a temperature at which quartz dihydrate transforms to quartz hemihydrate. The transition temperature is about 85-90°C. The produced hemihydrate powder contains 10 ppm to 5000 ppm of uranium, but the mother liquor has a mixed acid composition containing 25% or less of sulfuric acid, and simply separating the hemihydrate powder as it is will not produce the product phosphoric acid. Therefore, in the next step, phosphate rock is added to the slurry containing the mixed acid and hemihydrate powder, and at the same time, the uranium in the phosphate rock is captured in the hemihydrate powder to react with excess sulfuric acid through a wet decomposition reaction. The amount of phosphate rock to be added is adjusted to match the H2SO4 concentration in the mixed acid, so that the mother liquor after the reaction has the composition of the product phosphoric acid. As with the hemihydration step, a reaction temperature of about 85 to 90°C is sufficient. After the added dihydrate and all the hemihydrate derived from phosphate rock are separated from the phosphoric acid, they are sent to the next uranium desorption step. After the back 7 desorption step, the above-mentioned prior invention (patent application 1982-
No. 24242). That is, the hemihydrate powder that has captured uranium is dispersed and hydrated in water, and in the process of transferring the hemihydrate powder to the dihydrate powder, uranium is expelled from the solid phase to the liquid phase side.

この操作も本発明では特徴的なものであり、半水石コウ
からウランを取出すという処理を簡単な水和操作によつ
て行なうことができるのは、ウラン回収媒体として石コ
ウを利用している利点である。水和反応には微量の硫酸
あるいは水和促進剤、酸化剤を添加し、反応を促進させ
てもよい。反応は常温で行わせることができる。水和に
よつて生成した二水石コウはウランをほとんど含まず、
ウランの溶出した水和母液(以下回収液という)とは機
械的に分離除去される。スラリー濃度は5〜4哩量%の
範囲が操作上好ましい。また回収液を水和工程へ循環さ
せ、回収液中のウラン濃度のアップを図つてもよい。以
上の工程を経てウランはリン酸液から分離され、最終的
には実質的にリン酸を含まない回収液として溶液状態で
得られる。
This operation is also a feature of the present invention, and the fact that the process of extracting uranium from hemihydrate quartz can be performed by a simple hydration operation is an advantage of using gypsum as a uranium recovery medium. It is. A trace amount of sulfuric acid, a hydration accelerator, or an oxidizing agent may be added to the hydration reaction to accelerate the reaction. The reaction can be carried out at room temperature. Dihydrate produced through hydration contains almost no uranium,
It is mechanically separated and removed from the hydrated mother liquor (hereinafter referred to as the recovered solution) in which uranium has been eluted. Operationally, the slurry concentration is preferably in the range of 5 to 4% by volume. Alternatively, the recovered liquid may be circulated to the hydration step to increase the uranium concentration in the recovered liquid. Through the above steps, uranium is separated from the phosphoric acid solution, and finally a recovered solution containing substantially no phosphoric acid is obtained in the form of a solution.

回収液はuとして通常数十Ppm〜数千Ppmのものが
得られるが、該回収液からウランを取出すに当つては、
沈殿法を適用することによつて容易にかつ経済的に回収
できる。沈殿剤としては苛性ソーダ、アンモニウム化合
物等が一般的であるが、その他2価の鉄塩、有機キレー
ト試薬等が用いられる。回収ウランの原料であるリン酸
液は主製品であるので、製品としての価値を低下させる
ような添加物を加えることはできないが、回収液はもは
やリン酸製造工程lとは全く分離されており、上記沈殿
剤のほか、凝集剤、吸着剤、フルコート剤、界面活性剤
、PH調節剤等の添加物を加えるなどして任意に液性を
調整できるので有効にウランを回収できる。一方、リン
酸に混入しても有害な物を含まない回収・液は、リン酸
製造工程に循環してもよいことはいうまでもない。また
、分離した水和石コウの一部は半水化工程に循環使用し
残りはそのまま排出し、セメント用として使用すること
もできるので、工業的に極めて有利なプロセスというこ
とが)できる。以下、実施例により本発明を説明する。
The recovered liquid is usually obtained from several tens of Ppm to several thousand Ppm as u, but when extracting uranium from the recovered liquid,
It can be easily and economically recovered by applying the precipitation method. Caustic soda, ammonium compounds and the like are commonly used as precipitants, but divalent iron salts, organic chelating reagents and the like are also used. Since phosphoric acid liquid, which is the raw material for recovered uranium, is the main product, no additives can be added that would reduce its value as a product, but the recovered liquid is no longer completely separated from the phosphoric acid manufacturing process. In addition to the above-mentioned precipitating agent, the liquid properties can be adjusted as desired by adding additives such as a flocculant, an adsorbent, a full-coat agent, a surfactant, and a pH regulator, so that uranium can be recovered effectively. On the other hand, it goes without saying that the recovered liquid, which does not contain harmful substances even if mixed with phosphoric acid, may be recycled to the phosphoric acid production process. In addition, a part of the separated hydrated gypsum can be recycled for use in the hemihydration process, and the rest can be discharged as is and used for cement, making it an extremely advantageous process from an industrial perspective. The present invention will be explained below with reference to Examples.

実施例1〜5 フロリダ産リン鉱石を硫酸分解して得た湿式リン酸(P
2O5濃度=30%、F濃度=1.5%、U濃度=10
0ppm)300gに98%硫酸30gを添加した混酸
を攪拌機付きポリプロピレン製容器に仕込み、これをオ
イルバスに漬けて8rCとした。
Examples 1 to 5 Wet phosphoric acid (P) obtained by decomposing Florida phosphate rock with sulfuric acid
2O5 concentration = 30%, F concentration = 1.5%, U concentration = 10
A mixed acid prepared by adding 30 g of 98% sulfuric acid to 300 g of 0 ppm) was placed in a polypropylene container equipped with a stirrer, and the mixture was immersed in an oil bath to reach 8 rC.

混酸中のウランを4価に還元するため、前処理として鉄
粉0.2gを攪拌しながら加えた。該前処理を施した混
酸に表−1のアルカリ金属化合物をそれぞれ添加溶解し
た。これらの混酸にそれぞれ水和石コウ40g(U濃度
=2ppm)を加え、スラリー温度を87℃に調節し、
1時間反応させた。
In order to reduce the uranium in the mixed acid to tetravalent uranium, 0.2 g of iron powder was added as a pretreatment while stirring. Each of the alkali metal compounds shown in Table 1 was added and dissolved in the pretreated mixed acid. Add 40 g of hydrated gypsum (U concentration = 2 ppm) to each of these mixed acids, adjust the slurry temperature to 87 ° C.
The reaction was allowed to proceed for 1 hour.

水和石コウが全量半水石コウに転移したことを確認した
のち、リン鉱石(フロリダ産BPL75、P2O534
.4%、U濃度100ppm)32gをそれぞれ加え、
スラリー温度を8rcに調節し、2時間反応させた。リ
ン鉱石が反応して半水石コウになつたことを確認してろ
過し、リン酸を得た。半水石コウケーキは最初熱水で、
次いでアセトンで洗浄して風乾した。該半水石コウの重
量、ウラン含有率ならびに半水化工程でのウラン回収率
を表−1に示し女。続いて、該半水石コウNO.2のう
ち60gを70m1の水で分散水和させた後ろ過し、洗
浄水と母液をあわせて回収液72m1を得た。
After confirming that the entire amount of hydrated quartz was transferred to hemihydrate quartz, we
.. 4%, U concentration 100 ppm) was added,
The slurry temperature was adjusted to 8rc and reacted for 2 hours. After confirming that the phosphate rock had reacted and turned into hemihydrate, it was filtered to obtain phosphoric acid. The hemihydrate cake was first soaked in hot water;
It was then washed with acetone and air dried. Table 1 shows the weight of the hemihydrate, the uranium content, and the uranium recovery rate in the hemihydrate process. Subsequently, the hemihydrate Kou NO. 60 g of 2 was dispersed and hydrated in 70 ml of water, filtered, and the washing water and mother liquor were combined to obtain 72 ml of recovered liquid.

回収液のウラン濃度はU=353ppm1従つて水和操
作におけるウラン回収率は98%てあつた。さらにPH
=1の回収液をNaOH水溶液・てPH=5.5まで中
和して、ウランを18.5%(Uとして)含むニウラン
酸ナトリウム等の沈殿を0.137g得た。この操作の
ウラン回収率は99.9%であつた。従つてNO.2の
総合のウラン回収率は94%(イ).96×0.98×
0.999)となる。同様の水和操作をNO.l,3,
4,5の半水石コウについて.行なつた結果、総合のウ
ラン回収率はそれぞれNO.l=93%、NO.3=9
5%、NO.4,5=94%であつた。実施例6 湿式リン酸を脱弗したいわゆる脱弗リン酸ζ(P2O.
濃度=30%、F濃度=0.5%、U濃度=100pp
m)300gに、98%硫酸30gを添加した混酸につ
いて実施例1〜5と同様の操作を行なつた。
The uranium concentration in the recovered liquid was 353 ppm1, so the uranium recovery rate in the hydration operation was 98%. Further PH
The recovered solution of 1 was neutralized to pH=5.5 using an aqueous NaOH solution to obtain 0.137 g of a precipitate such as sodium niuranate containing 18.5% (as U) of uranium. The uranium recovery rate for this operation was 99.9%. Therefore, NO. The overall uranium recovery rate for 2 was 94% (a). 96×0.98×
0.999). Similar hydration operation was performed on NO. l, 3,
Regarding 4 and 5 hemihydrate stones. As a result, the overall uranium recovery rate was NO. l=93%, NO. 3=9
5%, NO. 4,5=94%. Example 6 So-called defluorinated phosphoric acid ζ (P2O.
Concentration = 30%, F concentration = 0.5%, U concentration = 100pp
m) The same operations as in Examples 1 to 5 were performed on a mixed acid prepared by adding 30 g of 98% sulfuric acid to 300 g.

攪拌機付きポリプロピレン製容器に仕込み、鉄粉0.2
gを加えて還元処理した。該混酸に固形NaOHクを3
.0g添加し溶解させた。次に、水和石コウ40g(U
濃度=2ppm)を加え、攪拌しながら8rCで1時間
反応させた。水和石コウが全量半水石コウに転移したこ
とを確認したのち、リン鉱石(フロリダ産BPL75、
P2O534.4%、U濃度100ppm)32ダを加
え、87℃で2時間分解反応させた。全て半水石コウと
なつたことを確認してろ過し、P2C)−,30.9%
、U2ppm含有のリン酸327gを得た。
Pour into a polypropylene container with a stirrer and add 0.2 iron powder.
g was added for reduction treatment. Add 3 solid NaOH to the mixed acid.
.. 0g was added and dissolved. Next, 40 g of hydrated gypsum (U
Concentration = 2 ppm) was added, and the mixture was reacted for 1 hour at 8 rC with stirring. After confirming that the entire amount of hydrated quartz has been transferred to hemihydrate lithium, phosphate rock (BPL75 from Florida,
32 Da (34.4% P2O, 100 ppm U concentration) was added, and a decomposition reaction was carried out at 87°C for 2 hours. After confirming that it has become all hemihydrate, it is filtered, P2C) -, 30.9%
, 327 g of phosphoric acid containing 2 ppm of U was obtained.

半水石コウケーキは最初熱水で、次いでアセトンで洗浄
して風乾した。該半水石コウの重量は75g1ウラン含
有量はUとして435ppmであつた。従つて、半水化
操作におけるウラン回収率は98%であつた。続いて、
該半水石コウのうち60gを70m1の水で分散水和し
た後、ろ過し、洗浄水と母液をあわせて回収液72m1
を得た。回収液のウラン濃度は355ppm1従つて水
和操作におけるウラン回収率は98%であつた。さらに
PH:1の回収液をアンモニア水でPH=6まで中和す
ると、ウランを19.0%(Uとして)含むウラン酸ア
ンモニウム他の沈殿0.134gを得た。この操作のウ
ラン回収率は99.9%であつた。従つて、総合のウラ
ン回収率は96%(0.98×0.98×0.999)
であつた。比較例1実施例1〜5と同じ湿式リン酸30
0gに98%硫酸30gを添加した混酸に固形NaOH
O.3gを溶解せしめ、(上昇したNaイオン濃度は0
.05%に相当する。
The hemihydrate cake was washed first with hot water and then with acetone and air dried. The weight of the hemihydrate powder was 75 g, and the uranium content was 435 ppm as U. Therefore, the uranium recovery rate in the hemihydration operation was 98%. continue,
After dispersing and hydrating 60 g of the hemihydrate in 70 ml of water, it was filtered, and the washing water and mother liquor were combined to yield 72 ml of recovered liquid.
I got it. The uranium concentration in the recovered liquid was 355 ppm1, so the uranium recovery rate in the hydration operation was 98%. Furthermore, the recovered liquid with pH: 1 was neutralized with aqueous ammonia to pH=6, to obtain 0.134 g of ammonium uranate and other precipitates containing 19.0% (as U) of uranium. The uranium recovery rate for this operation was 99.9%. Therefore, the overall uranium recovery rate is 96% (0.98 x 0.98 x 0.999)
It was hot. Comparative Example 1 Wet phosphoric acid 30 same as Examples 1 to 5
Solid NaOH is added to the mixed acid of 0g and 30g of 98% sulfuric acid.
O. 3g was dissolved (the increased Na ion concentration was 0).
.. This corresponds to 0.05%.

)実施例1〜5と全く同様の操作を行つた結果半水化工
程のウラン回収率は93% 水和工程の〃は98% 沈殿化工程の〃は99.9%であり、 総合のウラン回収率は91%(0.93×0.98×0
.999)であつた。
) As a result of performing exactly the same operations as in Examples 1 to 5, the uranium recovery rate in the hemihydration step was 93%, the hydration step was 98%, the precipitation step was 99.9%, and the total uranium recovery rate was 93%. The recovery rate was 91% (0.93×0.98×0
.. 999).

Claims (1)

【特許請求の範囲】 1 湿式リン酸に硫酸を添加して、得られたH_2SO
_425%以下を含む混酸に二水石コウを添加し、半水
石コウ転移温度以上に保持して半水石コウに転移させた
後、リン鉱石を添加して湿式分解を行ない、生成した半
水石コウを分離し、該半水石コウを水和して得られる二
水石コウを分離し、分離母液に沈殿剤を添加してウラン
を不溶性沈殿として回収する方法において、混酸中のア
ルカリ金属イオン濃度を0.1%以上に上昇せしめて二
水石コウを半水石コウに転移させることを特徴とする湿
式リン酸からウランを回収する方法。 2 アルカリ金属イオンがNaあるいはKである特許請
求の範囲1項に記載の方法。 3 湿式リン酸としてFが0.5%以下の脱弗リン酸を
用いる特許請求の範囲1項および2項に記載の方法。 4 分離二水石コウの一部をウラン回収剤として混酸中
に戻し循環使用する特許請求の範囲1項に記載の方法。
[Claims] 1 H_2SO obtained by adding sulfuric acid to wet phosphoric acid
_4 Add dihydrate to a mixed acid containing 25% or less, hold it above the hemihydrate transition temperature to transform it to hemihydrate, then add phosphate rock and perform wet decomposition to produce the hemihydrate. In this method, uranium is recovered as an insoluble precipitate by separating the dihydrate obtained by separating the hemihydrate and hydrating the hemihydrate and adding a precipitant to the separated mother liquor. A method for recovering uranium from wet phosphoric acid, which is characterized by increasing the concentration of uranium to 1% or more and transferring dihydrate to hemihydrate. 2. The method according to claim 1, wherein the alkali metal ion is Na or K. 3. The method according to claims 1 and 2, in which defluorinated phosphoric acid containing 0.5% or less of F is used as the wet phosphoric acid. 4. The method according to claim 1, wherein a part of the separated dihydrate is returned to the mixed acid as a uranium recovery agent and used for circulation.
JP6043282A 1982-04-13 1982-04-13 How to recover uranium from wet phosphoric acid Expired JPS6055447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6043282A JPS6055447B2 (en) 1982-04-13 1982-04-13 How to recover uranium from wet phosphoric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6043282A JPS6055447B2 (en) 1982-04-13 1982-04-13 How to recover uranium from wet phosphoric acid

Publications (2)

Publication Number Publication Date
JPS58181729A JPS58181729A (en) 1983-10-24
JPS6055447B2 true JPS6055447B2 (en) 1985-12-05

Family

ID=13142075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6043282A Expired JPS6055447B2 (en) 1982-04-13 1982-04-13 How to recover uranium from wet phosphoric acid

Country Status (1)

Country Link
JP (1) JPS6055447B2 (en)

Also Published As

Publication number Publication date
JPS58181729A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
US4171342A (en) Recovery of calcium fluoride from phosphate operation waste water
US6143260A (en) Method for removing magnesium from brine to yield lithium carbonate
US4070260A (en) Process of sulfuric acid leaching silicated zinc ores
CN110642282A (en) Method for preparing calcium fluoride and potassium bicarbonate by using carbon dioxide
US10011891B2 (en) Methods for concentrating rare-earth metals in phosphogypsum and removing thereof from wet process phosphoric acid
US3189407A (en) Method of recovering lithium from lepidolite
CA1076364A (en) Process for concentrating and recovering gallium
US4060586A (en) Recovery of fluorides from gypsum
JP2000109939A (en) Separation of lead, tin and bismuth from lead slag
US4504458A (en) Gypsum conversion
US4195070A (en) Preparation of a MgCl2 solution for Nalco's MgCl2 process from MgSO4 and other MgSO4 salts
US2021988A (en) Production of lithium compounds
US1382165A (en) Process of making fluorids
KR900006611B1 (en) Process for the reduction of fluorides of silicon titanium zirconium or uranium
US3661513A (en) Manufacture of alkali metal phosphates
JPS6055447B2 (en) How to recover uranium from wet phosphoric acid
CA1142324A (en) Preparation of useful mgcl.sub.2 solution with subsequent recovery of kc1 from carnallite
US4036941A (en) Preparation of ferric sulfate solutions
US4200622A (en) Purification of ammonium fluoride solutions
US2974011A (en) Process of purifying beryllium compounds
JPS6055446B2 (en) How to recover uranium from wet phosphoric acid
US5624650A (en) Nitric acid process for ferric sulfate production
US4423009A (en) Carbonate, sulphate and hydroxide or hydrogen carbonate
US1837777A (en) Process of extracting iodine from aqueous solutions
US3005685A (en) Process for desilicifying fluorspar and the like minerals