JPS6054400A - Tetrapeptide - Google Patents

Tetrapeptide

Info

Publication number
JPS6054400A
JPS6054400A JP58159107A JP15910783A JPS6054400A JP S6054400 A JPS6054400 A JP S6054400A JP 58159107 A JP58159107 A JP 58159107A JP 15910783 A JP15910783 A JP 15910783A JP S6054400 A JPS6054400 A JP S6054400A
Authority
JP
Japan
Prior art keywords
phe
arg
acid
tyr
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58159107A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
謙次 鈴木
Yusuke Sasaki
佐々木 有亮
Kensuke Kizara
木皿 憲佐
Shinobu Sakurada
桜田 忍
Tsukasa Sakurada
司 桜田
Seiichi Furuta
古田 精一
Naoki Nakada
直樹 中田
Takumi Sato
佐藤 卓美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aska Pharmaceutical Co Ltd
Original Assignee
Grelan Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grelan Pharmaceutical Co Ltd filed Critical Grelan Pharmaceutical Co Ltd
Priority to JP58159107A priority Critical patent/JPS6054400A/en
Publication of JPS6054400A publication Critical patent/JPS6054400A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

NEW MATERIAL:A compound of formula I (Tyr is thyrosine; Arg is arginine' Phe is phenylalanine; Gly is glycine; Sar is sarcosine; R1, R2 are H, lower alkyl) namely, the compound of formula II. EXAMPLE:The compound of formula III. USE:Analgesic. PREPARATION:Aminoacids or peptide constituting a compound of formula I is, when necessary, protected at its carbonyl and amino groups, or activated at the carboxyl and amino groups participating the reaction, then they are subjected to peptide synthesis, preferably in the presence of a solvent such as DMF. Finally, the protecting groups are eliminated by, e.g., acidolysis.

Description

【発明の詳細な説明】 本発明は鎮痛作用を有するテトラペプチドに関する。 従来、脳内直接投与によってモルフアン様作用を示すエ
ンケフエリン(enkephalln )と呼ばれるペ
ンタペプチドが知られているが、この物質は静脈内投与
では鎮痛作用を示さない。一方、31個のアミノ酸から
成るβ−エンドルフィン(endorphin )は静
脈内投与によっても鎮痛作用を示すことが知られている
が、その製造は困難であり、医薬として大量に供給する
ことは困難である。このため、製造が容易な低分子であ
って、静脈内投与や皮下投与でも充分な鎮痛作用を有す
る化合物を得るべく種々の検討が成されているが、末だ
満足すべきものは見られない。 さらに1カエルの皮膚から単離されたデルモルフィン(
dermorphin)と呼ばれるヘグタベブチドは脳
内投与および末梢投与において強力な鎮痛作用を有し、
その構造中テトラペプチドが作用発現のための最小構造
であると言われている。 上記技術状況KfIMみ、本発明者らは種々検討を重ね
たところ、テトラペプチドの特定の化合物が上記の目的
に適合することを知見し、この知見に基づいてさらに研
究を行った結果、本発明を完成するに到った。 すなわち、本発明は一般式(r) H−Tyr−D−Arg−Phe−(Ttz)()ly
−(IRm (1)(式中、R1およびR2は水素原子
または低級アルキル基を示す)で表わされるテトラペプ
チドに関するものである。 なお、本明細書中において使用されるアミノ酸残基およ
びその誘導体の略号は、当該分野の慣用にならったもの
であるが、それぞれ次のアミノ酸残基を意味する。  ’ryr :チロシン Arg:アルギニン Phe :フェニルアラニン Gly ニゲリシン Sar :サルコシン(N−メチルグリシン)従って、
本発明の一般式(T)で示されるテトラペプチドは下記
の化学式で表わしてもよい。 (式中、R1およびR2は前記定義と同“)なお、本明
細書中でアミノ酸またはその残基゛を上記略記法で表示
する場合、特に明記しない限りL一体を意味し、■)一
体については■〕を明記′する。・ また、本文中で常用される化合物、保護基。 試薬等を下記の略号で表示する。 DCC二N、N′−ジシクロへキシルカルボジイミドH
OBt:1−ヒドロキシベンツトリアゾールBOC:t
−ブトギシ力ルボニル Tosニドシル DMFニジメチル、ホルムアミド Me エステル Et :エチル Pr :プロビル 上記一般式(r)中の)(1およびR1で示される低級
アルキル基は炭素数1ないし6のアルキル基であり、そ
の具体的な例と1.では、メチル基。 エチル基、n−または1−プロピル基、n−11’−、
aθC−またはt−ブチル基、ペンチル基、ヘキシル基
などのアルキル基が皐げられ、なかでもメチル基、エチ
ル基、プロピル基である場合が好ま1.い。 従って、本発明のテトラペプチドとしては、カルボン酸
末端(C−末端)が遊離であるものおよびその低級アル
キルエステルであるものの両者が含まれ、それらの具体
例を示せば、以下の様である。 ■H−T7r−D−Arg−Phe7G1y−OH■H
−Tyr−D−Arg−Phe−Gly−○Et■H−
Tyr−D−Arg−Phe−flly−0−n−Pr
■H−T’yr −D =Arg −Phe −Sar
 −OH■H−Tyr −D −Arg −Pbe −
Sar −OMe■H−Tyr −D −Arg −、
、Phe −Sar 70Etさらに、本発明のテトラ
ペプチドとしては、アミノ基、カルボキシル基が遊離で
あるものの他に、それらの薬理的に、許容される塩も本
発明に包含される。該塩は抽出や精製条件により酸との
塩、塩基との塩として存在する。このような塩基との塩
としては、ナトリウム、カリウム等のアルカリ族元素お
よびマグネシウム、カルシウム等のアルカリ土族元素と
の塩、アンモニアやアルキルアミン(メチルアミン等)
との塩の如き無機ない1.有機塩基との塩が挙げられる
。 また、酸との塩と1〜ては、塩酸、硫酸、臭化水素酸、
硝酸、リン酸等の無機酸の塩、および酢酸、乳酸、酒石
酸、コハク酸、マレイン酸、マロン酸、フマール酸、メ
タンスルホン酸、フタール酸等の有機酸の塩が挙げられ
る。 本発明の一般式(I)の化学構造を有するテトラペプチ
ドを製造するには、目的化合物(T)を構成するアミノ
酸またはそのペプチドとその残部を構成し得る化合物を
ペプチド合成手段によって縮合させることに9しって行
う。核合成手段は、任意の公知方法に従って行うことが
でき、例えば泉屋信夫著「ペプチド合成」丸善■(19
75年) 、 M、 BodanskyおJ゛びM、 
A、 0ndetti著「ペプチド・シンセシスj (
Peptide 5ynthosis )Inte’r
 5cience社(1966年)等圧記載された方法
1例えばり1jライド法、rf1無水無水物理合酸無水
物法、DCC法、カルボジイミダゾール法、アジド法、
 HoBtを用いる方法、活性エステル法、NCA法な
どが挙げられる。 本縮合反応を行う前に1それ自体公知の手段によって原
料の反応に関与しないカルボニル基、アミン基を保護し
たり、また反応に関与するカルボキシル基、アミノ基を
活性化してもよい。 このような保護および活性化の態様としては次のものが
例示される。 まず、原料のカルボキシル基は、エステル(アルキル、
ベンジル、p−、ニトロベンジル等のエステル)、金属
塩(ナトリウム、カリウム塩等)、t−アルキルアミン
塩(トリ、エチルアミン塩等)の形で保護することがで
きる。また、原料のアミノ基の保護基としては、ベンジ
ルオキシカルボニル基、t−ブトキシカルボニル基、ト
シル基、ベンジル基等が挙げられる。 さらに、チロシンの水酸基の保護基としては、上記アミ
ノ基の保護基の他にベンジル、t−ブチル等のエーテル
が例示される。 次に、原料のカルボキシル基の活性化されたものとして
は、酸ハライド、酸無水物、活性エステル(trosi
、 、tq−ヒドロキシサクシンイミド、N−ヒドロキ
シフタールイミド、p−二トロフェノール等のアルコー
ル類とのエステル)などが挙げられる。また、原料のア
ミン基の活性化されたものとしては、対応するリン酸ア
ミドなどが例示される。 本縮合反応は、溶媒の存在下に行うことができる。かか
る溶媒としては、ペプチド縮合反応に使用し得る溶媒の
なかから選択され、例えば、DMF 、ジメチルスルホ
キシド(DMSO)、クロロホルム、ジクロロメタン、
テトラヒドロフラン、ジオキサン、ピリジン、酢酸エチ
ルあるいはこれらの混合物等が挙げられる。反応は通常
−20C〜+50c程度であり、反応時間は通常30分
〜48時間程度である。 上記縮合反応によって得られた化合物は必要に応じて保
護基の脱離反応に付される。この脱離反応においては、
ペプチド縮合に影響を与えない手段としてペプチド合成
化学の分野における脱離手段を採用できるが、該手段は
脱離すべき保護基の種類に応じて酸分解、アルカリ分解
、接触還元による方法が適宜選択される。 例えば、酸分解によっては、塩酸、儲酸等の無機酸およ
び酢酸、トリフルオロ酢酸、メタンスルホン酸、トリフ
ルオロメタンスルホンH等の有機酸が採用され、t−ブ
トキシカルボニル基、トシル基、カルボベンゾキシ基等
の保護基を脱離することができる。この際、チオアニソ
ール、アニソール、フェノール等の如きカチオン補1足
剤の添加が有効である。また、アルカリ分解忙よっては
、水酸化ナトリウム、水酸化カリウムなどの強塩基が採
用され、アルキルエステル、ベンジルエステル等のエス
テル残基を脱離することができる。接触還元は、パラジ
ウム黒、パラジウム炭素、白金等を触媒として用い、主
としてカルボベンゾキシ基、ベンジル基を脱離する目的
で採用される。また、これらの方法の他に、アンモニア
中ナトリウムによる還元も挙げられる。 かくして製造されたテトラペプチドは反応路了後、自体
公知のペプチド分離手段(抽出1分配、再結晶、再沈殿
、カラムクロマトグラフィー等)VCよって採y1yさ
れる。さらに、採取したテトラペプチド(T)は常法に
従テ)゛〔前述の如き有機酸、無機酸、有機塩基または
無機塩基を作用させることによって、塩の形として得る
ことができる。 次に、本発明のテトラペプチド°(1)の薬理実験例を
挙げる。使用薬物とI、てけ下記化合物をリンゲル液に
溶解したものを使用した。 本発明の化合物 ■ H−T’yr−D−、Ar)(−1〕hef−Gl
y−On (化合物I)■ )i−Tyr −D−Ar
g−Phe −G]、y−OFt (化合物■)■II
−Tyr−D−Arg−円)e−+11.Y−0−j−
1ノr(化合物III) ■ H−Tyr−D−Arg−Phe−8ar−011
(化合物IV)■ H−Tyr−D−Arg=Phe−
8ar”OMe (化合物■)■ H−’Il’yr 
−1)−Arg −Pbe−Ga、r −0Et (化
合物vr’)対照化合物 塩酸モルフイン(morphine hydroc+1
.1.orjde)] 0 また、実験動物は、体重20〜24gのddY系雄性マ
ウス(静岡系実験動物農業協同組合)を用いた。 111 Ta1l −pressure法Greenら
の方法に基づき、薬物皮下投与後マウスの尾根部に10
mWg/seaの速度で圧刺激を加え、もがき、刺激部
位への咬みつきなどの仮性疼痛反応を示す圧力を投与1
80分後まで測定し、仮性疼痛反応閾値(ml1g )
とした。 この閾値をもとに対照群に対する薬物投与群の仮性疼痛
反応抑制率をめた。各薬物の50%抑制率(ED50値
)はLitchfield−Wilcoxon法により
算出したC表1参照)。 本発明の化合物は上記実験において塩酸モルフインより
2.6〜11.3倍強力な鎮痛活性を示し、かつ活性の
持続は塩酸モルフインをしのぎ、投与180分後におい
ても消失しなかった。 +2) Ta1l −flick法 薬物の法王物与後、マウスの尾矢部に輻射1 熱を照射し、熱を照射してから尾を動かすまでの逃避反
応時間(秒)を薬物投与180分後まで測定し、仮性疼
痛反応閾値とした。 この閾値をもとに対照群に対する薬物投与群の仮性疼痛
反応抑制率をめた。各薬物の50%抑制率(KDso値
)はLi tchfield−Wj 1.coxon法
により算出した(表1参照)。 本発明の化合物は上記実験において、塩酸モルフインと
比較し2.98〜15.7倍の鎮痛活性を示した。 (31Phenylquinono Wrl、thin
g法Phenylquinoneを0.5%エタノール
溶液にとかし0.02%Pbonylqu1nono溶
液を調整した0このPhenylquinone溶液0
.1m/Logを薬物皮下投与30分後忙マウスの腹腔
内に投与し、投与直後から20分間のWrithing
数を測定し、このWrithing回数について対照群
に対する抑制率をめた。各薬物の50%抑制率(EDs
o値)はLitcbfi、eld−Wilcoxon法
忙より算出した(表1参照)。  2 本発明の化合物は上記実験において、塩酸モルフインよ
り4〜30.6倍強い鎮痛活性を示した。 さら釦、比較のため化合物■を経口投与した場合につい
て、上記実験(Tail −flick法およびPhe
nyquinone Writhing法)を行いED
s。 値をめた(表2参照)。 表1 皮下投与におけるEDao値(■A1〕 3 表2 経口投与におけるI+3Dmo値(rag、7k
g)本発明の化合物は、上記した様にマウスを使用する
Ta1l presaure法、 Ta11.−fli
ck法およびPhenylquinone writh
ing法のいずれにおいても塩酸モルフインよりも強力
な鎮痛活性を示すことから、鎮痛薬として有用なもので
ある。従って、本発明の化合物はヒト、サル、イヌ、ウ
サギ、ラット、マウス等の哺乳動物における痛み(殊に
ガン性疼痛等の激痛)に対して鎮痛剤として有用である
。また、本発明の化合物の毒性は低く、薬効発現量をは
るかK」:まわるものである。 本発明の化合物の投与量は、一般に0.05〜lOj/
kgが適量である。本発明の化合物は主として非経口的
に投与(例、静脈内投与、皮下段] 4 与、直腸投与)されるが、場合によって経口投与も可能
である。従って本発明の化合物を鎮痛剤として用いる場
合の剤型としては、注射剤。 点滴用剤、坐剤等の非経口剤が最も好ましい剤型である
が、これらの他に、バッカル剤、トローチ剤等の粘膜投
与のための剤型あるいは錠剤、散剤等の経口投与のため
の剤型であってもよい。この様な剤型を有する製剤は、
製剤学的分野における自体公知の手段を用いて製造され
る。 例えば、注射剤の製造にあたっては、生理食塩水単独あ
るいは適宜の溶解剤(例、多価アルコール類)を併用し
た溶剤に本発明の化合物の濃度が1〜3 o ay/+
n+となる様に溶解したものをアンプルに封入した後、
加熱滅菌処理を施こすという方法が採用される。 以下に実施例を挙げて本発明をさらに具体的に説明する
。なお、本発明の化合物の純度を確認するための薄層ク
ロマトグラフィーにおいては、Kiesel gel 
GF254 (メルク社1に!りを用い、各V値(l/
1およびRf+1)についての展開溶媒5 は次の通りである。 +I/l:プタノール:酢酸:水(4:1:5)実施例
I H−Tyr−D−Arg−Phe−G1.y−OH
の製造1) Boc−D−Arg(Tos)−phe−
Gly−Ogtの製造Boc−Phe−Gly−OEt
 (3,15g )を4N−塩酸/ジオキサン溶液(1
5m)K溶解したものを室温に30分放置後減圧濃縮し
た。この残渣を無水エーテルで処理して得た不溶物を水
酸化カリウムデシケータ中で減圧乾燥した。本物質なり
MF(8ml ) Ic溶解し、+3nc −1)−A
rg (Tos ’) −orT (3,4g)および
HoBt(]、22 g )を加え、OCに氷冷したの
ち、さらにトリエチルアミン(]、、4 ml )およ
びDce(1,76g)を加えた。この混合物を5Cで
一昼夜攪拌後生じたジシクロへキシルウレアをr別、P
液を水(50+ml )で希釈後酢酸エチルで2回抽出
した。抽出液を]N−クエン酸、水、IN−重盲、水で
順次3回ずつ洗浄後硫酸マグネシウムで乾燥した。減I
E濃縮に 6 よって得られた残留物を酢酸エチルから再結晶し、融点
110°〜112Cの無色粉末4.5g(86%)を得
た。 比旋光度: 〔α”]) 2 Q、 45°(c=1.
メタノール)元素分析: C3xH44NaOsS 計算値: C,56,35:H06,71;N、12.
72(%)実験値: C,56,56:H,6,65:
N、12.66(%)ff) Boc−Tyr−D−A
rg(’ros)−Phe−Gly−OEtの製造上記
1)で得たBoC−D−Arg(Tos)−Phe−G
ly−OEt。 (]、、 ]52 g )を、上記1)と同様の方法で
4N−塩酸/ジオキサン溶液で処理した。得られたT(
CI aH−D−Arg(Tos)−Pbe−Gly−
OEtをDMF(6ml)に溶解し、これにnoc−T
yr −OH(620q)およびHoB1 (297m
g)を加えOCに冷却後、トリエチルアミン(0,32
mt)およびDCC(465■)を加え5Cで一昼夜攪
拌した。反応後、生成したジシクロへキシルウレアをP
別後、上記1)忙おける場合と同様に処理し、無色固体
を得た。 水晶を2−プロパツールから再結晶し、融点 7 166°〜]69Cの粉末1.、’i’1g(95%)
を得た。 比旋光度: 〔α]%’−7.53°(C−1,、メタ
ノール)元素分析: CaoHasNvO1aS計算値
: C,5B、31;H,6,48;N、11..90
(%)実験値:C,5B、29:H,6,61,;N、
11.43(%)1) Boa−Tyr−D−Arg(
’ro8)−Phe−()ly−074の製造上記I)
で得たBoc−’ryr−D−Arg(Tos)−Ph
e−G]、y−oEi (553■)をメタノール(3
謙I)および水(o、5m1)に溶解し、これに2N−
水酸化ナトリウム0.35 +ulを加え室温で40分
攪拌した。 反応後、水(20111)で希釈後酢酸エチルで2回洗
浄し、水層eこ氷冷下クエン酸を加え、釣用3に調整し
た。この時の析出物を酢酸エチルで2回抽出し、抽出液
を水で5回洗浄接硫酸マグネシウムで乾燥した。酢酸エ
チルを減圧留去し、その残留物を酢酸エチル−石油エー
テルから再沈殿し、融点135°〜14.0 [の無色
粉末460Iv(86%)を得た。 1 日 比旋光度:〔α]’、’−3.60°(Cm1.メタノ
ール)元素分析: Cs@H4oN?0xoS計算値:
 C,57,34:H,6,21;N、12.32(%
)実験値:C,56,96:H,6,20:N、11.
92(%)Iv) !(−Tyr−D−Arg−Phe
−Gly−OHの製造上記+u)で得たBoc−Tyr
 −D−Arg(Tos ) −Phe−Gly−OH
(150■)を0−クレゾール(50■)。 チオアニソール(0,5+nt )とともにトリフルオ
ロ酢酸(2ml)に溶解し、室温に60分間放置した。 反応後、トリフルオロ酢酸を減圧留去後残留物を無水エ
ーテルで処理した。無水エーテル不溶物を減圧乾燥後、
水(5ml ) I/C溶解し、Dowex I X 
2樹脂(酢酸型、約3g)を加え室温で30分間攪拌後
r過した。r液を凍結乾燥したものを水(1ml )に
溶解し、カルボキシメチルセファロース樹脂充填カラム
(2X 12 dll )に充填した。次いで、水(3
00mt 、混合槽)から始めて最終濃度0.12モル
−ピリジン・酢酸緩衝液(Fl(5,1、300m 、
補給槽)となる] 9 まで直線型勾配法によって溶出した。溶出液の6mlず
つを分取した各フラクションについて280nmの吸光
度を測定するととKよって目的物の溶出位置を検査した
。かく1−て、フラクション番号60−68を合1.た
ものを凍結乾燥j7、無色粉末56■(43%)を得た
。本物質はニンヒドリン反応、パクリ反応、坂口反応、
クロル−0−トリジン反応がそれぞれ陽性。 R/l O,82R/l O,57 比旋光度: [1’lツ(弓35.97°(Cm1.水
)元素分析: Cm5HasNtO6拳20m)TaO
m ・2HsO計算値:C,51,64,;H,6,7
9;N、14.0!’+(%)実験値:c、5]、、3
4;tT、6゜tvy;1q、14.G5(%)酸加水
分解(6N−oCl、 、 11.0°、24時間)後
のアミノ酸比: Gay 1 、’I’yr O,I’
33.Phe 0−98D−、A、rg、0.4>2 実施例2 H−Tyr−D−A、rg−Phe−G1.
y−OEtの製造上記実施例1で得たT3oc−T’y
r−1)−Arg(’I’os)−Phe−Gly−O
Et (430N ) 、 o−クレゾール(1000 呵)、チオアニソール(3ml )およびトリフルオロ
酢酸(]、 Oml )の混合物に、トリフルオロメタ
ンスルホン酸(0,6mt )を加え、室温に1時間放
置した。反応後、トリフルオロ酢酸を減圧留去し、残留
物を無水エーテルで処理した。 無水エーテル不溶物を乾燥後、水(5ml)に溶解して
得られた溶液にDowexI X 2酢酸型(約3g)
樹脂を加え室温で30分間攪拌後沢過し、そのP液を凍
結乾燥した。さらに、水(1ml)に溶解し、カルボキ
シメチルセファロース樹脂を充填したカラム(2X13
cn+)に充填し、先ず水(601111)および0.
1モル・ピリジン・酢酸緩衝液(+’l(5,10・1
00 ml )で溶出し、次K O,1モル(300m
l、混合槽)の濃度から始めて最終濃度0.35モル(
300ml 、補給槽)となるピリジン酢酸緩衝液(F
115.10)を用いて直線型勾配法によって溶出した
。各フラクション(6ml)の280 nmにおける吸
光度を測定し目的物の溶出位置を検査した。かくして、
フラクション番号65− ’l’ 5を合したものを凍
結 1 乾燥し、さらに2%酢酸(l ml ) K溶解し、’
royo Pearl HW−40樹脂を充填したカラ
ム(2,6X 45 cm )に充填した。次いで、2
%酢酸で溶出し、溶出液の6.2mlずつを分取した。 溶出後、フラクション番号32−35を合せ“凍結乾燥
し、無色粉末200■(56%)を得た。 本物質はニンヒドリン反応、パクリ反応、坂]1反応お
よびクロル−0−トリジン反応がそれぞれ陽性。 Rf’ 0.52 R/” (1,74比旋光度:〔α
)”、’ −t−31,、93°(C−1,、水)元素
分析: CjsHs参Nテ06・2C日1140寓・H
mO計算値: C,54,30;H,6,98;N、1
3.85(%)実験値:C,5it、27:)(,7,
25;N、13.37(%)酸加水分解(6N−ITC
l、 、 1 ]、 OC、20時間)後のアミノ酸比
: (Hy 1. 、 ’1.’yr O,86。 P↑+e O,94、’rl−Arg 1.05実施例
3H−甲yr−D−Arg−Pbe−fll、y−0−
n−Prの製造1) Boc−Tyr−r)−Arg(
Tos)−Phe−(14y−0−n−Prの 2 製造 上記実施例1で得たBoc−Tyr−D−Arg(To
s)−Phe−Gly−OH(1’i’ O■)および
フッ化カリウム(30■)をDMF(2ml)に溶解し
、これにn−プロピルプロミド(0,0361111)
を加え室温で一昼夜攪拌した。次いで、反応液を水(2
0+111)で希釈後酢酸エチルで2回抽出し、抽出液
をlN−重曹で5回、次いで水で3回洗浄後硫酸マグネ
シウムで乾燥した。酢酸エチルを減圧留去し、残留物を
酢酸エチル−無水エーテルから再沈殿し、融点168°
〜169Cの無色粉末110■(61%)を得た。 比旋光度: Ca〕、’−8,3so(C=l 、y’
jl、/−#)元素分析: CaxHasNyO1o8
計算値:C,5B、76;H,6,62;N、11.7
0(%)実験値:C,5B、59;H,6,45;N、
11.51(%)It) H−Tyr−D−Arg−P
he−Gly−0−n−Prの製造上記1)で得たBo
a −Tyr−D−Arg(Tos ) −Phe −
Guy−n−Pr (73my: )を、前記実施例2
におけるH−3 Tyr−D−Arg−Phe−f’J1y−OEtの製
造の場合と全く同様に、0−クレゾール、チオアニソー
ル、トリフルオロメタンスルホン酸およびトリフルオロ
酢酸の混液で処理した。得られた粗生成物を、更に上記
の場合と同様に、カルボキシメチルセファロースカラム
クロマトグラフィーおよびToyo Pearl IT
W−40カラムクロマトグラフイーによって精製し、目
的物35■(56%)を得た。本物質はニンヒドリン反
応、パクリ反応。 坂口反応およびクロル−o−)!Jジン反応はそれぞれ
陽性。 FlflO,5’i’ R/” 0.74比旋光度:〔
α]”、;+26.2o°(c=1.水)元素分析: 
Cs*HanN?OL+・2CmHaO* −H露0計
算値:c、54.91;H,7,1z;N、ls、5s
(%)実験値: c 、 54.97 ;I+、 7.
16 ;N、 ]、s、s7(%)酸加水分解(aN−
HCl、 110°、20時間)後のアミノ酸比: G
ly 1.Tyr O,82゜Phe 1.00 、 
D−Arg O,924 実施例4 H−Tyr−D−Arg−Phe−8ar−
OHの製造+) H−ear−OEt−I(C1の製造
サルコシン(s、9g)をエタノール(6o ml )
に懸濁したものを氷−食塩浴で冷却下、チオニルクロリ
ド(25ml)を徐々に滴下した後、OCで3時間、更
に室温で3日間攪拌した。得られた澄明な反応液を減圧
上濃縮し、その残留物に無水エーテルを加えた。析出し
た結晶なf取、これを無水エーテルでよく洗浄後、水酸
化カリウムデシケータ−中で乾燥し、無色板状晶14.
5g(95%)を得た。 融 点:115°〜117C 元素分析: C5HxzNO* aHc1計算値:C,
39゜08;)(,7,87;N、9.126)実験値
: C,38,58;H,7,84;N、 9.ot(
%)1) H−Phe−8ar−OEt@HCIの製造
上記1)で得たH−8a、r−OEt −HCl (0
,92g) 。 Boc−Phe−OH(1,59g)および)TOBt
 (0,81g )をDMF(6m)に溶解し、これを
氷−食塩浴で 5 冷却下トリエチルアミン(0,9]、 ff1l ) 
、 次いでDcc(1,34g)を加え、5Cで一昼夜
攪拌した。反応接、数滴の酢酸を加え、更に]5分攪拌
後析出したジシクロへギシルウレアを/’ 別した。こ
のr液を水(50ml )で希釈後酢酸エチルで2回抽
出し、抽出液を]N−クエン酸・水・IN−重曹・水で
11次洗浄後硫酸マグネシウムで乾燥した。酢酸エチル
を減圧留去し、残留物64N−塩酸/ジオキサン溶液(
30ml )に溶解し室温に30分間放置後減圧濃縮し
残留液に無水エーテルを加えた。生成した油状物を水酸
化カリウムデシケータ−中で減圧乾燥し、無色不定品物
1..7 (1g (94%)な慣1だ。 融 点:40°〜46tr 比k 光BE : (α:]’+) −1−39,e 
’ (c−1,メp)tv)元素分析: C1aHi 
0NIO+111HC1゜計算値: c、55.B9:
1(、7,ot;rJ、 931(%)実験値:C,5
5,4o;■(,7]3;N、9.45e%)ii) 
Boc−p−Arg(Tos)−phe−sar−oE
tの製造 6 上記l)で得たI(−Phe−8ar−OEt −HC
l (1,80g、 )、 Bac−p−Arg(To
s)−a)■(2,57g )およびHOB t(08
1g)をDMF(8ml)に溶解し、これを氷−食塩浴
で冷却下トリエチルアミン(0,911111)および
Dec(1,3tg)を加え5Cで一昼夜攪拌した。反
応後、上記量)の場合と同様に処理した。すなわち、酢
酸エチル抽出液を洗浄、減圧留去し、得られた残留物に
石油エーテルを加え、析出した沈殿をP取し、次いで酢
酸エチル−石油エーテルから再沈殿することKよって無
色粉末s、1g(77%)を得た。 融 点ニア6°〜81C 比旋光度:〔α)%’−0.47°(Cm1.メタノー
ル)元素分析: Cs*HaatJ++OeS計算値:
 C,56,95;H,6,87;N、12.46(%
)実験値:C,56,45;H,7,18;N、11.
95(%)lv) Boc−Tyr−D−Arg(To
s)−、Phe−8ar−OEiの製造上記−)で得た
Boc−D−Arg(Tos) −Phe −ear 
−0Et(1,e5g)を4N−塩酸/ジオキサン(l
oal)に 7 溶解し、これを30分間放置後減圧濃縮した。 残留物に無水エーテルを加え、析出した結晶を水酸化カ
リウムデシクー−ター中で減圧乾燥した。 得られた物質をD M li’ (5ml )に溶解し
、トリエチルアミン(0,451111)で中和後、B
oc −Tyr −0H(771■)およびTTOI3
t (37s■)を加えた。 この混合物をOCに冷却下DCC(620■)を加えた
後5Cで一昼夜攪拌した。反応後、上記■)と同様に処
理し、無色粉末1..99g(87%)を得た。 融 点=106°〜]]OC 比旋光度:〔α)’、、’十’i’、38°(C二]、
メタノール)元素分析: CaxHiaN70noS計
算値: c、5e、y6;■(、6,62;N、11.
to(%)実験値: C、5B、59 ;H、6,59
;N 、 11.34(%)v) Boc−Tyr−D
−、Arg(Tos)−Phe−8ar−014の製造
上記Iv)で得たBoc −Tyr−D−Arg(To
s ) −Phe−8ar−OEt (5]、 O■)
をメタノール(2ml)および水(0,3111)の混
液KM解し、これに2N−水 8 酸化ナトリウム(0゜32m1)を加え室温で60分間
攪拌した。次いで、反応液を前記実施例1におけるBo
c−Tyr−r+−Arg(Tos)−phe−Gly
−oHの製造の場合と同様に処理し、無色粉末245■
(51%)を得た。 融 点=128°〜132C 比旋光度:〔α)%’+7.9 ’7°(Cm1.メタ
ノール)元素分析: C++oT(axN)oxos計
算値:C,57,83:H,6,35;N、12.11
(%)実験値:C,57,91:H,6,11;N、1
1.8コ(%)Vl) H−Tyr−D−Arg−Ph
e−8ar−OHの製造上記V)で得たBoc−Tyr
−D−Arg(Tos)−Pbe−8ar−OT((1
30■)を、前記実施例1におけるH−Tyr −D−
Arg −phe =G1y−OHの製造の場合と全く
同様に、0−クレゾール、チオアニソール、トリフルオ
ロメタンスルホン酸およびトリフルオロ酢酸の混液で処
理し、得られた粗生成物を更に上記の場合と同様に、先
ずカルボキシメチルセファロースカラムクロマトグラフ
ィーによっ 9 て、次いでToyo PePl、r]−HW −40カ
ラムクロマドグ2フイーによって精製した。なお、後者
のカラムクロマトグラフィーにおいては、溶出液を5、
3 Illずつ分取し、フラクション番号31−36を
集め凍結乾燥すること圧よって目的物45■(40%)
を得た。本物質はニンヒドリン反応、パクリ反応、坂口
反応およびクロル−o −) リジン反応はそれぞれ陽
性。 ′V1 0.30 8130.59 比旋光We : [α)”、;−+−a 5.21 (
C==1 、水)元素分析: CmyHayNyO* 
a2cm)140m *2HsO計算値:C,52,3
];H,6,94;N、13.78(%)実験値:C,
52,43;IF(,7゜01;N、14.22(%)
酸加水分解(6N−T−+c1. 、 ]、 ]、 O
’ 、 22時間)後のアミノ酸比: Sar 1.T
yr O,83゜Phe ]、、09 、 D−A、r
gO,93実施例5 H−Tyr−D−Arg−Phe
−8ar−OMeの製造1) Boc−Tyr−D−A
rg(Tos)−Phe−8ar−OMeの製造前記実
施例4で得たBoc−’I’yr−D−Arg(Tos
)−0 Phe−8ar−OH(243mg )およびフッ化カ
リウム(58■)をDMF(21111)に溶解し、ヨ
ウ化メチル(0,04mt)を加え、室温で一昼夜攪拌
した。 反応後、前記実施例3におけるBoc −Tyr −D
−Arg(Tos)−Phe−Gly−0−n−Prの
製造の場合と同様に処理し、無色粉末2ooq(so%
)を得た。 融 点=109°〜116r 比旋光度:〔α)”、’+9.54°(c=1.メタノ
ール)元素分析: C4tHasNyOxoS計算値:
 C’、5B、76;H,6,62;N、11.70(
%)実験値:C,58,26;H,6,69;N、11
.28(%)層) H−Tyr−D−Arg−Phe−
8ar−○Meの製造上記1)で得たBo c −Ty
r −D−Arg (Tos ) −Phe −8ar
−0M13 (13zmg)を前記実施例2におけるH
−Tyr−D−Arg−Phe−Gly−OEtの製造
の場合と同様に、0−クレゾール、チオアニソール、ト
リフルオロメタンスルホン酸およびトリフルオロ酢酸の
混液で処理した。得られた粗生成物を更に上記の場合と
同様に、カルボキシメチルセファロース1 カラムクロマトグラフィーおよびToyo Pearl
T(W−40カラムクロマトグラフイーによって精製し
、目的物51■(44%)を得た。本物質はニンヒドリ
ン反応、パクリ反応、坂ロ反応およびクロル−0−) 
リジン反応はそれぞれ陽性。 Bf” 0.4 ]、 R,780,72比旋光度:〔
α)’1;+38.20°(Cm1−、水)元素分析:
 Cm5T(IIoh+〒06・3 Hm O計算値;
c、53.92;H,y、oe;N、15.72(%)
実験値: C,53,55;H,6,89;N、15.
20(%)酸加水分解(6N−’HCI 、 110 
r’ 、 22時間)後のアミノ酸比: Sar O,
94,Tyr O,89゜Phe 1 、 D −Ar
g 1.09実施例6 H−Tyr−I:l−A、rg
−Phe−f3ar−OEtの製造前記実施例4で得た
Boc−Tyr−D−Arg(Tos)−Phe−8a
r−OEt (921K )を前記実施例2におけるH
−Tyr−D−Arg−Phe−04,y−OFiit
、の製造の場合と同様に、0−クレゾール、チオアニソ
ール、トリフルオロメタンスルホン酸およびトリフルオ
ロ 2 酢酸の混液で処理し、得られた粗生成物を上記の場合と
同様カルボキシメチルセファロースオよびToyo P
ea、rl HW−40カラムクロマトグラフイーによ
って精製し、目的物27■(33%)を得た。本物質は
ニンヒドリン反応、パクリ反応、坂ロ反応およびクロル
−0−トリジン反応はそれぞれ陽性。 R710,48R720,73 比旋光度:〔α)’、;+a1.o1°(Cm1 、水
)元素分析: C++oHtxN?Oa・3NgO計算
値: C,54,62;H,7,43;N、15.37
(%)実験値: C’、53y94;H,7,34;N
、15.55(%)酸加水分解(6N−HCl、 −1
10tl’ 、 22時間)後のアミノ酸比: Sar
 1.01.Tyr O,91゜Phe 1 、 D−
Arg 1.11特許出願人 グレラン製薬株式会社 代理人柊木峯治  3 913
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tetrapeptide having analgesic activity. A pentapeptide called enkephalin that exhibits a morphan-like effect when administered directly into the brain has been known, but this substance does not exhibit analgesic effect when administered intravenously. On the other hand, β-endorphin, which consists of 31 amino acids, is known to exhibit analgesic effects even when administered intravenously, but its production is difficult and it is difficult to supply it in large quantities as a medicine. . For this reason, various studies have been made to obtain a compound that is a low molecule that is easy to produce and has sufficient analgesic effects even when administered intravenously or subcutaneously, but so far nothing has been found to be satisfactory. In addition, dermorphin isolated from the skin of one frog (
Hegutabebutide, also known as dermorphin, has strong analgesic effects when administered intracerebrally and peripherally.
It is said that the tetrapeptide in its structure is the minimum structure for exerting its action. In view of the above technical situation KfIM, the present inventors have conducted various studies and found that a specific compound of tetrapeptide is suitable for the above purpose.As a result of further research based on this knowledge, the present inventors have developed the present invention. I have reached the point where I have completed the . That is, the present invention relates to the general formula (r) H-Tyr-D-Arg-Phe-(Ttz)()ly
-(IRm (1) (in the formula, R1 and R2 represent a hydrogen atom or a lower alkyl group). The abbreviations follow the common usage in the field and refer to the following amino acid residues: 'ryr: tyrosine Arg: arginine Phe: phenylalanine Gly nigericine Sar: sarcosine (N-methylglycine)
The tetrapeptide represented by general formula (T) of the present invention may be represented by the following chemical formula. (In the formula, R1 and R2 are the same as defined above.) In this specification, when an amino acid or its residue is expressed using the above abbreviation, unless otherwise specified, it means L-unit;・ In addition, compounds and protecting groups commonly used in the text. Reagents, etc. are indicated with the following abbreviations: DCC2N,N'-dicyclohexylcarbodiimide H
OBt: 1-hydroxybenztriazole BOC: t
-Butoxycarbonyl Tos Nidocyl DMF Nidimethyl, Formamide Me Ester Et: Ethyl Pr: Provil In the above general formula (r), the lower alkyl group represented by 1 and R1 is an alkyl group having 1 to 6 carbon atoms; In specific examples and 1., methyl group, ethyl group, n- or 1-propyl group, n-11'-,
1. Alkyl groups such as aθC- or t-butyl, pentyl, and hexyl are preferred, with methyl, ethyl, and propyl groups being preferred. stomach. Therefore, the tetrapeptide of the present invention includes both those in which the carboxylic acid terminal (C-terminus) is free and those in which the carboxylic acid terminal (C-terminus) is a lower alkyl ester thereof, and specific examples thereof are as follows. ■H-T7r-D-Arg-Phe7G1y-OH■H
-Tyr-D-Arg-Phe-Gly-○Et■H-
Tyr-D-Arg-Phe-flly-0-n-Pr
■H-T'yr -D =Arg -Phe -Sar
-OH■H-Tyr -D -Arg -Pbe -
Sar-OMe■H-Tyr-D-Arg-,
, Phe-Sar 70Et Furthermore, as the tetrapeptide of the present invention, in addition to those having free amino groups and carboxyl groups, the present invention also includes pharmacologically acceptable salts thereof. The salt exists as a salt with an acid or a salt with a base depending on extraction and purification conditions. Salts with such bases include salts with alkali group elements such as sodium and potassium, and alkaline earth group elements such as magnesium and calcium, ammonia and alkylamines (methylamine, etc.).
Inorganic substances such as salt 1. Salts with organic bases may be mentioned. In addition, salts with acids include hydrochloric acid, sulfuric acid, hydrobromic acid,
Examples include salts of inorganic acids such as nitric acid and phosphoric acid, and salts of organic acids such as acetic acid, lactic acid, tartaric acid, succinic acid, maleic acid, malonic acid, fumaric acid, methanesulfonic acid, and phthalic acid. In order to produce the tetrapeptide having the chemical structure of general formula (I) of the present invention, the amino acid constituting the target compound (T) or the peptide and the compound that can constitute the remainder thereof are condensed by peptide synthesis means. 9 and do it. Nucleus synthesis means can be carried out according to any known method, for example, "Peptide Synthesis" by Nobuo Izumiya, Maruzen ■ (19
1975), M. Bodansky, M.
A. “Peptide Synthesis” by Onndetti (
Peptide 5 synthesis ) Inter'r
5science Inc. (1966) isobaric methods 1 such as 1j ride method, rf1 anhydrous anhydride physical synthesis acid anhydride method, DCC method, carbodiimidazole method, azide method,
Examples include a method using HoBt, an active ester method, and an NCA method. Before carrying out this condensation reaction, 1. Carbonyl groups and amine groups that do not participate in the reaction of the raw materials may be protected by means known per se, or carboxyl groups and amino groups that participate in the reaction may be activated. Examples of such protection and activation modes include the following. First, the carboxyl group of the raw material is ester (alkyl,
It can be protected in the form of esters such as benzyl, p-, nitrobenzyl, etc.), metal salts (sodium, potassium salts, etc.), and t-alkylamine salts (tri, ethylamine salts, etc.). Further, examples of the protecting group for the amino group of the raw material include a benzyloxycarbonyl group, a t-butoxycarbonyl group, a tosyl group, a benzyl group, and the like. Furthermore, as the protecting group for the hydroxyl group of tyrosine, in addition to the above-mentioned protecting group for the amino group, ethers such as benzyl and t-butyl are exemplified. Next, raw materials with activated carboxyl groups include acid halides, acid anhydrides, and activated esters (trosi
, tq-hydroxysuccinimide, N-hydroxyphthalimide, esters with alcohols such as p-nitrophenol), and the like. Furthermore, examples of raw materials with activated amine groups include corresponding phosphoric acid amides and the like. This condensation reaction can be carried out in the presence of a solvent. Such a solvent is selected from solvents that can be used in the peptide condensation reaction, such as DMF, dimethyl sulfoxide (DMSO), chloroform, dichloromethane,
Examples include tetrahydrofuran, dioxane, pyridine, ethyl acetate, and mixtures thereof. The reaction is usually about -20C to +50C, and the reaction time is usually about 30 minutes to 48 hours. The compound obtained by the above condensation reaction is subjected to a protective group elimination reaction, if necessary. In this elimination reaction,
As a means that does not affect the peptide condensation, elimination means in the field of peptide synthetic chemistry can be adopted, but methods such as acid decomposition, alkaline decomposition, and catalytic reduction are selected as appropriate depending on the type of protecting group to be eliminated. Ru. For example, depending on the acid decomposition, inorganic acids such as hydrochloric acid and acidic acid and organic acids such as acetic acid, trifluoroacetic acid, methanesulfonic acid, and trifluoromethanesulfone H are used, and t-butoxycarbonyl group, tosyl group, carbobenzoxy It is possible to remove protective groups such as groups. At this time, it is effective to add cation supplements such as thioanisole, anisole, phenol, and the like. Further, depending on the alkali decomposition, a strong base such as sodium hydroxide or potassium hydroxide may be used to eliminate ester residues such as alkyl esters and benzyl esters. Catalytic reduction uses palladium black, palladium on carbon, platinum, or the like as a catalyst, and is employed mainly for the purpose of eliminating carbobenzoxy groups and benzyl groups. In addition to these methods, reduction with sodium in ammonia may also be mentioned. After the reaction process is completed, the tetrapeptide thus produced is collected by a peptide separation method known per se (extraction/distribution, recrystallization, reprecipitation, column chromatography, etc.). Furthermore, the collected tetrapeptide (T) can be obtained in the form of a salt by reacting with an organic acid, an inorganic acid, an organic base, or an inorganic base according to a conventional method. Next, an example of a pharmacological experiment using the tetrapeptide (1) of the present invention will be given. The drugs used and the following compounds were dissolved in Ringer's solution. Compound of the present invention ■ H-T'yr-D-, Ar) (-1] hef-Gl
y-On (Compound I)■)i-Tyr-D-Ar
g-Phe -G], y-OFt (compound ■) ■II
-Tyr-D-Arg-yen)e-+11. Y-0-j-
1 nor (Compound III) ■ H-Tyr-D-Arg-Phe-8ar-011
(Compound IV) ■ H-Tyr-D-Arg=Phe-
8ar”OMe (compound ■)■ H-'Il'yr
-1) -Arg -Pbe-Ga, r -0Et (compound vr') Control compound morphine hydrochloride (morphine hydroc+1
.. 1. orjde) ] 0 In addition, ddY male mice (Shizuoka Experimental Animal Agricultural Cooperative Association) weighing 20 to 24 g were used as experimental animals. 111 Ta1l-pressure method Based on the method of Green et al., after subcutaneous administration of the drug, 10
Pressure stimulation was applied at a rate of mWg/sea, and a pressure that caused a pseudo-pain response such as writhing or biting at the stimulated site was administered 1.
Measured until 80 minutes later, pseudo pain response threshold (ml/g)
And so. Based on this threshold, the pseudo-pain response suppression rate of the drug-administered group relative to the control group was calculated. The 50% inhibition rate (ED50 value) of each drug was calculated by the Litchfield-Wilcoxon method (see Table 1). In the above experiments, the compound of the present invention exhibited analgesic activity that was 2.6 to 11.3 times more potent than morphine hydrochloride, and the duration of the activity exceeded that of morphine hydrochloride, and did not disappear even 180 minutes after administration. +2) Ta1l-flick method After administering the drug, radiant heat was irradiated to the tail of the mouse, and the escape reaction time (seconds) from the time the heat was irradiated until the tail moved was measured until 180 minutes after drug administration. This was used as the pseudo pain response threshold. Based on this threshold, the pseudo-pain response suppression rate of the drug-administered group relative to the control group was calculated. The 50% inhibition rate (KDso value) of each drug is determined by Litchfield-Wj 1. Calculated by coxon method (see Table 1). The compound of the present invention showed 2.98 to 15.7 times more analgesic activity than morphine hydrochloride in the above experiments. (31Phenylquinono Wrl, thin
Method g Phenylquinone was dissolved in 0.5% ethanol solution to prepare 0.02% Pbonylquinone solution.0 This Phenylquinone solution0
.. 1 m/Log was administered intraperitoneally to busy mice 30 minutes after subcutaneous administration of the drug, and writing was performed for 20 minutes immediately after administration.
The number of writings was measured, and the inhibition rate was calculated relative to the control group for this number of writings. 50% inhibition rate (EDs) of each drug
o value) was calculated from the Litcbfi and eld-Wilcoxon method (see Table 1). 2 The compounds of the present invention showed analgesic activity 4 to 30.6 times stronger than morphine hydrochloride in the above experiments. For comparison, the above experiment (Tail-flick method and Phe
(nyquinone writing method) and ED
s. The values were calculated (see Table 2). Table 1 EDao value in subcutaneous administration (■A1) 3 Table 2 I+3Dmo value in oral administration (rag, 7k
g) The compound of the present invention can be prepared by the Ta11 presaure method using mice as described above, Ta11. -fli
ck method and Phenylquinone with
In any of the ing methods, morphine hydrochloride exhibits stronger analgesic activity than morphine hydrochloride, so it is useful as an analgesic. Therefore, the compounds of the present invention are useful as analgesics for pain (especially severe pain such as cancer pain) in mammals such as humans, monkeys, dogs, rabbits, rats, and mice. Furthermore, the toxicity of the compounds of the present invention is low, far exceeding the drug efficacy. The dosage of the compounds of the invention is generally between 0.05 and 1Oj/
kg is an appropriate amount. The compounds of the present invention are mainly administered parenterally (eg, intravenous administration, subcutaneous administration, rectal administration), but oral administration is also possible in some cases. Therefore, when the compound of the present invention is used as an analgesic, the dosage form is an injection. Parenteral preparations such as infusions and suppositories are the most preferred dosage forms, but in addition to these, there are also dosage forms for mucosal administration such as buccal preparations and troches, and dosage forms for oral administration such as tablets and powders. It may be in a dosage form. Preparations with such a dosage form are
It is manufactured using means known per se in the pharmaceutical field. For example, when manufacturing an injection, the concentration of the compound of the present invention is 1 to 3 o ay/+ in a solvent containing physiological saline alone or in combination with an appropriate solubilizer (e.g., polyhydric alcohol).
After sealing the dissolved material in an ampoule so that it becomes n+,
A method of heat sterilization is adopted. The present invention will be explained in more detail with reference to Examples below. In addition, in thin layer chromatography for confirming the purity of the compound of the present invention, Kiesel gel
Using GF254 (Merck Company 1!), each V value (l/
1 and Rf+1), the developing solvent 5 is as follows. +I/l: Butanol: Acetic acid: Water (4:1:5) Example I H-Tyr-D-Arg-Phe-G1. y-OH
Production 1) Boc-D-Arg(Tos)-phe-
Production of Gly-Ogt Boc-Phe-Gly-OEt
(3.15 g) in 4N-hydrochloric acid/dioxane solution (1
The 5m) K solution was left at room temperature for 30 minutes and then concentrated under reduced pressure. This residue was treated with anhydrous ether, and the resulting insoluble material was dried under reduced pressure in a potassium hydroxide desiccator. Dissolve this substance in MF (8 ml) Ic, +3nc -1) -A
rg(Tos')-orT (3,4 g) and HoBt (], 22 g) were added, and after ice-cooling in OC, triethylamine (], , 4 ml) and Dce (1,76 g) were added. After stirring this mixture at 5C for a day and night, the resulting dicyclohexylurea was separated by r and P
The solution was diluted with water (50+ml) and extracted twice with ethyl acetate. The extract was washed successively three times with N-citric acid, water, IN-blind, and water, and then dried over magnesium sulfate. Reduced I
The residue obtained by E concentration 6 was recrystallized from ethyl acetate to obtain 4.5 g (86%) of a colorless powder with a melting point of 110° to 112C. Specific optical rotation: [α”]) 2 Q, 45° (c=1.
Methanol) Elemental analysis: C3xH44NaOsS Calculated value: C,56,35:H06,71;N,12.
72 (%) Experimental value: C, 56,56: H, 6,65:
N, 12.66 (%) ff) Boc-Tyr-D-A
Production of rg('ros)-Phe-Gly-OEt BoC-D-Arg(Tos)-Phe-G obtained in 1) above
ly-OEt. (], , ]52 g) was treated with a 4N-hydrochloric acid/dioxane solution in the same manner as in 1) above. The obtained T(
CI aH-D-Arg(Tos)-Pbe-Gly-
Dissolve OEt in DMF (6 ml) and add noc-T to this.
yr -OH (620q) and HoB1 (297m
g) and cooled to OC, triethylamine (0,32
mt) and DCC (465 ml) were added, and the mixture was stirred at 5C all day and night. After the reaction, the generated dicyclohexylurea is converted to P
After separation, the mixture was treated in the same manner as in 1) above to obtain a colorless solid. Quartz was recrystallized from 2-propertool and powdered with a melting point of 7166°~]69C 1. ,'i'1g (95%)
I got it. Specific optical rotation: [α]%'-7.53° (C-1, methanol) Elemental analysis: CaoHasNvO1aS calculated value: C, 5B, 31; H, 6, 48; N, 11. .. 90
(%) Experimental value: C, 5B, 29:H, 6, 61,;N,
11.43(%)1) Boa-Tyr-D-Arg(
Preparation of 'ro8)-Phe-()ly-074 I) above
Boc-'ryr-D-Arg(Tos)-Ph obtained with
e-G], y-oEi (553■) in methanol (3
Ken I) and water (o, 5ml), and 2N-
0.35+ul of sodium hydroxide was added and stirred at room temperature for 40 minutes. After the reaction, the mixture was diluted with water (20111), washed twice with ethyl acetate, and citric acid was added to the aqueous layer while cooling on ice to adjust the concentration to 3 for fishing. The precipitate at this time was extracted twice with ethyl acetate, and the extract was washed five times with water and dried over magnesium sulfate. Ethyl acetate was distilled off under reduced pressure, and the residue was reprecipitated from ethyl acetate-petroleum ether to give 460 Iv (86%) of a colorless powder with a melting point of 135° to 14.0°. 1 Daily optical rotation: [α]','-3.60° (Cm1.methanol) Elemental analysis: Cs@H4oN? 0xoS calculation value:
C, 57,34: H, 6,21; N, 12.32 (%
) Experimental values: C, 56, 96: H, 6, 20: N, 11.
92 (%) Iv)! (-Tyr-D-Arg-Phe
-Production of Gly-OH Boc-Tyr obtained in +u) above
-D-Arg(Tos)-Phe-Gly-OH
(150 ■) to 0-cresol (50 ■). It was dissolved in trifluoroacetic acid (2 ml) together with thioanisole (0,5+nt) and left at room temperature for 60 minutes. After the reaction, trifluoroacetic acid was distilled off under reduced pressure, and the residue was treated with anhydrous ether. After drying the anhydrous ether insoluble material under reduced pressure,
Water (5ml) Dissolve I/C, Dowex IX
2 resin (acetic acid form, about 3 g) was added, stirred at room temperature for 30 minutes, and then filtered. The lyophilized R solution was dissolved in water (1 ml) and packed into a column packed with carboxymethyl Sepharose resin (2 x 12 dll). Next, water (3
00 mt, mixing tank) and a final concentration of 0.12 molar pyridine acetate buffer (Fl (5,1, 300 m,
9) was eluted by the linear gradient method. The absorbance at 280 nm was measured for each fraction of 6 ml of the eluate, and the elution position of the target product was then determined. Thus, fraction numbers 60-68 were combined 1. The product was freeze-dried to obtain 56 ml (43%) of a colorless powder. This substance reacts with ninhydrin reaction, plagiarism reaction, Sakaguchi reaction,
The chlor-0-tolidine reaction was positive. R/l O, 82R/l O, 57 Specific rotation: [1'l tsu (bow 35.97° (Cm 1. water) elemental analysis: Cm5HasNtO6 fist 20m) TaO
m ・2HsO calculation value: C, 51, 64,; H, 6, 7
9;N, 14.0! '+(%) Experimental value: c, 5], 3
4; tT, 6°tvy; 1q, 14. G5 (%) Amino acid ratio after acid hydrolysis (6N-oCl, , 11.0°, 24 hours): Gay 1 , 'I'yr O,I'
33. Phe 0-98D-, A, rg, 0.4>2 Example 2 H-Tyr-D-A, rg-Phe-G1.
Production of y-OEt T3oc-T'y obtained in Example 1 above
r-1)-Arg('I'os)-Phe-Gly-O
Trifluoromethanesulfonic acid (0.6 mt) was added to a mixture of Et (430 N), o-cresol (1000 m), thioanisole (3 ml) and trifluoroacetic acid (Oml), and the mixture was left at room temperature for 1 hour. After the reaction, trifluoroacetic acid was distilled off under reduced pressure, and the residue was treated with anhydrous ether. After drying the anhydrous ether insoluble matter, dissolve it in water (5 ml) and add Dowex I X diacetic acid form (about 3 g) to the resulting solution.
The resin was added, stirred at room temperature for 30 minutes, filtered, and the P solution was freeze-dried. Furthermore, a column (2X13
cn+), first add water (601111) and 0.
1M pyridine acetate buffer (+'l(5,10・1
00 ml) and then KO, 1 mol (300 ml).
l, mixing tank) to a final concentration of 0.35 molar (
Pyridine acetate buffer (F
115.10) using a linear gradient method. The absorbance at 280 nm of each fraction (6 ml) was measured to examine the elution position of the target product. Thus,
Fraction No. 65 - 'l' Freeze the combined 5. 1 Dry, further dissolve in 2% acetic acid (l ml) and '
A column (2,6X 45 cm) packed with royo Pearl HW-40 resin was packed. Then 2
% acetic acid, and 6.2 ml portions of the eluate were collected. After elution, fraction numbers 32-35 were combined and lyophilized to obtain 200 μm (56%) of a colorless powder. . Rf' 0.52 R/" (1,74 specific optical rotation: [α
)",' -t-31,,93°(C-1,,Water)Elemental analysis:
mO calculation: C, 54,30; H, 6,98; N, 1
3.85(%) Experimental value: C,5it,27:)(,7,
25; N, 13.37 (%) acid hydrolysis (6N-ITC
Amino acid ratio after (Hy 1., '1.'yr O,86. P↑+e O,94, 'rl-Arg 1.05 Example 3H-Kyr -D-Arg-Pbe-fll,y-0-
Production of n-Pr 1) Boc-Tyr-r)-Arg(
2 Preparation of Boc-Tyr-D-Arg(Tos)-Phe-(14y-0-n-Pr obtained in Example 1 above)
s) -Phe-Gly-OH (1'i' O ■) and potassium fluoride (30 ■) were dissolved in DMF (2 ml), and n-propylbromide (0,0361111) was dissolved in this.
was added and stirred at room temperature overnight. Next, the reaction solution was diluted with water (2
After diluting with 0+111) and extracting twice with ethyl acetate, the extract was washed with 1N sodium bicarbonate five times, then with water three times, and then dried over magnesium sulfate. Ethyl acetate was distilled off under reduced pressure, and the residue was reprecipitated from ethyl acetate-anhydrous ether, melting point 168°.
110 cm (61%) of a colorless powder of ~169C was obtained. Specific optical rotation: Ca],'-8,3so(C=l,y'
jl, /-#) Elemental analysis: CaxHasNyO1o8
Calculated value: C, 5B, 76; H, 6, 62; N, 11.7
0 (%) Experimental value: C, 5B, 59; H, 6, 45; N,
11.51 (%) It) H-Tyr-D-Arg-P
Production of he-Gly-0-n-Pr Bo obtained in 1) above
a-Tyr-D-Arg(Tos)-Phe-
Guy-n-Pr (73my: ) was added to Example 2.
was treated with a mixture of 0-cresol, thioanisole, trifluoromethanesulfonic acid and trifluoroacetic acid exactly as in the preparation of H-3 Tyr-D-Arg-Phe-f'J1y-OEt. The obtained crude product was further subjected to carboxymethyl Sepharose column chromatography and Toyo Pearl IT in the same manner as above.
The product was purified by W-40 column chromatography to obtain the desired product, 35.mu. (56%). This substance has a ninhydrin reaction and a plagiarism reaction. Sakaguchi reaction and Chlor-o-)! J-jin reaction was positive. FlflO, 5'i' R/” 0.74 Specific optical rotation: [
α]”; +26.2o° (c=1.water) Elemental analysis:
Cs*HanN? OL+・2CmHaO* -H dew 0 calculated value: c, 54.91; H, 7, 1z; N, ls, 5s
(%) Experimental value: c, 54.97; I+, 7.
16 ;N, ], s, s7 (%) acid hydrolysis (aN-
Amino acid ratio after (HCl, 110°, 20 hours): G
ly 1. Tyr O, 82°Phe 1.00,
D-Arg O,924 Example 4 H-Tyr-D-Arg-Phe-8ar-
Production of OH+) H-ear-OEt-I (Production of C1 Sarcosine (s, 9g) was added to ethanol (6o ml)
While cooling the suspension in an ice-salt bath, thionyl chloride (25 ml) was gradually added dropwise, followed by stirring at OC for 3 hours and then at room temperature for 3 days. The resulting clear reaction solution was concentrated under reduced pressure, and anhydrous ether was added to the residue. The precipitated crystals were collected, thoroughly washed with anhydrous ether, and dried in a potassium hydroxide dessicator to give colorless plate-like crystals 14.
5g (95%) was obtained. Melting point: 115° ~ 117C Elemental analysis: C5HxzNO* aHc1 calculated value: C,
39°08; ) (,7,87; N, 9.126) Experimental value: C, 38,58; H, 7,84; N, 9. ot(
%) 1) Production of H-Phe-8ar-OEt@HCI H-8a obtained in 1) above, r-OEt -HCl (0
, 92g). Boc-Phe-OH (1,59g) and )TOBt
(0,81 g) was dissolved in DMF (6 m), and this was cooled in an ice-salt bath. Triethylamine (0,9], ff1l)
Then, Dcc (1.34 g) was added and stirred at 5C overnight. After the reaction, several drops of acetic acid were added, and after further stirring for 5 minutes, the precipitated dicyclohegycylurea was separated. This r solution was diluted with water (50 ml) and extracted twice with ethyl acetate, and the extract was washed 11 times with N-citric acid/water/IN-baking carbonate/water and then dried over magnesium sulfate. Ethyl acetate was distilled off under reduced pressure, and the residue 64N-hydrochloric acid/dioxane solution (
The solution was dissolved in 30 ml of water, left at room temperature for 30 minutes, concentrated under reduced pressure, and anhydrous ether was added to the residual solution. The produced oil was dried under reduced pressure in a potassium hydroxide desiccator to obtain a colorless, indeterminate product. .. 7 (1g (94%)). Melting point: 40°~46tr Ratio k Light BE: (α:]'+) -1-39,e
' (c-1, mep) tv) Elemental analysis: C1aHi
0NIO+111HC1° Calculated value: c, 55. B9:
1(,7,ot;rJ, 931(%) Experimental value: C,5
5,4o;■(,7]3;N,9.45e%)ii)
Boc-p-Arg(Tos)-phe-sar-oE
Production of t 6 I(-Phe-8ar-OEt -HC obtained in l) above
l (1,80g, ), Bac-p-Arg(To
s)-a)■ (2,57g) and HOB t(08
1g) was dissolved in DMF (8ml), triethylamine (0,911111) and Dec (1,3tg) were added to the solution under cooling in an ice-salt bath, and the mixture was stirred at 5C overnight. After the reaction, it was treated in the same manner as in the case of the above amount). That is, the ethyl acetate extract was washed and evaporated under reduced pressure, petroleum ether was added to the resulting residue, the precipitate was collected, and then reprecipitated from ethyl acetate-petroleum ether to form a colorless powder. 1 g (77%) was obtained. Melting point near 6°~81C Specific rotation: [α)%'-0.47° (Cm1.methanol) Elemental analysis: Cs*HaatJ++OeS calculated value:
C, 56,95; H, 6,87; N, 12.46 (%
) Experimental values: C, 56,45; H, 7,18; N, 11.
95(%) lv) Boc-Tyr-D-Arg(To
s)-, Phe-8ar-OEi Boc-D-Arg(Tos)-Phe-ear obtained in the above-)
-0Et (1,e5g) in 4N-hydrochloric acid/dioxane (l
oal) and concentrated under reduced pressure after being allowed to stand for 30 minutes. Anhydrous ether was added to the residue, and the precipitated crystals were dried under reduced pressure in a potassium hydroxide desiccator. The obtained substance was dissolved in D M li' (5 ml), and after neutralization with triethylamine (0,451111), B
oc -Tyr -0H (771■) and TTOI3
t (37 s) was added. DCC (620 ml) was added to this mixture under cooling to OC, and the mixture was stirred at 5 C overnight. After the reaction, the same process as above (①) was carried out to obtain colorless powder 1. .. 99g (87%) was obtained. Melting point = 106°~]]OC Specific optical rotation: [α)', ,'10'i', 38° (C2],
methanol) elemental analysis: CaxHiaN70noS calculated values: c, 5e, y6; ■(, 6, 62; N, 11.
to (%) Experimental value: C, 5B, 59; H, 6,59
;N, 11.34(%)v) Boc-Tyr-D
-, Arg(Tos)-Phe-8ar-014 Boc-Tyr-D-Arg(Tos) obtained in Iv) above
s) -Phe-8ar-OEt (5], O■)
was dissolved in a mixture of methanol (2 ml) and water (0.3111), and 2N-water 8 sodium oxide (0°32 ml) was added thereto, followed by stirring at room temperature for 60 minutes. Next, the reaction solution was mixed with Bo in Example 1.
c-Tyr-r+-Arg(Tos)-phe-Gly
-Processed in the same manner as in the production of oH, colorless powder 245■
(51%). Melting point = 128° ~ 132C Specific optical rotation: [α)%'+7.9'7° (Cm1.methanol) Elemental analysis: C++ oT (axN) oxos calculated value: C, 57, 83: H, 6, 35; N, 12.11
(%) Experimental value: C, 57,91: H, 6,11; N, 1
1.8 co(%)Vl) H-Tyr-D-Arg-Ph
Production of e-8ar-OH Boc-Tyr obtained in V) above
-D-Arg(Tos)-Pbe-8ar-OT((1
30■) in Example 1 above, H-Tyr-D-
Treated with a mixture of 0-cresol, thioanisole, trifluoromethanesulfonic acid and trifluoroacetic acid exactly as in the preparation of Arg -phe =G1y-OH, and the crude product obtained further treated as above. It was first purified by carboxymethyl Sepharose column chromatography 9 and then by Toyo PePl,r]-HW-40 column chromatography. In addition, in the latter column chromatography, the eluate was
3 Ill fractions were collected, and fraction numbers 31-36 were collected and freeze-dried.
I got it. This substance was positive in the ninhydrin reaction, plagiarism reaction, Sakaguchi reaction, and chlor-o-lysine reaction. 'V1 0.30 8130.59 Specific rotation We: [α)'',;-+-a 5.21 (
C==1, water) Elemental analysis: CmyHayNyO*
a2cm) 140m *2HsO calculation value: C, 52, 3
]; H, 6,94; N, 13.78 (%) Experimental value: C,
52,43;IF(,7゜01;N,14.22(%)
Acid hydrolysis (6N-T-+c1., ], ], O
Amino acid ratio after 22 hours): Sar 1. T
yr O,83゜Phe],,09,DA,r
gO,93 Example 5 H-Tyr-D-Arg-Phe
-8ar-OMe production 1) Boc-Tyr-D-A
Preparation of rg(Tos)-Phe-8ar-OMe Boc-'I'yr-D-Arg(Tos) obtained in Example 4 above
)-0 Phe-8ar-OH (243 mg) and potassium fluoride (58 ml) were dissolved in DMF (21111), methyl iodide (0.04 mt) was added, and the mixture was stirred at room temperature overnight. After the reaction, Boc-Tyr-D in Example 3
-Arg(Tos)-Phe-Gly-0-n-Pr, 2 ooq (so%
) was obtained. Melting point = 109° ~ 116r Specific optical rotation: [α)'', '+9.54° (c = 1. methanol) Elemental analysis: C4tHasNyOxoS calculated value:
C', 5B, 76; H, 6, 62; N, 11.70 (
%) Experimental value: C, 58,26; H, 6,69; N, 11
.. 28 (%) layer) H-Tyr-D-Arg-Phe-
Production of 8ar-○Me Boc-Ty obtained in 1) above
r-D-Arg(Tos)-Phe-8ar
-0M13 (13zmg) was added to H in Example 2.
-Tyr-D-Arg-Phe-Gly-OEt was treated with a mixture of 0-cresol, thioanisole, trifluoromethanesulfonic acid and trifluoroacetic acid. The obtained crude product was further subjected to carboxymethyl Sepharose 1 column chromatography and Toyo Pearl column chromatography in the same manner as above.
T (purified by W-40 column chromatography to obtain the target product 51 (44%). This substance was reacted with ninhydrin reaction, plagiarism reaction, Sakaro reaction and chlor-0-)
Lysine reaction was positive. Bf" 0.4], R, 780, 72 Specific optical rotation: [
α)'1; +38.20° (Cm1-, water) Elemental analysis:
Cm5T (IIoh+〒06.3 Hm O calculated value;
c, 53.92; H, y, oe; N, 15.72 (%)
Experimental values: C, 53,55; H, 6,89; N, 15.
20(%) acid hydrolysis (6N-'HCI, 110
r', amino acid ratio after 22 hours): Sar O,
94,Tyr O,89゜Phe1, D-Ar
g 1.09 Example 6 H-Tyr-I: l-A, rg
-Preparation of Phe-f3ar-OEt Boc-Tyr-D-Arg(Tos)-Phe-8a obtained in Example 4 above
r-OEt (921K) in Example 2
-Tyr-D-Arg-Phe-04,y-OFiit
The crude product obtained was treated with a mixture of 0-cresol, thioanisole, trifluoromethanesulfonic acid and trifluoro 2 acetic acid as in the case of the preparation of
The product was purified by ea, rl HW-40 column chromatography to obtain the desired product 27 (33%). This substance was positive in the ninhydrin reaction, plagiarism reaction, Sakaro reaction, and chlor-0-tolidine reaction. R710,48R720,73 Specific rotation: [α)',;+a1. o1° (Cm1, water) elemental analysis: C++oHtxN? Oa・3NgO calculation value: C, 54,62; H, 7,43; N, 15.37
(%) Experimental value: C', 53y94; H, 7,34; N
, 15.55 (%) acid hydrolysis (6N-HCl, -1
Amino acid ratio after 10tl', 22 hours: Sar
1.01. Tyr O, 91°Phe 1, D-
Arg 1.11 Patent applicant: Mineji Hiiragi, agent of Grelan Pharmaceutical Co., Ltd. 3 913

Claims (1)

【特許請求の範囲】 一般式(I) H−Tyr−D−Arg−Phe−(Rx)Gly−O
R露(I)(式中、R1およびRsは水素原子または低
級アルキル基を示す)で表わされるテトラペプチド。
[Claims] General formula (I) H-Tyr-D-Arg-Phe-(Rx)Gly-O
A tetrapeptide represented by R (I) (wherein R1 and Rs represent a hydrogen atom or a lower alkyl group).
JP58159107A 1983-09-01 1983-09-01 Tetrapeptide Pending JPS6054400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58159107A JPS6054400A (en) 1983-09-01 1983-09-01 Tetrapeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58159107A JPS6054400A (en) 1983-09-01 1983-09-01 Tetrapeptide

Publications (1)

Publication Number Publication Date
JPS6054400A true JPS6054400A (en) 1985-03-28

Family

ID=15686394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58159107A Pending JPS6054400A (en) 1983-09-01 1983-09-01 Tetrapeptide

Country Status (1)

Country Link
JP (1) JPS6054400A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013938A1 (en) * 1999-08-25 2001-03-01 Daiichi Fine Chemical Co., Ltd. Medicinal composition for percutaneous/permucosal absorption
WO2017180064A1 (en) 2016-04-14 2017-10-19 Pvp Labs Pte. Ltd. A drug for the effective control of acute and/or chronic pain and a method for its administration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013938A1 (en) * 1999-08-25 2001-03-01 Daiichi Fine Chemical Co., Ltd. Medicinal composition for percutaneous/permucosal absorption
WO2017180064A1 (en) 2016-04-14 2017-10-19 Pvp Labs Pte. Ltd. A drug for the effective control of acute and/or chronic pain and a method for its administration
CN108697758A (en) * 2016-04-14 2018-10-23 Pvp实验室私人有限公司 For effectively controlling acute and/or chronic ache drug and its method of administration
US10357533B2 (en) 2016-04-14 2019-07-23 PVP LaBs PTE, Ltd. Drug for the effective control of acute and or chronic pain and a method for its administration
EP3442557A4 (en) * 2016-04-14 2019-12-25 PVP Labs PTE. Ltd. A drug for the effective control of acute and/or chronic pain and a method for its administration

Similar Documents

Publication Publication Date Title
EP0148133B1 (en) Tripeptide compounds containing pyroglutamic acid and tryptophan, process for their production and therapeutic applications
SK20398A3 (en) Novel opioid peptides
US4337247A (en) Tetrapeptidesemicarbazide derivatives and their production and use
CA1156219A (en) Analgesic compounds
CA1267996A (en) Peptides which are active on the central nervous system and have an action on the cholinergic system
JPS5973574A (en) Cyclic dipeptide
EP0081838B1 (en) Cyclohexyl and phenyl substituted enkephalins
WO1980000789A1 (en) Antibacterial peptide
EP0077274B1 (en) 3-amino-2-hydroxy-4-phenylbutanoic acid derivatives and pharmaceutical composition containing the same
EP0516851B1 (en) Physiologically active substance well capable of permeating biomembrane
GB1584968A (en) Pentapeptides processes for their preparation and pharmaceutical compositions containing them
JPS6054400A (en) Tetrapeptide
EP0755942B1 (en) N-amidino dermorphin derivative
US6051685A (en) Peptide derivatives
US4474767A (en) Peptide and pseudopeptide derivatives
US3801561A (en) Derivatives of salmon thyrocalcitonin
US4001199A (en) Novel polypeptides useful for treating diabetes and hypercholesteremia
US4579841A (en) Dipeptide derivatives having opiate activity
CA2405724C (en) Substance p analogs for the treatment of cancer
US4339440A (en) Enkephalin analogs and a process for the preparation thereof
EP0005248B1 (en) Tetrapeptidehydrazide derivatives and process for their preparation
JPS6136298A (en) Tripeptideamides
JPH038360B2 (en)
US3417072A (en) Intermediates in the synthesis of secretin
JP3554399B2 (en) Peptide derivatives