JPS6054909A - Preparation of carbon material - Google Patents

Preparation of carbon material

Info

Publication number
JPS6054909A
JPS6054909A JP58162889A JP16288983A JPS6054909A JP S6054909 A JPS6054909 A JP S6054909A JP 58162889 A JP58162889 A JP 58162889A JP 16288983 A JP16288983 A JP 16288983A JP S6054909 A JPS6054909 A JP S6054909A
Authority
JP
Japan
Prior art keywords
firing
carbon material
gas
furnace
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58162889A
Other languages
Japanese (ja)
Inventor
Akio Kotado
明夫 古田土
Kazuo Asano
一雄 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP58162889A priority Critical patent/JPS6054909A/en
Publication of JPS6054909A publication Critical patent/JPS6054909A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Ceramic Products (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To obtain a calcined carbon material having improved physical properties and clean surface state without causing problems of dust and oxidation consumption of filler, by calcining molded articles of carbon material in a furnace at a specific rate of heating without filling packing powder tol the periphery of the molded articles of carbon material. CONSTITUTION:The supporting columns 5 are stood in a muffle furnace, and the retention plates 2 made of graphite are attached to them. For example, 18 molded articles of the carbon material 1 molded by a hydraulic press are packed onto the plates. A forming gas such as N2:H2=1:3 is made to flow from the gas inlet 3 to the muffle furnace, made to flow uniformly from the top and bottom by the distribution plate 8, and discharged from the exhaust vent 4. As the gas flows, the molded articles are heated to about 1,200 deg.C at a rate of heating of 10 deg.C per hour, kept at this temperature for about 10hr, and allowed to be cooled. A calcined material having clean surface free from cracks, blister, warpage, etc. is prepared. The calcined material is graphitized at about 3,000 deg.C, to give an improved carbon material.

Description

【発明の詳細な説明】 本発明は、炭素材の製造法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing carbon materials.

炭素材は通常コークス粉、黒鉛粉、油煙等の骨材にピッ
チ、タール等の結合材を加えて加熱混練した混線物を押
出し成形、混線物を粉砕し粒度調整した成形粉を加圧成
形、静水圧成形等の手段により所定の形状に成形した成
形体を得、これをマツフル炉、トンネル炉等により約1
000℃に焼成し、必要に応じこの焼成体を更に250
0℃以上の温度で黒鉛化する方法がとられている。
Carbon materials are usually made by extrusion molding of a mixture made by adding binders such as pitch and tar to aggregates such as coke powder, graphite powder, and oil smoke, and heating and kneading the mixture.The mixture is then crushed, the particle size is adjusted, and the molding powder is press-molded. A molded body formed into a predetermined shape is obtained by means such as isostatic pressing, and then heated in a Matsufuru furnace, tunnel furnace, etc.
000℃, and if necessary, this fired body is further heated to 250℃.
A method of graphitizing at a temperature of 0° C. or higher is used.

そして前記成形体の焼成は、従来例えばマツフル炉中に
成形体を入れ、成形体間及び成形体の周囲にコークス粉
、黒鉛粉等の詰粉を充填して、成形体の酸化防止、溶着
防止及び特性の維持をはかつていた。
Conventionally, the molded body is fired by placing the molded body in a Matsufuru furnace and filling the space between the molded bodies and around the molded body with a filling powder such as coke powder or graphite powder to prevent oxidation and welding of the molded body. and maintenance of properties.

しかしこの方法では詰粉を使用するために次のような欠
点がある。
However, this method has the following drawbacks due to the use of powdered powder.

小、中型炉においては、成形体の充填効率が悪く、詰粉
の充填作業における粉塵が発生し作業者に呼吸系障書を
起こさせる危険性かめるので、この防止のために高価な
集塵設備が必要でめり、大型炉ではこのほか、この詰粉
の充填設備1回収設備9分離設備などの設備が必要であ
る。
In small and medium-sized furnaces, the filling efficiency of compacts is poor, and the dust generated during the powder filling process poses a risk of causing respiratory problems for workers. To prevent this, expensive dust collection equipment is required. Large furnaces also require equipment such as filling equipment, collection equipment, and separation equipment for this powder.

また、この方法では、成形体の空間部分をすべて充填材
により充填しているので、加熱昇温に必要な熱量は大と
なる。そのため、炉体近傍と炉中心対辺とで温度差が生
じ易く、これを防止するために、昇温速度を著しく小さ
くして焼成を行っている。このため焼成には非常に長い
時間2通常は350〜500時間必要でめる。さらに、
焼成時間が長い丸めに成形体から発生するガスが成形体
周囲に保持されず拡散してしまうので成形体を最適雰囲
気下で焼成するのが困難でおる。
In addition, in this method, since all the spaces in the molded body are filled with the filler, the amount of heat required for heating and raising the temperature is large. Therefore, a temperature difference tends to occur between the vicinity of the furnace body and the opposite side from the center of the furnace, and in order to prevent this, firing is performed at a significantly reduced temperature increase rate. For this reason, firing requires a very long time, usually 350 to 500 hours. moreover,
When the firing time is long, the gas generated from the molded body is not retained around the molded body but diffuses, making it difficult to fire the molded body in an optimal atmosphere.

また、かなりの量の詰粉を使用するために、これによる
熱損失も大きく、冷却時間も長くなる。
Furthermore, since a considerable amount of stuffing powder is used, heat loss is also large and cooling time is also increased.

詰粉は、雰囲気を還元下に保つためにコークス粉。The stuffing powder is coke powder to keep the atmosphere under reducing conditions.

黒鉛粉を用いるが、高温度で長時間さらされるために、
コークス粉、黒鉛粉の酸化による消費量も決して少なく
ない。
Graphite powder is used, but because it is exposed to high temperatures for a long time,
The consumption of coke powder and graphite powder due to oxidation is also not small.

さらに、これら詰粉を使用するために、焼成体は一度軟
化してから炭化するのでその表面に詰粉中の大きな粒子
がくい込んで凹凸ができ、きれいにならない。
Furthermore, in order to use these powders, the fired body is once softened and then carbonized, so the large particles in the powder get stuck on the surface, creating unevenness and making it difficult to clean.

本発明はこのような問題点を解決し、充填材を用いずに
成形体を焼成するととKよって、粉塵問題、充填材の酸
化消耗の問題等を解決し、短時間での焼成を可能にし、
焼成中の雰囲気を最適に保つことによって、物理特性の
優れた表面状態のきれいな焼成体を得ることを目的とす
るものである。
The present invention solves these problems, and by firing the molded body without using fillers, it solves the dust problem, the problem of oxidative consumption of fillers, etc., and makes it possible to fire in a short time. ,
The purpose is to obtain a fired body with excellent physical properties and a clean surface condition by maintaining an optimal atmosphere during firing.

本発明者らは、炭素材料の成形体の焼成法について研究
を重ねた結果、焼成炉内を非酸化性雰囲気にすることに
より、詰粉を用いることなく成形体を焼成できることを
見い出した。
As a result of repeated research on the method for firing carbon material molded bodies, the present inventors have discovered that by creating a non-oxidizing atmosphere in the firing furnace, it is possible to fire the molded bodies without using powder.

本発明は。炭素材料の成形体を焼成炉で焼成するに際し
該成形体の周囲に詰粉を充填することなく、焼成炉内を
非酸化性雰囲気に保持して、毎時10℃以上の昇温速度
で該成形体を加熱し焼成する炭素材の製造法に関する。
The present invention is. When firing a carbon material molded body in a firing furnace, the inside of the firing furnace is maintained in a non-oxidizing atmosphere without filling the periphery of the molded body with powder, and the molding is performed at a temperature increase rate of 10°C or more per hour. The present invention relates to a method for producing a carbon material by heating and firing a body.

本発明における成形体は前に述べたように成形粉を加圧
成形等により成形した炭素材の成形体である。
The molded body in the present invention is a carbon material molded body formed by molding powder by pressure molding or the like, as described above.

本発明において用いられる焼成炉は後述する非酸化性ガ
スが通過するガス流通路を持った焼成炉でおり9例えば
マツフル型雰囲気炉、トンネル型雰囲気炉がある。これ
らの焼成炉中に、成形体を搬入し炉内に非酸化性ガスを
送って炉内を非酸化性雰囲気とし、成形体の周囲空間に
コークス粉、黒鉛粉などの詰粉を使用することなく焼成
する。ここで言う非酸化性ガスとは例えば窒素ガス、ア
ルゴンガス、炭酸ガス、水素ガス、−酸化炭素ガス、メ
タンガス、エタンガス、プロパンガス及びこれらの混合
ガスである。体積の大きい成形体は凹凸の小さい保持板
上に載置して焼成することが好ましい。成形体の底面は
接している面がそのまま焼成後に残るからである。
The firing furnace used in the present invention is a firing furnace having a gas flow passage through which a non-oxidizing gas, which will be described later, passes, and includes, for example, a Matsufuru-type atmosphere furnace and a tunnel-type atmosphere furnace. The compacts are carried into these firing furnaces, non-oxidizing gas is sent into the furnace to create a non-oxidizing atmosphere, and the space around the compacts is filled with powder such as coke powder or graphite powder. Fire without burning. The non-oxidizing gas mentioned here includes, for example, nitrogen gas, argon gas, carbon dioxide gas, hydrogen gas, carbon oxide gas, methane gas, ethane gas, propane gas, and mixed gases thereof. It is preferable that a molded body having a large volume is placed on a holding plate with small irregularities and fired. This is because the contacting bottom surface of the molded body remains as it is after firing.

保持板は耐熱性を有し成形体の重量に耐える黒鉛板。The holding plate is a graphite plate that is heat resistant and can withstand the weight of the molded product.

アルミナ板等がよく必要に応じて表面を研磨する。An alumina plate or the like is often used, and the surface can be polished if necessary.

体積の小さい成形体は、成形体周辺の発生ガス濃度が小
さくなり易いから1例えばふたつきステンレス箱のよう
な焼成用容器に入れて焼成するのが好ましい。
It is preferable to fire a molded body having a small volume in a firing container such as a stainless steel box with a lid because the concentration of gas generated around the molded body tends to be small.

直方体や円柱で体積が2000cm”以上の成形体は。Molded objects that are rectangular parallelepipeds or cylinders and have a volume of 2000 cm or more.

直接保持板の上に並べればよいがリング状のものは。Ring-shaped items can be placed directly on the holding plate.

占有体積に対して実際の成形体体積が小さいので焼成用
容器に入れ、上ぶたを付け9発生ガスを容器内に保持す
るようにすることが好ましい。
Since the actual volume of the compact is small relative to the volume it occupies, it is preferable to place it in a firing container and attach a top lid to retain the generated gas in the container.

また、成形体体積が2000cm”以下の直方体や円柱
は、焼成用容器に上ぶたを付け、容器全面あるいは、そ
の一部に孔をあけて、容器内の発生ガス濃度を調節する
。これは9発生ガス濃度が大きすぎると表面にふくれを
生じ、一方、小さすぎると焼成体の比重や強度が低下す
るためである。
In addition, for rectangular parallelepipeds and cylinders with a volume of 2000 cm or less, attach a lid to the firing container and make a hole in the entire surface or a part of the container to adjust the gas concentration inside the container. This is because if the generated gas concentration is too high, the surface will blister, while if it is too low, the specific gravity and strength of the fired product will decrease.

非酸化性ガスの流量は炉内体積、焼成用容器の5− 大きさ及び開口度(底面を除く焼成用容器の全光面積に
対する孔総面積の割合)、焼成用容器に入れる成形体体
積割合等を考慮に入れ、成形体の周Hの発生ガス濃度が
最適になるように選定する。
The flow rate of the non-oxidizing gas depends on the volume inside the furnace, the size and opening degree of the firing container (the ratio of the total hole area to the total light area of the firing container excluding the bottom), and the volume ratio of the molded product placed in the firing container. Taking these factors into consideration, selection is made so that the concentration of gas generated around the circumference H of the molded body is optimal.

焼成温度(最高温度)は特に制限がないが通常900〜
1300℃である。昇温速度は毎時10℃以上にするこ
とが必要でらる。毎時10℃未満では成形体に変形(そ
り)を生ずる。毎時20℃以上にすれば変形量が極めて
小さく好ましい。
There is no particular limit to the firing temperature (maximum temperature), but it is usually 900~
The temperature is 1300°C. It is necessary to increase the temperature at a rate of 10°C or more per hour. If the temperature is less than 10°C per hour, the molded product will be deformed (warped). It is preferable to set the temperature to 20° C./hour or higher because the amount of deformation is extremely small.

焼成炉の熱源は電気、ガス、1油のいずれでもよく、成
形体の焼成に必要な熱蓋は成形体の接する底板からの熱
伝導9周辺ガスの対流、炉壁からの輻射熱により与えら
れる。
The heat source of the firing furnace may be electricity, gas, or oil, and the heat cover necessary for firing the molded body is provided by heat conduction from the bottom plate in contact with the molded body, convection of surrounding gas, and radiant heat from the furnace wall.

成形体を連続的に大量に焼成するにはトンネル炉が有効
である。
A tunnel furnace is effective for continuously firing a large amount of compacts.

以下実施例を説明する。Examples will be described below.

実施例1 焼成に用いた電気炉の概略を第1図に示す。図において
(a)は側面図、(b)は正面図である。この電気炉は
、SiC発熱棒で加熱されるもので、内壁が6− SUS 3108ステンレス板6で内ばりされ、開閉扉
7を閉じるとバッキング9により内部が完全に外部と遮
断できる内側寸法(+nm)が7001W)X800(
L)X 500(H)の炉でめる。このマツフル炉内に
支柱5を6本立て、そこに黒鉛製の平面度1關1表面粗
さは最大高さで100μm、厚さ10■の底板2を2枚
及び厚さ20fflII+の保持板2を1枚取り付けた
。その上に、油圧プレスにより成形比重が1.58にな
るように成形した寸法i s ozX 300(LIX
 100(F()mの炭素成形体1を18個詰めた。こ
の成形体の占有体積割合は、約35チである。このマツ
フル炉中に、N2 : I(+= 1 : 3のフォー
ミングガスをガス導入口3から流し1分散板8で上下か
ら均一に流し、排気口4から排気しながら、昇温速度毎
時10℃で1200’Cまで昇温し、1200℃で10
時間保持したのち放冷した。焼成時間は放冷時間を含め
て180時間でめった。このようにして得られた焼成体
は表面がきれいで亀裂、ふくれ、そり等がない。このあ
と焼成体を3000℃で黒鉛化したがその前後の物理特
性は第1表に示すように異常はなかった。
Example 1 A schematic diagram of the electric furnace used for firing is shown in FIG. In the figures, (a) is a side view, and (b) is a front view. This electric furnace is heated with a SiC heat generating rod, the inner wall is lined with 6-SUS 3108 stainless steel plate 6, and the inner dimension (+ nm ) is 7001W)X800(
Melt in an oven at L) x 500 (H). Six pillars 5 are erected in this Matsufuru furnace, and two bottom plates 2 made of graphite with a flatness and surface roughness of 100 μm in maximum height and a thickness of 10 mm and a holding plate 2 with a thickness of 20 fflII+ are installed. I installed one. On top of that, it was molded using a hydraulic press so that the molding specific gravity was 1.58.
Eighteen carbon molded bodies 1 of 100 (F()m) were packed. The occupied volume ratio of these molded bodies was about 35 cm. In this Matsufuru furnace, a forming gas of N2:I (+=1:3) was charged. was flowed uniformly from above and below through the gas inlet 3 and the dispersion plate 8, and while exhausting from the exhaust port 4, the temperature was raised to 1200'C at a rate of 10°C per hour.
After holding for a period of time, it was allowed to cool. The firing time was 180 hours including the cooling time. The fired body thus obtained has a clean surface and is free from cracks, blisters, warps, etc. Thereafter, the fired body was graphitized at 3000°C, but the physical properties before and after graphitization showed no abnormalities as shown in Table 1.

比較例1 内側寸法500X40QX350順のステンレス製焼成
用容器の底に50mmの高さまでコークス粉を詰め、そ
の上に実施例1と同じ炭素成形体2個を入れ、容器の残
りの空間には平均2111mのコークス粉を充填し九。
Comparative Example 1 The bottom of a stainless steel baking container with internal dimensions of 500 x 40 Q x 350 was filled with coke powder to a height of 50 mm, and on top of it were placed the same two carbon molded bodies as in Example 1, and the remaining space of the container was filled with an average of 2111 m Filled with coke powder.

この焼成用容器を、実施例1と同じマツフル炉中に入れ
、ガスを流さすに、実施例1と同じ条件で焼成を行つ九
This firing container was placed in the same Matsufuru furnace as in Example 1, and firing was performed under the same conditions as in Example 1, including flowing gas.

焼成体を取り出してみると1表面はほぼ全面にわたって
ふくれが発生していた。特に、成形体が隣り合っている
面は、このふくれがひどかった。
When the fired body was taken out, it was found that blistering had occurred over almost the entire surface. This swelling was particularly severe on the surfaces where the molded bodies were adjacent to each other.

また、一部には亀裂もみられた。この物理特性は第1表
に示す如く比重1強度の小さいものでめった。
Cracks were also seen in some parts. As shown in Table 1, this physical property was poor with low specific gravity and low strength.

実施例2 第2図(a)の平面図、同第2図(b)の側面図に示さ
れる内側寸法280X280X100+nmのSiC製
の焼成用容器10に平面度1薗9表面粗さが最大高さで
100μm、厚さ10順の黒鉛製保持板2を敷き、その
上に成形比重1.58の円筒状炭素成形体16個を図2
のように入れ、ふた1工をして。
Example 2 A firing container 10 made of SiC with an inner dimension of 280 x 280 x 100 + nm as shown in the plan view of Fig. 2 (a) and the side view of Fig. 2 (b) has a flatness of 1 x 9 and a surface roughness of A graphite holding plate 2 with a thickness of 100 μm and a thickness of 10 was laid down, and 16 cylindrical carbon molded bodies with a molding specific gravity of 1.58 were placed on it as shown in Figure 2.
Put it in like this and put the lid on.

実施例1と同一マツフル炉に入れ、実施例1と同一条件
で焼成を行った。
It was placed in the same Matsufuru furnace as in Example 1 and fired under the same conditions as in Example 1.

焼成体を取り出してみると1表面状態は、亀裂のない良
好なものが得られた。この物理特性は第1表に示す通り
異常がなかった。
When the fired body was taken out, it was found that the surface was in good condition with no cracks. As shown in Table 1, there were no abnormalities in the physical properties.

比較例2 実施例2の焼成用容器に同じ円筒状成形体を16個入れ
、ふたをせずに実施例1と同一焼成条件で焼成を行った
Comparative Example 2 Sixteen of the same cylindrical molded bodies were placed in the firing container of Example 2, and fired under the same firing conditions as Example 1 without a lid.

焼成体の表面状態は良好であった。この物理特性は第1
表に示す通り比重1強度が小さい値を示した。
The surface condition of the fired body was good. This physical property is the first
As shown in the table, specific gravity 1 strength showed a small value.

実施例3 側面にφ10肛の孔48個を持つ寸法280×280X
100口の焼成用容器に寸法φ60X60薗の円柱状炭
素成形体16個を入れ、ふたをして、実施例1と同一条
件で焼成を行った。焼成体の表面状態は良好でめった。
Example 3 Dimensions: 280x280x with 48 φ10 holes on the side
Sixteen cylindrical carbon molded bodies having dimensions of φ60×60 mm were placed in a 100-neck firing container, the lid was closed, and firing was performed under the same conditions as in Example 1. The surface condition of the fired body was good.

この物理特性も第9− 1表に示す通ね異常のないものでめった。This physical property is also the 9th As shown in Table 1, there were no abnormalities.

比較例3 孔のない寸法280X280X100閣の焼成用容器に
実施例3と同一の成形体16個を入れ。
Comparative Example 3 Sixteen molded bodies identical to those of Example 3 were placed in a firing container with dimensions of 280 x 280 x 100 mm without holes.

ふたをして、実施例1と同一条件で焼成を行った。The lid was closed and firing was performed under the same conditions as in Example 1.

この焼成体の上側面には、はぼ全部にふくれが発生して
いた。この物理特性は第1表に示すように比重9強度が
やや小さい値を示した。
Blisters were found all over the upper surface of this fired body. As for the physical properties, as shown in Table 1, the specific gravity 9 strength showed a rather small value.

実施例4 実施例1と同一焼成炉を用い、同一寸法の炭素成形体1
8個を詰め焼成を行った。雰囲気ガスとして、N!ガス
−Nx : CO2= 1 : 1の混合ガスを毎時2
001!流した。他の焼成条件は、実施例1と同一であ
る。この時の焼成体表面は良好であり。
Example 4 Using the same firing furnace as in Example 1, a carbon molded body 1 of the same size was produced.
Eight pieces were packed and fired. As an atmospheric gas, N! Gas-Nx: CO2 = 1:1 mixed gas at 2 times per hour
001! It flowed. Other firing conditions are the same as in Example 1. The surface of the fired product at this time was good.

物理特性も第1表に示す通り異常がなかった。There were no abnormalities in the physical properties as shown in Table 1.

実施例5 第3図に示すように寸法180山IX 300(4)×
10011)nnnの炭素成形体1を黒鉛製保持板2の
上に乗せ9間口350(%llx 180ff()圓の
トンネル型雰囲気炉12中を通し丸。この時の炉内温度
分布。
Example 5 As shown in Fig. 3, dimensions 180 threads IX 300 (4) x
A carbon molded body 1 of 10011) nnn is placed on a graphite holding plate 2 and passed through a tunnel-type atmospheric furnace 12 with a width of 9 widths of 350 (%ll x 180ff). Temperature distribution in the furnace at this time.

10− 成形体の送り速度は焼温速度が20℃/時間、最高温度
1100℃で10時間保持されるように調節した。焼成
時間は放冷時間を含めて約80時間であった。送気する
ガスは、 N2 : H2= 1 : 3のフォーミン
グガスで、トンネル炉内の3カ所から。
10- The feeding rate of the compact was adjusted so that the baking temperature rate was 20°C/hour and the maximum temperature was maintained at 1100°C for 10 hours. The firing time was about 80 hours including the cooling time. The gas to be supplied is a forming gas of N2:H2=1:3, which is supplied from three locations in the tunnel furnace.

成形体が酸化せず成形体から発生するガス濃度が最適に
なるように、総流量で8001!/時間のガスを送った
。得られた焼成体は1表面状態が良好なものであり、こ
の時の物理特性は第1表に示す通り異常がなくまた。こ
の時の焼成体を3000℃で黒鉛化した時の物理特性の
値も第1表に示す通り良好な値を示した。
To ensure that the molded product does not oxidize and the gas concentration generated from the molded product is optimized, the total flow rate is 8001! / Sent the gas of time. The obtained fired body had a good surface condition, and its physical properties showed no abnormalities as shown in Table 1. When the fired body was graphitized at 3000°C, the physical properties showed good values as shown in Table 1.

実施例6 内側寸法280X280X100mmの焼成用容器に寸
法φ60×φ40X60mmの円筒状炭素成形体16個
を第2図のように入れ、ふたをして。
Example 6 Sixteen cylindrical carbon molded bodies with dimensions of φ60×φ40×60 mm were placed in a firing container with internal dimensions of 280×280×100 mm as shown in FIG. 2, and the lid was closed.

実施例5と同一トンネル炉を用いて、同一条件で焼成を
行った。焼成体の表面状態は良好であり。
Firing was performed using the same tunnel furnace as in Example 5 and under the same conditions. The surface condition of the fired body was good.

この時の物理特性は第1表に示す通り良好なものであっ
た。
The physical properties at this time were good as shown in Table 1.

実施例7 内側寸法280X280X100m+nの焼成用容器に
メカニカルシール用の寸法φ40Xφ20X10■のリ
ング状炭素成形体を保持板を4段に使い1段42個、計
168個を入れふたをして、実施例5と同一トンネル炉
を用いて、昇温速度を50℃/時間、最高温度1100
℃4時間保持するように炉内温度分布、焼成用容器の送
り速度を調節した。焼成時間は放冷時間を含めて約35
時間であった。
Example 7 In a firing container with internal dimensions of 280 x 280 x 100 m + n, ring-shaped carbon molded bodies with dimensions of 40 x 20 x 10 mm for mechanical seals were placed in 4 stages using holding plates, 42 pieces per stage, 168 pieces in total, and the lid was closed. Using the same tunnel furnace, the heating rate was 50℃/hour, and the maximum temperature was 1100℃.
The temperature distribution in the furnace and the feeding speed of the firing container were adjusted so that the temperature was maintained at ℃ for 4 hours. Baking time is approximately 35 minutes including cooling time.
It was time.

雰囲気ガスは、実施例5と同一のフォーミングガスをト
ンネル炉内の3ケ所から総流1112001/時間で送
った。
As the atmospheric gas, the same forming gas as in Example 5 was sent from three locations in the tunnel furnace at a total flow rate of 1112001/hour.

得られた焼成体は9表面状態が良好なものであり、この
時の物理特性を第1表に示す通り良好なものでめった。
The obtained fired body had a good surface condition, and the physical properties at this time were good as shown in Table 1.

以下余白 第1表 実施例1と比較例1とを比較してみると、比較例1はふ
くれを生じ、比重1強度が小さい。これは、比較例1で
発生ガス濃度が最適値よりも高く13− なりすぎて発泡し九九めである。また実施例2と比較例
2とを比較してみると比較例2の方が比重。
Table 1 below shows a comparison of Example 1 and Comparative Example 1. Comparative Example 1 causes blisters and has a low specific gravity and strength. This is because in Comparative Example 1, the concentration of generated gas was higher than the optimum value (13-), resulting in foaming. Also, when comparing Example 2 and Comparative Example 2, Comparative Example 2 has a higher specific gravity.

強度が小さい。これは、比較例2では焼成缶にふたをし
ないために1発生ガス濃度が最適値よりも低くなりすぎ
九九めである。さらに実施例3と比較例3とを比較する
と比較例3の方が最適ガス濃度よりも高くなっているた
めに、ふくれが発生して比重1強度が低下し是。
The strength is small. This is because in Comparative Example 2, the firing can was not covered with a lid, so the concentration of 1 generated gas was lower than the optimum value. Furthermore, when comparing Example 3 and Comparative Example 3, Comparative Example 3 has a higher gas concentration than the optimum gas concentration, so blistering occurs and the specific gravity 1 strength decreases.

実施例1と実施例5を比較すると、実施例5の方が比重
1強度が小さい。これは、実施例5の方が最高温度が低
いこと、また、昇温速度、雰囲気ガス濃度が異なること
のためでるる。実施例2と実施例6とを比較しても同様
でるる。
Comparing Example 1 and Example 5, Example 5 has lower specific gravity 1 strength. This is because the maximum temperature is lower in Example 5, and the temperature increase rate and atmospheric gas concentration are different. The results are similar when comparing Example 2 and Example 6.

この発生ガスは凝縮性ガスでめるため、濃度を測定する
最適方法はないが、このようにガス濃度を調節する幾つ
かの方法をとれば、マツフル炉。
Since this generated gas is a condensable gas, there is no optimal method to measure its concentration, but there are several ways to adjust the gas concentration.

トンネル炉等で詰粉を使用せずKよく焼成することがで
きる。
Can be fired in a tunnel furnace or the like without using powder.

本発明では、上記のように詰粉を使用せずに。In the present invention, no powder is used as described above.

炭素材料の成形体を焼成できるために、従来法の14− 欠点である粉塵の発生が除かれ、高価な集塵設備も必要
なく9作業環境を著しく改善できる。さらに1本発明に
おいては、その成形体の大きさにるった昇温速度で焼成
できるために、焼成時間が従来法と比較して1/4〜1
/10と短縮できるために、大量かつ安価に炭素材料の
成形体を焼成することができる。
Since a molded body of carbon material can be fired, the generation of dust, which is a disadvantage of the conventional method, is eliminated, and the work environment can be significantly improved without the need for expensive dust collection equipment. Furthermore, in the present invention, since the molded body can be fired at a temperature increase rate that is consistent with the size of the molded body, the firing time is 1/4 to 1/2 compared to the conventional method.
Since it can be shortened to /10, compacts of carbon materials can be fired in large quantities and at low cost.

また1本発明によれば、従来のような大型炉にるる温度
差の問題がなくなるため焼成体ごとのばらつきが少なく
、詰粉を用いないため表面状態のきれいで、最適な発生
ガス濃度下で焼成が可能でおるために物理特性の変らな
い炭素材を得ることができる。
In addition, according to the present invention, there is no problem of temperature difference caused by conventional large furnaces, so there is little variation among fired products, and since no packing powder is used, the surface condition is clean, and the product can be fired under the optimum concentration of generated gas. Since sintering is possible, a carbon material with unchanged physical properties can be obtained.

以上のように本発明は、工業的な炭素材料の焼成法とし
て好適なものである。
As described above, the present invention is suitable as an industrial method for firing carbon materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素成形体のマツフル炉への充填方法を示す略
図で+8)は側面図、(b)は正面図、第2図は炭素成
形体を焼成用容器に充填する方法を示す略図でta)は
平面図、(b)は側面図、第3図は炭素成形体がトンネ
ル炉を通過する状態を示す略図でるる。 符号の説明 1・・・炭素成形体 −2・・・保持板3・・・ガス導
入口 4・・・排気口 5・・・支柱 6・・・炉壁 7・・・開閉扉 8・・・ガス分散板 9・・・パッキング 10・・・焼成用容器11・・・
上ぶた 12・・・トンネル炉頁 ) 旧 (a) (bン 第 Z 図 (a) ′f33 図 ====とz========== [−][−]「−][−]「−]「−]手続補正書く方
式) 昭和50年2 月16 日 1、事件の表示 昭和58年特許願第162889号 2、発明の名称 炭素材の製造法 3、補正をする者 事件との関係 特許出願人 名 称 (445) 日立化成工業株式会社4、代 理
 人 昭和59年1月31日(発送日) 6、P補正の対象 明細書の全文 70.J’!補正の内容
Figure 1 is a schematic diagram showing the method of filling a carbon compact into a Matsufuru furnace, +8) is a side view, (b) is a front view, and Figure 2 is a schematic diagram showing a method of filling a carbon compact into a firing container. ta) is a plan view, (b) is a side view, and FIG. 3 is a schematic diagram showing a state in which a carbon molded body passes through a tunnel furnace. Explanation of symbols 1...Carbon molded body -2...Holding plate 3...Gas inlet 4...Exhaust port 5...Strut 6...Furnace wall 7...Opening/closing door 8...・Gas distribution plate 9... Packing 10... Container for firing 11...
Upper lid 12...Tunnel furnace page) Old (a) (b. ] [-] "-] "-] Procedural amendment writing method) February 16, 1975 1. Indication of case 1982 Patent Application No. 162889 2. Title of invention Method for manufacturing carbon material 3. Make amendments Patent applicant name (445) Hitachi Chemical Co., Ltd. 4. Agent January 31, 1982 (shipment date) 6. Full text of the specification subject to the P amendment 70. J'! Amendment Content

Claims (1)

【特許請求の範囲】[Claims] 1、炭素材料の成形体を焼成炉で焼成するに際し、該成
形体の周囲に詰粉を充填することなく焼成炉内を非酸化
性雰囲気に保持して、毎時10℃以上の昇温速度で該成
形体を加熱し焼成することを特徴とする炭素材の製造法
1. When firing a carbon material molded body in a firing furnace, the inside of the firing furnace is maintained in a non-oxidizing atmosphere without filling the periphery of the molded body with powder, and the temperature is increased at a rate of 10°C or more per hour. A method for producing a carbon material, which comprises heating and firing the molded body.
JP58162889A 1983-09-05 1983-09-05 Preparation of carbon material Pending JPS6054909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58162889A JPS6054909A (en) 1983-09-05 1983-09-05 Preparation of carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58162889A JPS6054909A (en) 1983-09-05 1983-09-05 Preparation of carbon material

Publications (1)

Publication Number Publication Date
JPS6054909A true JPS6054909A (en) 1985-03-29

Family

ID=15763175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58162889A Pending JPS6054909A (en) 1983-09-05 1983-09-05 Preparation of carbon material

Country Status (1)

Country Link
JP (1) JPS6054909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609815A (en) * 1993-02-23 1997-03-11 Le Carbone Lorraine Process for fast manufacturing of carbonaceous products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609815A (en) * 1993-02-23 1997-03-11 Le Carbone Lorraine Process for fast manufacturing of carbonaceous products

Similar Documents

Publication Publication Date Title
AU2002318145B2 (en) Process for making carbon foam induced by process depressurization
US3009863A (en) Methods for thermally processing carbon articles
JP2505880B2 (en) Method for producing high-density carbon and graphite products
CN101357761B (en) High pure graphitic profile and preparation technique thereof
JP5790028B2 (en) Manufacturing method of ferro-coke for metallurgy
US3249964A (en) Producing dense articles from powdered carbon and other materials
JP4487564B2 (en) Ferro-coke manufacturing method
JP4556525B2 (en) Blast furnace operation method
US4441920A (en) Method for the thermal production of metals
JPS5934751B2 (en) Coke Noseizouhou Sonokanriyuro
JPS6054909A (en) Preparation of carbon material
US2376760A (en) Controlled heat treatment of carbon bodies
CN102249212A (en) Pressurization roasting method for carbon
CN117164359A (en) Method for preparing carbon graphite material by in-situ densification
US3899575A (en) Process of baking or graphitizing carbon moldings
CN103373851A (en) Manufacture method of pure-carbon sealing ring
JP4556558B2 (en) Blast furnace operation method
JP5980006B2 (en) Container used for firing graphite material, firing container, and firing method
CN201288058Y (en) High pure graphite section bar
JPH0280491A (en) Operation of continuous formed coke oven
CN206109309U (en) Coke apparatus for producing
JPS6042211A (en) Manufacture of carbon article
US3008224A (en) Friction article
US3689615A (en) Method of improving refractory bricks
JPS6259509A (en) Production of high-density carbon material