JPS6054600B2 - Temperature control method for heat pipe heat exchanger - Google Patents
Temperature control method for heat pipe heat exchangerInfo
- Publication number
- JPS6054600B2 JPS6054600B2 JP55103066A JP10306680A JPS6054600B2 JP S6054600 B2 JPS6054600 B2 JP S6054600B2 JP 55103066 A JP55103066 A JP 55103066A JP 10306680 A JP10306680 A JP 10306680A JP S6054600 B2 JPS6054600 B2 JP S6054600B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- temperature
- heat exchanger
- vibrator
- heat pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Heat Treatment Of Articles (AREA)
Description
【発明の詳細な説明】
本発明はヒートパイプ熱交換器の温度制御法に関し、熱
交換器に用いたヒートパイプを保護すべく、ヒートパイ
プの作動温度を使用限界内に保ち、管体の破損と伝熱特
性の急激な低下を防止するようにしたものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control method for a heat pipe heat exchanger, and in order to protect the heat pipe used in the heat exchanger, the operating temperature of the heat pipe is kept within the operating limit, and damage to the pipe body is prevented. This is to prevent a sudden drop in heat transfer characteristics.
一般に、ヒートパイプ熱交換器は使用目的に応じて加熱
器又は冷却器といわれるが、その種類は多く、以下の説
明ては高温のガスで低温ガス又は液体を加熱する熱交換
を例に述べる。Generally, a heat pipe heat exchanger is called a heater or a cooler depending on the purpose of use, but there are many types, and the following explanation will be given using an example of heat exchange that heats a low-temperature gas or liquid with a high-temperature gas.
上記ヒートパイプは極めて高い熱伝導性を有する伝熱素
子であるが、次の(a)〜(c)のような欠点がある。Although the heat pipe is a heat transfer element having extremely high thermal conductivity, it has the following drawbacks (a) to (c).
(a)熱媒体によつて使用温度範囲が限られ、これを超
えて使用すると作動圧力が高くなり、管体の破損を招く
。(b)ある温度以上で作動させると、熱媒体が分解し
たり、管材と反応したりして不凝縮ガスを発生し、急激
な性能の低下を起す。(a) The operating temperature range is limited by the heat medium, and if the operating temperature range is exceeded, the operating pressure will increase, leading to damage to the tube. (b) When operated at a temperature above a certain temperature, the heat transfer medium decomposes or reacts with the pipe material, generating non-condensable gas, resulting in a sudden drop in performance.
(c)単一の熱媒体では広い温度領域をカバーできない
。(c) A single heat medium cannot cover a wide temperature range.
上記した欠点のために、ヒートパイプは主として空調用
熱交換器のように、熱交換器の高温側流体入口温度がヒ
ートパイプの最高使用温度より低い場合に使われていた
。Due to the above-mentioned drawbacks, heat pipes have been mainly used in heat exchangers for air conditioning, where the high temperature side fluid inlet temperature of the heat exchanger is lower than the maximum operating temperature of the heat pipe.
ところで、上記の欠点をうまく克服して、ヒートパイプ
の一部又は全部について、ヒートパイプの最高使用温度
が高温側流体入口温度以下になるような場合でも使用で
きるようにすれば伝熱性能の高い熱交換器を制作するこ
とができる。By the way, if the above-mentioned drawbacks can be successfully overcome and some or all of the heat pipe can be used even when the maximum operating temperature of the heat pipe is below the high temperature side fluid inlet temperature, high heat transfer performance can be achieved. You can make a heat exchanger.
このような熱交換器として、第1図に示す如く、第1の
熱交換器1と第2の熱交換器2とを備え、これらの熱交
換器1、2間の隔壁板3を貫通して多数のヒートパイプ
4a、4b・・・4gを配設し、これらのヒートパイプ
のうち4a〜4dには使用限界温度の比較的高い熱媒体
Aを用い、又4e〜4gには使用限界温度の比較的低い
熱媒体Bを用いたものが知られている。図中の符号5a
、5bはそれぞれ熱交換器1の入口と出口、6a、6b
は熱交換器2の入口と出口を示ず。又、矢印Aは低温側
流体、矢印Bは高温側流体の流れる方向を示す。・第2
図は上記ヒートパイプ4a、4b・・・4gの作動温度
を示すものである。上記第1図のものては作動温度領域
毎の最適な熱媒体のヒートパイプ群をいくつか組合せ、
広い温度領域をカバーするものてあるが、高温側流体入
口温度と低温側流体入・口温度との間の任意の値にヒー
トパイプ管体(又は作動温度)を設定し、排ガスで燃料
油を加熱する場合、管体温度の燃料の引火点以下に保つ
ようにしたり、又は排ガスで水を加熱するような場合に
管体温度を酸露点以上に保つようにする。上記した従来
の熱交換器は、計画通りの使用条件のときには問題ない
が、低温側流体の流量が減少したり、高温側流体の温度
が上昇したりするとヒートバイブの一部又は全部が過熱
状態となり、前記欠点(a),(b)を生ずる。このた
め、従来では産業排熱回収等にはヒートバイブ熱交換器
があまり使用されなかつた。一方、ヒートバイブ熱交換
器の過熱防止法として、第3図に示す如く、低温側流体
の流量減小を検知し、高温側流体を遮断する方法も知ら
れている。As shown in FIG. 1, such a heat exchanger includes a first heat exchanger 1 and a second heat exchanger 2, and a heat exchanger that penetrates a partition plate 3 between these heat exchangers 1 and 2. A large number of heat pipes 4a, 4b, . A method using a heat medium B having a relatively low temperature is known. Code 5a in the figure
, 5b are the inlet and outlet of the heat exchanger 1, 6a and 6b, respectively.
does not show the inlet and outlet of heat exchanger 2. Further, arrow A indicates the flow direction of the low-temperature side fluid, and arrow B indicates the flow direction of the high-temperature side fluid.・Second
The figure shows the operating temperatures of the heat pipes 4a, 4b, . . . , 4g. The one in Figure 1 above combines several groups of heat pipes with the optimal heat medium for each operating temperature range,
Although there are heat pipes that cover a wide temperature range, the heat pipe body (or operating temperature) can be set to an arbitrary value between the high-temperature side fluid inlet temperature and the low-temperature side fluid inlet/inlet temperature, and the exhaust gas can be used to inject fuel oil. When heating, the temperature of the tube is kept below the flash point of the fuel, or when heating water with exhaust gas, the temperature of the tube is kept above the acid dew point. The conventional heat exchanger described above has no problems when used under the planned usage conditions, but if the flow rate of the low-temperature fluid decreases or the temperature of the high-temperature fluid increases, part or all of the heat vibrator becomes overheated. This results in the above-mentioned drawbacks (a) and (b). For this reason, heat-vib heat exchangers have not been used much in the past for industrial waste heat recovery and the like. On the other hand, as a method for preventing overheating of a heat-vib heat exchanger, there is also known a method of detecting a decrease in the flow rate of a low-temperature fluid and shutting off a high-temperature fluid, as shown in FIG.
第3図において、7はヒートバイブ熱交換器、8は流量
センサー、9は加熱側流体遮断弁、10はコントローラ
であり、矢印C方向へ流れている冷却側流体の流量がセ
ンサ8により検知され、この検知値に基づいてコントロ
ーラ10により遮断弁9が制御され、該制御により加熱
側流体が遮断される。尚、矢印Dは加熱側流体の流れの
方向を示す。上記第3図のものでは、次のような欠点が
あつた。(a)汚れ等による冷却側伝熱性能の低下に伴
うヒートバイブの過熱に対処できない。In FIG. 3, 7 is a heat-vib heat exchanger, 8 is a flow rate sensor, 9 is a heating side fluid cutoff valve, and 10 is a controller, and the flow rate of the cooling side fluid flowing in the direction of arrow C is detected by the sensor 8. The cutoff valve 9 is controlled by the controller 10 based on this detected value, and the heating side fluid is cut off by this control. Note that arrow D indicates the direction of flow of the heating fluid. The one shown in FIG. 3 above had the following drawbacks. (a) It is not possible to deal with overheating of the heat vibrator due to a decrease in heat transfer performance on the cooling side due to dirt or the like.
(b)高温側流体の温度上昇によるヒートバイブの過熱
に対処できない。(b) It is not possible to cope with overheating of the heat vibrator due to a rise in temperature of the high-temperature fluid.
(c)高温側流体の流量の増加によるヒートバイブの過
熱に対処できない。(c) It is not possible to cope with overheating of the heat vibrator due to an increase in the flow rate of the high temperature fluid.
(d)熱媒体の異なるヒートバイブ群毎の個々の条件に
きめ細かく対応できない。(d) It is not possible to respond in detail to the individual conditions of each group of heat vibrators with different heat media.
本発明は上記した欠点を除去し、ヒートバイブの過熱を
防止することができるヒートバイブ熱交一換器の温度制
御法を提供するものである。The present invention eliminates the above-mentioned drawbacks and provides a temperature control method for a heat vibrator heat exchanger that can prevent overheating of the heat vibrator.
先ず、本発明の基本的な構成を第4図について詳細に説
明する。First, the basic configuration of the present invention will be explained in detail with reference to FIG.
第4図において11はヒートバイブ熱交換器、12はヒ
ートバイブであり、これらは周知のものである。13は
ヒートバイブ12に設けられた管体温度検出センサ、1
4はコントローラ、15は加熱側流体流量調節弁である
。In FIG. 4, 11 is a heat vibrator heat exchanger, and 12 is a heat vibrator, which are well known. 13 is a tube body temperature detection sensor provided in the heat vibrator 12;
4 is a controller, and 15 is a heating side fluid flow rate control valve.
このような構成の熱交換器ではセンサ13によりヒート
バイブ12の管体温度が検知され、この検知値に基づい
てコントローラ14により調節弁15が駆動され、該駆
動により高温側流体の流量が制御され、ヒートバイブ1
2の過熱を防止すべくヒートバイブ12の管体温度が使
用限界内に保たれる。上記センサ13は第5図に略示す
る如く、多数のヒートバイブ12のうち高温側流体の入
口16側から数えて第1番目のヒートバイブに取付けれ
ばよい。尚、第5図において第3図、第4図と同一符号
は同効のものを示す。上記第5図の熱交換器11は1群
のヒートバイブ12により構成されているが、第6図の
ように、2群以上のヒートバイブ12a,12bにより
構成されている場合には、各群のヒートバイブ12a,
12bのうち、最も作動温度の高いヒートバイブの管体
温度jを検出すればよい。尚、第6図において、第3図
、第4図と同一符号は同効のものと示す。又、上記ヒー
トバイブ12a,12bにおけるセンサ13の取付位置
として、基本的には、ヒートバイブの作動流体の内部温
度に近似することが知られている(作動温度)高温側と
低温側との境界部であることが望ましいが、高温側又は
低温側のいずれであつても差しつかえない。センサ13
を高温側に取付けた場合には、作動温度より高い温度を
検出することになるので安全であるが、低温側に取付け
たときには指示値がそのときの作動温度より低い値にな
るので注意を要する。上記第4図では、検知温度に応じ
て流体の流量を制御しているが、検知温度に応じて管体
の伝熱面積を変えるようにしてもよい。以下に、本発明
の一実施例について説明する。In a heat exchanger having such a configuration, the sensor 13 detects the tube body temperature of the heat vibrator 12, and based on this detected value, the controller 14 drives the control valve 15, which controls the flow rate of the high-temperature fluid. , Heat Vibe 1
In order to prevent overheating of the heat vibrator 2, the temperature of the tube body of the heat vibrator 12 is kept within the operating limit. As schematically shown in FIG. 5, the sensor 13 may be attached to the first heat vibrator counted from the high temperature fluid inlet 16 side among the many heat vibrators 12. In FIG. 5, the same reference numerals as in FIGS. 3 and 4 indicate the same elements. The heat exchanger 11 shown in FIG. 5 is composed of one group of heat vibrators 12, but if it is composed of two or more groups of heat vibrators 12a, 12b as shown in FIG. heat vibe 12a,
12b, the tube body temperature j of the heat vibrator having the highest operating temperature may be detected. In FIG. 6, the same reference numerals as in FIGS. 3 and 4 indicate the same elements. Additionally, the mounting position of the sensor 13 in the heat vibes 12a and 12b is basically the boundary between the high temperature side and the low temperature side (operating temperature), which is known to approximate the internal temperature of the working fluid of the heat vibe. Although it is preferable that the temperature be on the high-temperature side or the low-temperature side, it does not matter. Sensor 13
If it is installed on the high temperature side, it will detect a temperature higher than the operating temperature, so it is safe, but if it is installed on the low temperature side, the indicated value will be lower than the operating temperature at that time, so be careful. . In FIG. 4, the flow rate of the fluid is controlled according to the detected temperature, but the heat transfer area of the tube may be changed according to the detected temperature. An embodiment of the present invention will be described below.
この実施例では、第7図に示す熱交換器11を用い、ダ
ウサムAヒートバイブ12aと、水ヒートバイブ12b
の検知の温度に応じコントローラ14を介して調節弁1
5を駆動したものであり、製鉄所均熱炉における燃料ガ
スの予熱に適用し、上記ヒートバイブ12a,12bの
管体温度がそれぞれの最高使用温度以下になるように排
ガス流量を制御した。矢印Eは高炉ガスとコークス炉ガ
スの混合した、所謂Mガスの流れ方向を示し、矢印Fは
排ガスの流れ方向を示すものである。この実施例におい
て、(1)排ガス 種類 均熱炉燃焼排ガス
流量0〜2000Nd/h
温度5500C〜80(1)0C」(2)
燃料ガス 種類Mガス
(2500Kca1/Nd)
流量0〜2000Nイ/h 温度20C
(3)ダウサムヒートパイプの使用温度MA×320・
c(4)水ヒートバイブの使用温度MA×200℃(5
)ヒートバイブの列数 水ヒートバイブ7列ダウサムヒ
ートパイプ17列(6)熱電対(センサ)取付位置・・
・加熱側と被加熱側の境界であり、温度変化は第8図の
ようになつた。In this embodiment, the heat exchanger 11 shown in FIG.
The control valve 1 is controlled via the controller 14 according to the detected temperature.
5 was driven, and was applied to preheating fuel gas in a soaking furnace at a steelworks, and the exhaust gas flow rate was controlled so that the tube body temperature of the heat vibrator 12a, 12b was below the maximum operating temperature of each heat vibrator. Arrow E indicates the flow direction of so-called M gas, which is a mixture of blast furnace gas and coke oven gas, and arrow F indicates the flow direction of exhaust gas. In this example, (1) Exhaust gas type Soaking furnace combustion exhaust gas
Flow rate 0~2000Nd/h Temperature 5500C~80(1)0C'' (2)
Fuel gas Type M gas (2500Kca1/Nd)
Flow rate 0~2000N/h Temperature 20C (3) Dowsome heat pipe operating temperature MA x 320・
c (4) Water heat vibrator operating temperature MA x 200℃ (5
) Number of rows of heat vibes 7 rows of water heat vibes 17 rows of dowsome heat pipes (6) Thermocouple (sensor) mounting position...
・At the boundary between the heating side and the heated side, the temperature change was as shown in Figure 8.
第9図は他の実施例としてのヒートバイブ式温水加熱器
を示すものであり、伝熱面積制御により水ヒートバイブ
12の排ガス側管体温度が酸露点温度以上になるように
冷却側の伝熱面積を制御する。FIG. 9 shows a heat-vib type hot water heater as another embodiment, in which the heat-transfer area is controlled so that the temperature of the exhaust gas-side tube body of the water heat-vibe 12 is equal to or higher than the acid dew point temperature. Control heat area.
この温水加熱器の温水は一般給油用であり、61℃→7
6℃の温度で1.3t/hの流量がある。第9図におい
て17は排ガスの通路であり、600℃〜900゜Cの
排ガスが通過する。18は上記通路17との間に隔壁板
19を隔てて配設されたタンクであり、20は該タンク
内の水を示す。上記通路17とタンク18との間には上
記ヒートバイブ12が配設され、これらのヒートバイブ
12にそれぞれ樫製の遮断筒21が被され、これらの遮
断筒21は駆動部22に結合されている。この駆動部2
2は、前記した如く、ヒートバイブ12に設けられたセ
ンサ13での検知温度によりコントローラ10を介して
制御され、ヒートバイブ12の温度に応じて遮断筒21
が上下動され、これによりヒートバイブ12と水20と
の接触面積が可変され、伝熱面積が制御される。この制
御により、排ガスの温度変動(600℃〜900℃)に
対して排ガス側管体温度を20伊Cに保つことができた
。尚、ヒートバイブ12に対する遮断筒21の可動範囲
は0 〜200wRであつた。この温水器における排ガ
スの温度変化に対してヒートバイブのガス側管壁温度は
第10図のようになつた。本発明は叙上のようであり、
ヒートバイブの管体温度で直接加熱側流体を制御するの
で、ヒートバイブの完全な過熱防止が可能となる。The hot water of this hot water heater is for general refueling, and is 61℃ → 7℃.
There is a flow rate of 1.3 t/h at a temperature of 6°C. In FIG. 9, 17 is an exhaust gas passage, through which exhaust gas at a temperature of 600°C to 900°C passes. 18 is a tank disposed with a partition plate 19 between it and the passage 17, and 20 indicates water in the tank. The heat vibes 12 are disposed between the passage 17 and the tank 18, each of these heat vibes 12 is covered with a cutoff tube 21 made of oak, and the cutoff tubes 21 are connected to a drive section 22. There is. This drive section 2
2 is controlled via the controller 10 based on the temperature detected by the sensor 13 provided on the heat vibrator 12, and the cutoff tube 21 is controlled according to the temperature of the heat vibrator 12.
is moved up and down, thereby changing the contact area between the heat vibrator 12 and the water 20, and controlling the heat transfer area. This control made it possible to maintain the temperature of the exhaust gas side tube body at 20 degrees Celsius despite temperature fluctuations in the exhaust gas (600 degrees Celsius to 900 degrees Celsius). The movable range of the cutoff tube 21 relative to the heat vibrator 12 was 0 to 200 wR. With respect to the temperature change of the exhaust gas in this water heater, the temperature of the gas side tube wall of the heat vibrator was as shown in FIG. 10. The present invention is as described above,
Since the heating fluid is directly controlled by the temperature of the tube body of the heat vibe, it is possible to completely prevent the heat vibe from overheating.
又、管体温度の目標値を任意の値(使用限界内の)に保
つことが可能となり、熱交換器のきめ細い温度制御が可
能になる。Furthermore, it becomes possible to maintain the target value of the tube body temperature at an arbitrary value (within the usage limit), and fine temperature control of the heat exchanger becomes possible.
第1図は従来例を示す構成図、第2図は第1図のものの
温度特性を示す線図、第3図は他の従来例を示す構成図
、第4図は本発明の構成図、第5図は第4図の要部の概
略図、第6図は第5図のものの変形例を示す概略図、第
7図は本発明の一実施例に用いた熱交換器の構成図、第
8図は第7図のものの温度特性を示す線図、第9図は他
の実施例に用いた温水器の構成図、第10図は第9図の
ものの温度特性を示す線図である。
12,12a,12b・・・・・化一トパイプ、15・
・・・・・調節弁、21・・・・・・遮断筒。FIG. 1 is a block diagram showing a conventional example, FIG. 2 is a diagram showing temperature characteristics of the one shown in FIG. 1, FIG. 3 is a block diagram showing another conventional example, and FIG. 4 is a block diagram of the present invention. FIG. 5 is a schematic diagram of the main part of FIG. 4, FIG. 6 is a schematic diagram showing a modification of the one in FIG. 5, and FIG. 7 is a configuration diagram of a heat exchanger used in an embodiment of the present invention. Fig. 8 is a diagram showing the temperature characteristics of the one shown in Fig. 7, Fig. 9 is a diagram showing the configuration of a water heater used in another example, and Fig. 10 is a diagram showing the temperature characteristics of the one shown in Fig. 9. . 12, 12a, 12b...chemical pipe, 15.
... Control valve, 21 ... Shutoff cylinder.
Claims (1)
このヒートパイプ管体温度が使用温度の限界以下となる
ように流体の流量又は管体の伝熱面積を変化させること
を特徴とするヒートパイプ熱交換器の温度制御法。1 Detect the temperature of the heat pipe body on the heating fluid inlet side,
A method for controlling the temperature of a heat pipe heat exchanger, characterized in that the flow rate of a fluid or the heat transfer area of the tube body is changed so that the temperature of the heat pipe tube body is below the operating temperature limit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55103066A JPS6054600B2 (en) | 1980-07-29 | 1980-07-29 | Temperature control method for heat pipe heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55103066A JPS6054600B2 (en) | 1980-07-29 | 1980-07-29 | Temperature control method for heat pipe heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5728989A JPS5728989A (en) | 1982-02-16 |
JPS6054600B2 true JPS6054600B2 (en) | 1985-11-30 |
Family
ID=14344286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55103066A Expired JPS6054600B2 (en) | 1980-07-29 | 1980-07-29 | Temperature control method for heat pipe heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6054600B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59108071U (en) * | 1983-01-10 | 1984-07-20 | 株式会社フジクラ | Heat exchanger with control mechanism |
WO1988006679A1 (en) * | 1986-03-17 | 1988-09-07 | Mann David O | Apparatus and method for treating air from a turbocharger |
US4708120A (en) * | 1986-03-17 | 1987-11-24 | Mann Technology Limited Partnership | Apparatus and method for treating air from a turbocharger |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4943723A (en) * | 1972-08-31 | 1974-04-24 | ||
US4033406A (en) * | 1974-09-03 | 1977-07-05 | Hughes Aircraft Company | Heat exchanger utilizing heat pipes |
JPS5345444A (en) * | 1976-10-06 | 1978-04-24 | Toray Industries | False twist processed yarn and its manufacture |
JPS5412174B2 (en) * | 1973-07-02 | 1979-05-21 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5412174U (en) * | 1977-06-29 | 1979-01-26 |
-
1980
- 1980-07-29 JP JP55103066A patent/JPS6054600B2/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4943723A (en) * | 1972-08-31 | 1974-04-24 | ||
JPS5412174B2 (en) * | 1973-07-02 | 1979-05-21 | ||
US4033406A (en) * | 1974-09-03 | 1977-07-05 | Hughes Aircraft Company | Heat exchanger utilizing heat pipes |
JPS5345444A (en) * | 1976-10-06 | 1978-04-24 | Toray Industries | False twist processed yarn and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPS5728989A (en) | 1982-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3082826B2 (en) | Exhaust heat recovery device | |
US4101265A (en) | Equipment and process involving combustion and air | |
US3863708A (en) | Modulatable heat exchanger with restraint to avoid condensation | |
US4516628A (en) | Heat recovery system and method | |
JPS6054600B2 (en) | Temperature control method for heat pipe heat exchanger | |
US4474229A (en) | Air preheater | |
US6352054B1 (en) | Catalytic combustion heater | |
JPS5939678B2 (en) | hot water boiler | |
JP2948346B2 (en) | Control method of heat recovery device | |
KR200234751Y1 (en) | Circulation device for array recovery system | |
JPS5928030Y2 (en) | Exhaust heat recovery device for regenerative hot blast stove | |
JPH0325044Y2 (en) | ||
CN212512522U (en) | Waste heat recovery system and heating furnace system | |
SU1502951A2 (en) | Heat-exchanger | |
SU1250579A1 (en) | Gang of high-temperature blast furnace air ovens | |
JP2001289042A (en) | Exhaust heat recovery device | |
JPH04129696U (en) | Heat exchanger protection device | |
JPH0719561Y2 (en) | Mill air system | |
KR102285076B1 (en) | Apparatus for recovering waste heat | |
SU908975A1 (en) | Apparatus for high-temperature air heating | |
JPS5942239B2 (en) | Vacuum heat exchange equipment with temperature control device | |
JP3363574B2 (en) | Heat pump device capacity control method and device | |
JPH06313508A (en) | Heat exchanging method | |
JPS6231814Y2 (en) | ||
JP3020672B2 (en) | Apparatus using gas as heat medium |