JPS6055353B2 - pressure control device - Google Patents

pressure control device

Info

Publication number
JPS6055353B2
JPS6055353B2 JP52048733A JP4873377A JPS6055353B2 JP S6055353 B2 JPS6055353 B2 JP S6055353B2 JP 52048733 A JP52048733 A JP 52048733A JP 4873377 A JP4873377 A JP 4873377A JP S6055353 B2 JPS6055353 B2 JP S6055353B2
Authority
JP
Japan
Prior art keywords
pressure
spool
oil passage
oil
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52048733A
Other languages
Japanese (ja)
Other versions
JPS53132824A (en
Inventor
順造 中野
光弘 後藤
東一 井上
文男 山下
光雄 会野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP52048733A priority Critical patent/JPS6055353B2/en
Publication of JPS53132824A publication Critical patent/JPS53132824A/en
Publication of JPS6055353B2 publication Critical patent/JPS6055353B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【発明の詳細な説明】 本発明は、油圧クラッチ操作用の油圧力を制御する圧力
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure control device for controlling hydraulic pressure for operating a hydraulic clutch.

従来、船用機関等の駆動力を断接し、又は正逆転させる
ための油圧クラッチにおいては、回転数にほぼ比例して
圧力が上昇する油圧ポンプを油圧源とし、この油圧ポン
プと上記油圧クラッチとを連ぶ高圧油路に所定の高圧力
でリリーフする調圧弁が介装されていたが、上記船舶用
機関が低速回転時でも高速回転時でも、該調圧弁はほぼ
等しい高圧力においてリリーフするため、低速回転時の
動力損失が大きいという問題があると共に、この低速回
転時には減速ギヤ、逆転ギヤ等から大きな騒音が発生す
る問題があつた。
Conventionally, in a hydraulic clutch for connecting and disconnecting the driving force of a marine engine, etc., or for forwarding and reversing the driving force, a hydraulic pump whose pressure increases approximately in proportion to the rotational speed is used as a hydraulic power source, and this hydraulic pump and the above-mentioned hydraulic clutch are connected. A pressure regulating valve that provides relief at a predetermined high pressure was installed in the connected high-pressure oil passage, but since the pressure regulating valve provides relief at approximately the same high pressure whether the marine engine is rotating at low speed or high speed, There is a problem that power loss is large during low speed rotation, and there is also a problem that large noise is generated from the reduction gear, reverse gear, etc. during low speed rotation.

この騒音の原因は、上記機関の低速回転時にはトルク変
動が大きく、回転数の変動が生じ、油圧クラッチ以後の
動力伝達系(カップリング、プロペラ軸、プロペラ等)
の慣性質量と共振して、減速ギヤ、逆転ギヤ等の噛合歯
面がバックラツシ等の間隙を有するたJめに、該歯面が
相互に衝撃的に当接して、大きな騒音が発生していた。
第2図は従来の上記調圧弁の一例を示したものであり、
aは油圧ポンプとして例えばギヤポンプであつて図示省
略の油圧クラッチに高圧油路bを通つて圧油を送るので
あるが、この高圧油路bと連通する孔部cには軸方向摺
動自在のスプールdが嵌合され、該スプールdは一本の
スプリングeによつて弾発押圧されており、上記油路b
内の圧力が上昇すれば、図の右方向にスプリングeを押
圧し、所定の高圧力P1に達すればタンクfへの還流油
路gと連通する貫孔hを通つて、圧油は逃げてゆく。
The cause of this noise is that when the above engine rotates at low speed, there is a large torque fluctuation, which causes fluctuations in rotation speed, and the power transmission system after the hydraulic clutch (coupling, propeller shaft, propeller, etc.)
Resonating with the inertial mass of the gear, the meshing tooth surfaces of reduction gears, reversing gears, etc. had gaps such as backlash, so the tooth surfaces came into impactful contact with each other, causing large noise. .
FIG. 2 shows an example of the above-mentioned conventional pressure regulating valve.
The hydraulic pump a is, for example, a gear pump, which sends pressure oil to a hydraulic clutch (not shown) through a high-pressure oil passage b, and a hole c that communicates with the high-pressure oil passage b has an axially slidable member. A spool d is fitted, and the spool d is resiliently pressed by a single spring e, and the oil passage b
When the internal pressure rises, the spring e is pressed to the right in the figure, and when a predetermined high pressure P1 is reached, the pressure oil escapes through the through hole h that communicates with the return oil path g to the tank f. go.

第1図はこの場合のギヤポンプaの回転数、つまり舶用
機関の回転数Nr.p.m.を横軸にとり、油路bの油
圧力Pk9/Criを縦軸にとつたものであつて、N=
500r.p.m.程度の低速回転時の油圧力P5OO
と、N=2000r′.P.m.の高速回転時の油圧力
P2OOOとが略等しくなつており、既述の如く、N=
500r.p.m.程度の低速回転時のトルク変動が大
きい回転数においても、油圧クラッチがいわゆる半クラ
ッチ状態となることは全くなく、トルク変動に伴う回転
数の変動4まそのまま減速ギヤ、逆転ギヤ等に伝達され
、間隙を有するギヤの歯面が相互に衝突して、大きな騒
音を発生していたのである。そこで、上記問題を解決す
べく、実公昭46一34247号公報に示すものが既に
提案されており、上記のものでは、エンジン回転数の増
大に伴つて圧油圧力を段階的に上昇させる調圧弁が使用
され5ている。
FIG. 1 shows the rotational speed of gear pump a in this case, that is, the rotational speed Nr of the marine engine. p. m. is taken on the horizontal axis and the hydraulic pressure Pk9/Cri of oil passage b is taken on the vertical axis, where N=
500r. p. m. Hydraulic pressure P5OO at low speed rotation of
and N=2000r'. P. m. The hydraulic pressures P2OOOO during high-speed rotation are approximately equal, and as mentioned above, N=
500r. p. m. Even at rotational speeds where torque fluctuations are large during low-speed rotation, the hydraulic clutch never enters a so-called half-clutch state, and the fluctuations in rotational speed due to torque fluctuations are transmitted as they are to the reduction gear, reverse gear, etc. The tooth surfaces of the gears, which had gaps, collided with each other, creating a large amount of noise. Therefore, in order to solve the above problem, a system shown in Japanese Utility Model Publication No. 46-34247 has already been proposed. is used5.

上記のものでは、油圧ポンプと油圧クラッチ間の高圧油
路に調圧弁を介装し、調圧弁のスプール孔とスプール間
に、高圧油路から圧油が流入される2つの圧力チャンバ
ーと同じく2つのドレーンjチャンバーとを形成して、
一方の圧力チャンバーから油圧クラッチに圧油を供給す
るようにしている。
In the above system, a pressure regulating valve is interposed in the high pressure oil passage between the hydraulic pump and the hydraulic clutch, and two pressure chambers are provided between the spool hole of the pressure regulating valve and the spool, as well as two pressure chambers into which pressure oil flows from the high pressure oil passage. forming two drain chambers,
Pressure oil is supplied to the hydraulic clutch from one pressure chamber.

又、スプールに、斜方向オリフィスと段差部分とを形成
し、エンジン回転数の低い場合には、上3記一方の圧力
チャンバーから、斜方向オリフィス、一方のドレーンチ
ャンバーを介して圧油を排出している。
Additionally, a diagonal orifice and a stepped portion are formed in the spool, and when the engine speed is low, pressure oil is discharged from one of the pressure chambers mentioned above through the diagonal orifice and one drain chamber. ing.

そして、エンジン回転数が高くなると、上記一方の圧力
チャンバーからオリフィスを介して他方4・の圧力チャ
ンバーに圧油を供給して、スプールを軸方向に移動させ
て、上記一方の圧力チャンバーから、段差部分、上記一
方のドレーンチャンバーを介して圧油を排出するように
している。
When the engine speed increases, pressurized oil is supplied from the one pressure chamber to the other pressure chamber 4 through the orifice, and the spool is moved in the axial direction to move the pressure oil from the one pressure chamber to the step. In this case, the pressure oil is discharged through one of the drain chambers.

然し乍ら、上記のものでは、高圧油路の圧油の圧力上昇
時の階段数を所望に、即ち、3段階以上に設定すること
が極めて困難であると云う問題があつた。
However, the above-mentioned method has a problem in that it is extremely difficult to set the number of steps when the pressure of the pressure oil in the high-pressure oil path increases to a desired value, that is, to three or more steps.

又、上記のものでは、スプールに、斜方向オリフィスや
段差部分を形成するだけではなく、スプールに、スプー
ル孔との間で2つ宛の圧力チャンバーやドレーンチャン
バーを形成するためのランドや、両圧力チャンバーを連
通するためのオリフ)イス等を形成しなければならず、
スプールの構造は極めて複雑なものとなつていた。
In addition, in the above-mentioned device, not only the diagonal orifice and the stepped portion are formed on the spool, but also a land is formed on the spool to form a pressure chamber and a drain chamber for two between the spool holes, and both An orifice chair, etc. must be formed to communicate the pressure chamber,
The structure of the spool was extremely complex.

本発明は、上記問題を解決したものであつて、その目的
とする処は、高圧油路の圧油の圧力上昇時の段階数を容
易に所望に設定できるようにする;と共に、構造を簡易
なものにするところにある。
The present invention has solved the above problems, and its purpose is to easily set the number of stages at the time of pressure rise of pressure oil in a high-pressure oil path to a desired value; and to simplify the structure. It lies in turning it into something.

よつて、本発明の特徴とするところは、エンジンを油圧
クラッチを介して伝動装置と連結し、エンジンにより駆
動される油圧ポンプから高圧油路を介して油圧クラッチ
に圧油を供給し、高圧油路に、エンジン回転数の増大に
伴つて圧油の圧力を段階的に上昇させる調圧弁を接続し
、調圧弁に、スプール孔に軸方向に摺動自在に内装され
且つ高圧油路の圧油の圧力が一端面に軸方向に作用する
スプールと、スプールの他端面を軸方向に弾圧付勢する
スプールとを備え、スプール孔内周面に、タンクと連通
するもどり油路の開口部を形成したものにおいて、スプ
ール内部に盲孔状の第1排出油路を、上記一端面から軸
方向に形成し、エンジン回転数の増大に伴つて高圧油路
内に供給される高圧油量が増大したときに第1排出油路
からもどり油路への排出油の流路断面積を段階的に増大
すべく、スプールに第1排出油路からスプール外周面に
まで達し且つ高圧油の圧力によりスプールがスプリング
に抗して軸方向に摺動したときにもどり油路の上記開口
部に対して順次開口する複数の第2排出油路を軸方向に
並設したところにある。以下、図示の実施例にもとづい
て本発明を説明する。第4図において、1は機関室に設
置された舶用機関であつて、エンジンとして示す機関本
体2、後方の伝動装置と連結される油圧式逆転減速機3
等を有する。
Therefore, the characteristics of the present invention are that the engine is connected to the transmission device via the hydraulic clutch, and pressure oil is supplied from the hydraulic pump driven by the engine to the hydraulic clutch via the high-pressure oil path. A pressure regulating valve that increases the pressure of the pressure oil in stages as the engine speed increases is connected to the high-pressure oil passage, and the pressure regulating valve is installed in a spool hole so as to be slidable in the axial direction. The spool has a spool on which pressure acts axially on one end surface, and a spool that presses the other end surface of the spool in the axial direction, and an opening for a return oil passage communicating with the tank is formed on the inner peripheral surface of the spool hole. In this system, a blind hole-shaped first discharge oil passage is formed inside the spool in the axial direction from the above-mentioned one end surface, and the amount of high-pressure oil supplied to the high-pressure oil passage increases as the engine speed increases. In order to gradually increase the cross-sectional area of the discharged oil from the first discharge oil passage to the return oil passage, the spool is sometimes A plurality of second discharge oil passages are arranged in parallel in the axial direction and sequentially open to the opening of the return oil passage when the oil passage slides in the axial direction against the spring. The present invention will be explained below based on illustrated embodiments. In FIG. 4, 1 is a marine engine installed in an engine room, which includes an engine main body 2 and a hydraulic reversing speed reducer 3 connected to a rear transmission device.
etc.

逆転減速機3は前進油圧クラッチ4、後進油圧クラッチ
5、前進減速機構6、後進戒速機構7等から構成され、
上記油圧クラッチ4,5を介して機関本体2の出力軸1
2と連動連結されるようにギヤポンプ等の油圧ポンプ8
が上記減速機3に付設されている。そして、この油圧ポ
ンプ8と油圧クラッチ4,5とを連ぶ高圧油路13には
、枝分かれされた油路14によつて、調圧弁9が取付け
られ、油圧ポンプ8から吐出された高圧油は、該調圧弁
9によつて圧力制御される。このように高圧油路13に
は調圧弁9が介装され、さらに、切換弁10が介装され
て、そのスプール11によつて、前進油圧クラッチ4、
後進油圧クラッチ5、タンク15のいずれかに選択的に
ポンプ8から送られてくる油を切換えて送油する。
The reversing speed reducer 3 is composed of a forward hydraulic clutch 4, a reverse hydraulic clutch 5, a forward speed reduction mechanism 6, a reverse speed reduction mechanism 7, etc.
The output shaft 1 of the engine body 2 is connected to the engine body 2 via the hydraulic clutches 4 and 5.
Hydraulic pump 8 such as a gear pump is connected in conjunction with 2.
is attached to the reduction gear 3. A pressure regulating valve 9 is attached to the high pressure oil passage 13 connecting the hydraulic pump 8 and the hydraulic clutches 4 and 5 through a branched oil passage 14, and the high pressure oil discharged from the hydraulic pump 8 is , the pressure is controlled by the pressure regulating valve 9. In this way, the pressure regulating valve 9 is interposed in the high pressure oil passage 13, and the switching valve 10 is further interposed, and the forward hydraulic clutch 4,
The oil sent from the pump 8 is selectively switched and sent to either the reverse hydraulic clutch 5 or the tank 15.

16はスプールであり、その一端面17は大小の同一軸
心に配設された2種のスプリング18,19により弾圧
付勢され、他端面20は、油圧クラッチ4,5と連通す
る前記高圧油路13内の圧力を受けて、上記スプリング
18,19に抗して、図の右方向にスプール孔21内を
摺動せんとする。
Reference numeral 16 denotes a spool, one end surface 17 of which is elastically biased by two types of springs 18 and 19, large and small, arranged on the same axis, and the other end surface 20 of which is connected to the high-pressure oil that communicates with the hydraulic clutches 4 and 5. In response to the pressure in the passage 13, the spool is forced to slide inside the spool hole 21 in the right direction in the figure against the springs 18 and 19.

スプール孔21は油路14を介して高圧油路13と連通
されているが、スプール孔21には上記のように、軸方
向摺動自在にスプール16が嵌合され、該スプール孔2
1の中間部には、タンク15と連通するもどり油路22
の開口部として示す開口溝23が形成され、上記スプー
ル16が上記スプリング18,19に抗して摺動したと
きに該開口溝23に順次開口するように、スプール11
の内部には、受圧側の端面20と連通する複数個の、図
例では3個の、第2排出路として示す内部油路27,2
8,29と、それぞれに対応するスプール16外周面の
開口部24,25,26が軸方向所定間隔で設けられて
おり、図例では、油路27,28,29は漸次流路断面
積が段階的に増加するように、例えば円形孔であれば漸
次その径を増加して右から左に配設されているのである
。そして、スプール21の軸心部には、第1排出油路と
して示す比較的大径の盲孔30が、受圧側の端面20か
ら軸方向に形成されて、各内部油路27,28,29と
連通している。而して、機関本体2の回転数の増大に伴
つて高圧油路13に供給される圧油量が増大したときに
、スプール11が圧油の圧力によりスプール18,19
に抗して軸方向に摺動して、各開口部24,25,26
が開口溝23に対し順次開口することにより、盲孔30
からもどり油路22への排出油の流路断面積が段階的に
増大して、排出油量が段階的に増大する。又、開口部2
4,25,26はそれぞれ2本づつとされているが、こ
れは1本づつとするも、自由である。31はスプリング
室であり、大小2重スプリング18,19が内有され、
該スプリング室31は、スプール孔21と同一軸心外側
に形設されたスプリング孔32と、該スプリング孔32
の開口周縁部に取付けられたプラグ33とによつて形成
され、油路34によりもどり油路22に連動連結されて
いて、スプリング室31内は低圧に保持されている。ま
た、図例では小スプリング19はバネカ調整ボルト35
により外側端部が圧接され、最初の開口部24が開口溝
23に開くときの圧力を調整可能とされている。そして
、大スプリング18は自由長さではやや短力泪とされて
、受圧端面20に低圧力が作用した場合には、この大ス
プリング18は当接しないで、ある程度圧力が上昇した
ところから当接して、バネ特性に変化をもたせてある。
なお、36はロックナット、37はキャップであり、ガ
スケット38,39,40でシールされている。以上の
ように構成された調圧弁9の特性を第3図の折れ線41
で示す。
The spool hole 21 communicates with the high pressure oil path 13 via the oil path 14, and as described above, the spool 16 is fitted into the spool hole 21 so as to be slidable in the axial direction.
1, there is a return oil passage 22 communicating with the tank 15.
An opening groove 23 shown as an opening is formed in the spool 11 so as to sequentially open into the opening groove 23 when the spool 16 slides against the springs 18 and 19.
Inside, there are a plurality of internal oil passages 27, 2 shown as second discharge passages, three in the illustrated example, which communicate with the end face 20 on the pressure receiving side.
8, 29 and corresponding openings 24, 25, 26 on the outer peripheral surface of the spool 16 are provided at predetermined intervals in the axial direction. For example, in the case of a circular hole, the diameter of the hole increases gradually and is arranged from right to left. In the axial center of the spool 21, a relatively large-diameter blind hole 30, shown as a first discharge oil passage, is formed in the axial direction from the pressure-receiving side end face 20, and each internal oil passage 27, 28, 29 It communicates with Therefore, when the amount of pressurized oil supplied to the high-pressure oil passage 13 increases with the increase in the rotational speed of the engine body 2, the spool 11 is moved to the spools 18 and 19 by the pressure of the pressurized oil.
each opening 24, 25, 26 by sliding in the axial direction against the
The blind hole 30 is opened sequentially with respect to the opening groove 23.
The flow path cross-sectional area of the discharged oil to the return oil passage 22 increases stepwise, and the amount of discharged oil increases stepwise. Also, opening 2
Numbers 4, 25, and 26 are supposed to have two each, but you are free to use one each. 31 is a spring chamber, which contains large and small double springs 18 and 19;
The spring chamber 31 includes a spring hole 32 formed on the outer side of the same axis as the spool hole 21, and a spring hole 32 formed on the outer side of the same axis as the spool hole 21.
The spring chamber 31 is formed by a plug 33 attached to the opening periphery thereof, and is operatively connected to the return oil passage 22 by an oil passage 34, so that the inside of the spring chamber 31 is maintained at a low pressure. In addition, in the illustrated example, the small spring 19 is attached to the spring adjustment bolt 35.
The outer end portions are pressed against each other, and the pressure when the first opening 24 opens into the opening groove 23 can be adjusted. The large spring 18 has a slightly short force in its free length, and when low pressure is applied to the pressure receiving end surface 20, the large spring 18 does not come into contact, but only comes into contact after the pressure has increased to a certain extent. The spring characteristics are varied.
Note that 36 is a lock nut and 37 is a cap, which are sealed with gaskets 38, 39, and 40. The characteristics of the pressure regulating valve 9 configured as described above are expressed by the polygonal line 41 in FIG.
Indicated by

つまり、この第3図のグラフは前述の第1図のグラフと
同じ横軸、縦軸であるが、そして、破線は第1図の従来
の特性曲線42を再度示したものであるが、この曲線4
2よLりも低速回転〜中速回転域において、特に圧力の
低域が達成され、油圧クラッチ4,5がトルク伝達に必
要な油圧力曲線43に近接させることができたものであ
る。第4図に示すスプール16の位置は、第3図の折れ
線41の傾斜部44に対応7し、最初の水平部45は開
口部24が開口した状態に対応し、水平部46は開口部
25、水平部47は開口部26、最後の水平部48は端
面20の開口した状態に、それぞれ対応するものである
。なお、漸次増大された開口部24,25,26ヘフの
流路面積のうち最大開口部26の流路面積を十分に大き
く設定して、油圧ポンプ8から吐出される油量を略全量
リリーフさせ得るようにするも自由であり、その場合に
は第3図の階段状水平部の数が1段減少する。もちろん
、この開口部24,25,26の数の増減は自由であり
、油圧クラッチ4,5の特性、及び、必要油圧曲線43
に対応して増減すればよいのである。次に、第5図は本
発明の他の実施例を示し、この調圧弁9のスプール16
は、ほぼ前実施例とその構成を同じくするも、タンク1
5へのもどり油路22の、スプール孔21への開口溝2
3の軸方向幅寸法Mが十分に大きく設けられ、スプール
16外周面に設けられた複数個の開口部24,25,2
6,49が、スプール16の摺動に応じて、それらの流
路面積の和となるように、増大してゆくように構成され
ていて、前実施例のように、それぞれの開口部24,2
5,26が開口溝23に開く途中において、いつたん流
れが中断される状態を経ないで、いつたん開いた開口部
24,25・・・・・・は最後まで閉じないのである。
In other words, the graph in FIG. 3 has the same horizontal and vertical axes as the graph in FIG. 1, and the broken line again shows the conventional characteristic curve 42 in FIG. curve 4
Especially in the low speed rotation to medium speed rotation range than 2L, a low pressure range was achieved, and the hydraulic clutches 4 and 5 were able to be brought close to the hydraulic pressure curve 43 necessary for torque transmission. The position of the spool 16 shown in FIG. 4 corresponds to the inclined portion 44 of the polygonal line 41 in FIG. , the horizontal portion 47 corresponds to the opening 26, and the last horizontal portion 48 corresponds to the open state of the end surface 20, respectively. In addition, among the passage areas of the openings 24, 25, and 26 which have been gradually increased, the passage area of the largest opening 26 is set to be sufficiently large to relieve almost the entire amount of oil discharged from the hydraulic pump 8. It is also possible to obtain the same, and in that case, the number of stepped horizontal portions in FIG. 3 is reduced by one step. Of course, the number of openings 24, 25, 26 can be increased or decreased as desired, depending on the characteristics of the hydraulic clutches 4, 5 and the required hydraulic pressure curve 43.
All you have to do is increase or decrease it accordingly. Next, FIG. 5 shows another embodiment of the present invention, in which the spool 16 of the pressure regulating valve 9
Although the configuration is almost the same as that of the previous embodiment, tank 1
Opening groove 2 of return oil passage 22 to spool hole 21 to 5
3 is provided with a sufficiently large axial width dimension M, and a plurality of openings 24, 25, 2 provided on the outer peripheral surface of the spool 16.
6 and 49 are configured to increase as the spool 16 slides, so that the sum of their flow path areas increases, and as in the previous embodiment, the respective openings 24, 2
5, 26 open into the opening groove 23, the flow does not go through a state where the flow is interrupted, and the openings 24, 25, . . ., which once opened, do not close until the end.

この場合の特性を折れ線50で第3図に示した。図より
明らかなように、傾斜部51,52,53が、前実施例
よりも水平に近づき、緩やかに圧力上昇するために、一
層曲線43に近接可能となり、理想的である。第6図は
、このように、折れ線41,50のように必要油圧力曲
線43よりやや高目に近接しているために、トルク変動
曲線54のピーク部55が、所定のトルクT。
The characteristics in this case are shown in FIG. 3 by a polygonal line 50. As is clear from the figure, the inclined parts 51, 52, and 53 are closer to the horizontal than in the previous embodiment, and the pressure rises more gradually, so that it is possible to approach the curve 43 even more, which is ideal. In FIG. 6, as shown in the polygonal lines 41 and 50, the peak portion 55 of the torque fluctuation curve 54 is at a predetermined torque T because the lines 41 and 50 are close to the required hydraulic pressure curve 43.

においてカットされ、もつて、トルク変動振幅を小さく
均一化することができるのであり、本発明では、低速の
みならず中高速域においてもこのピーク部55カットが
行なわれるため後述の騒音低減、疲労寿命の延長、その
他の効果を発揮する。つまり、本発明の圧力制御装置は
、スプール内部に、盲孔状の第1排出油路を、上記一端
面から軸方向に形成し、エンジン回転数の増大に伴つて
高圧油路内に供給される高圧油量が増大したときに第1
排出油路からもどり油路への排出油の流路断面積を段階
的に増大すべく、スプールに第1排出油路からスプール
外周面にまで達し且つ高圧油の圧力によりスプールがス
プリングに抗して軸方向に摺動したときにもどり油路の
上記開口部に対して順次開口する複数の第2排出油路を
軸方向に並設したので、高圧油路の圧油の圧力上昇時の
段)階数を、第2排出油路の数により、容易に所望に設
定でき、例えば、圧油の圧力を3段階以上の段階数で段
階的に上昇させることも容易にできる。
In the present invention, this peak portion 55 is cut not only at low speeds but also at medium and high speeds, which improves noise reduction and fatigue life as described below. extension and other effects. That is, in the pressure control device of the present invention, a blind hole-shaped first discharge oil passage is formed inside the spool in the axial direction from the above-mentioned one end surface, and the oil is supplied into the high pressure oil passage as the engine speed increases. When the amount of high pressure oil increases,
In order to gradually increase the flow path cross-sectional area of the discharged oil from the discharge oil passage to the return oil passage, the spool has a first discharge oil passage that reaches the outer peripheral surface of the spool, and the spool resists the spring due to the pressure of high-pressure oil. A plurality of second discharge oil passages are arranged in parallel in the axial direction, which open sequentially to the opening of the return oil passage when the oil slides in the axial direction. ) The number of floors can be easily set as desired by the number of second discharge oil passages, and for example, the pressure of the pressure oil can be easily increased stepwise in three or more stages.

又、スプールには、一端面から軸方向に形成された盲孔
状の第1排出油路と、第1排出油路からスプール外周面
まて達する複数の第2排出油路を形成するだけでよく、
スプールの構造を簡易なものとできると共に、全体構造
も簡易なものとできる。
Further, the spool is simply formed with a blind hole-shaped first discharge oil passage formed in the axial direction from one end surface, and a plurality of second discharge oil passages reaching from the first discharge oil passage to the spool outer peripheral surface. often,
The structure of the spool can be simplified, and the overall structure can also be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の特性を示すグラフ、第2図は従来
の装置の断面図、第3図は本発明の装置の特性を示すグ
ラフ、第4図は本発明の一実施例を示す説明図兼要部拡
大断面図、第5図は他の実施例を示す要部拡大断面図、
第6図はトルク変動の一例を示すグラフである。 4,5・・・・・・油圧クラッチ、9・・・・・・調圧
弁、13・・・・・・高圧油路、15・・・・・・タン
ク、16・・・・・・スプール、17,20・・・・・
・端面、18,19・・・・・・スプリング、21・・
・・・・スプール孔、22・・・・・・もどり油路、2
3・・・・・・開口溝、24,25,26,49・・・
・・・開口部、41,50・・・・・・折れ線。
Fig. 1 is a graph showing the characteristics of a conventional device, Fig. 2 is a sectional view of the conventional device, Fig. 3 is a graph showing the characteristics of the device of the present invention, and Fig. 4 is a graph showing an embodiment of the present invention. An explanatory diagram and an enlarged cross-sectional view of the main parts, FIG. 5 is an enlarged cross-sectional view of the main parts showing another embodiment,
FIG. 6 is a graph showing an example of torque fluctuation. 4, 5...Hydraulic clutch, 9...Pressure regulating valve, 13...High pressure oil path, 15...Tank, 16...Spool , 17, 20...
・End face, 18, 19...Spring, 21...
... Spool hole, 22 ... Return oil path, 2
3... Opening groove, 24, 25, 26, 49...
... opening, 41, 50 ... polygonal line.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンを油圧クラッチを介して伝動装置と連結し
、エンジンにより駆動される油圧ポンプから高圧油路を
介して油圧クラッチに圧油を供給し、高圧油路に、エン
ジン回転数の増大に伴つて圧油の圧力を段階的に上昇さ
せる調圧弁を接続し、調圧弁に、スプール孔に軸方向に
摺動自在に内装され且つ高圧油路の圧油の圧力が一端面
に軸方向に作用するスプールと、スプールの他端面を軸
方向に弾圧付勢するスプリングとを備え、スプール孔内
周面に、タンクと連通するもどり油路の開口部を形成し
たものにおいて、スプール内部に、盲孔状の第1排出油
路を、上記一端面から軸方向に形成し、エンジン回転数
の増大に伴つて高圧油路内に供給される高圧油量が増大
したときに第1排出油路からもどり油路への排出油の流
路断面積を段階的に増大すべく、スプールに第1排出油
路からスプール外周面にまで達し且つ高圧油の圧力によ
りスプールがスプリングに抗して軸方向に摺動したとき
にもどり油路の上記開口部に対して順次開口する複数の
第2排出油路を軸方向に並設したことを特徴とする圧力
制御装置。
1. The engine is connected to a transmission device via a hydraulic clutch, and pressure oil is supplied from a hydraulic pump driven by the engine to the hydraulic clutch via a high-pressure oil line. A pressure regulating valve that increases the pressure of the pressure oil in stages is connected to the pressure regulating valve, and the pressure regulating valve is installed in a spool hole so as to be slidable in the axial direction, and the pressure of the pressure oil in the high pressure oil passage acts axially on the end surface. A device comprising a spool and a spring that elastically biases the other end surface of the spool in the axial direction, and an opening for a return oil passage communicating with a tank is formed on the inner peripheral surface of the spool hole, and the inside of the spool has a blind hole shape. A first discharge oil passage is formed in the axial direction from the one end surface, and when the amount of high pressure oil supplied to the high pressure oil passage increases as the engine speed increases, oil returns from the first discharge oil passage. In order to gradually increase the cross-sectional area of the oil discharged to the spool, the spool is slid in the axial direction against the spring by the pressure of the high-pressure oil that reaches the spool outer peripheral surface from the first discharge oil passage. A pressure control device characterized in that a plurality of second discharge oil passages are arranged in parallel in the axial direction, and which open sequentially with respect to the opening of the return oil passage when the return oil passage is released.
JP52048733A 1977-04-25 1977-04-25 pressure control device Expired JPS6055353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52048733A JPS6055353B2 (en) 1977-04-25 1977-04-25 pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52048733A JPS6055353B2 (en) 1977-04-25 1977-04-25 pressure control device

Publications (2)

Publication Number Publication Date
JPS53132824A JPS53132824A (en) 1978-11-20
JPS6055353B2 true JPS6055353B2 (en) 1985-12-04

Family

ID=12811480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52048733A Expired JPS6055353B2 (en) 1977-04-25 1977-04-25 pressure control device

Country Status (1)

Country Link
JP (1) JPS6055353B2 (en)

Also Published As

Publication number Publication date
JPS53132824A (en) 1978-11-20

Similar Documents

Publication Publication Date Title
US4449426A (en) Laminated separator plate means for recalibrating automatic transmissions
US4619630A (en) Belt type continuous reduction gear mechanism
US2567042A (en) Transmission and control
JP3445366B2 (en) Tractor transmission structure
US4465168A (en) Pressure control system for a transmission
JPH0745906B2 (en) Slip control device for fluid coupling
US2807968A (en) Device for the automatic control of a friction clutch or brake or the like
JP2757304B2 (en) Transmission hydraulic control device
US4225029A (en) Automatic transmission for automobiles
US4785690A (en) Pressure regulating system for use in an automatic transmission
US4934218A (en) Hydraulic control device for an automatic transmission
US4254672A (en) Control system for a stepless variable speed transmission
JPS6055353B2 (en) pressure control device
JPS61130656A (en) Oil pressure control system for change gear with belt driven type nonstage transmission
US4184330A (en) Hydrodynamic reversing transmission
JPH0369827A (en) Friction torque transmitting apparatus
US3789698A (en) Automatic shift for a transmission
US3230792A (en) Transmission control system
US2484015A (en) Positive displacement hydraulic transmission
US2853891A (en) Control for automatic transmission
JPS597872B2 (en) pressure control device
JPS622187B2 (en)
JP2675150B2 (en) Work vehicle hydraulic circuit structure
JP2648201B2 (en) Transmission
JPS60252850A (en) Hydraulic control device for speed change gear