JPS6054286B2 - immune enhancer - Google Patents

immune enhancer

Info

Publication number
JPS6054286B2
JPS6054286B2 JP12053979A JP12053979A JPS6054286B2 JP S6054286 B2 JPS6054286 B2 JP S6054286B2 JP 12053979 A JP12053979 A JP 12053979A JP 12053979 A JP12053979 A JP 12053979A JP S6054286 B2 JPS6054286 B2 JP S6054286B2
Authority
JP
Japan
Prior art keywords
bacteria
effect
acid
drug
mice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12053979A
Other languages
Japanese (ja)
Other versions
JPS5643210A (en
Inventor
江澤 林
篤子 渡辺
泰子 島根
摩利子 桑山
江津子 藤岡
知栄子 内田
友子 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12053979A priority Critical patent/JPS6054286B2/en
Publication of JPS5643210A publication Critical patent/JPS5643210A/en
Publication of JPS6054286B2 publication Critical patent/JPS6054286B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、免疫増強剤、殊に特定のポリヒドロキシア
ントラキノンガンホン酸誘導体であるラツカイン酸、カ
ルミン酸又はゲルメス酸を有効成分とする免疫増強剤に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an immune enhancer, particularly an immune enhancer containing a specific polyhydroxyanthraquinone gunphonic acid derivative such as latukaic acid, carminic acid or germesic acid as an active ingredient.

感染症その他の疾病に対し、普遍的(非特異的)に免
疫性を高めることにより、当該疾病に対する抵抗力を高
めうるような薬剤の出現は、人の保健、ならびに病気の
治療のため極めて望ましいことである。
The emergence of drugs that can universally (non-specifically) increase immunity against infectious diseases and other diseases, thereby increasing resistance to those diseases, is extremely desirable for human health and disease treatment. That's true.

生体の免疫力が低下すれば、当然感染その他の疾病に対
する抵抗力が低下し、本来の病気そのものより、二次感
染や二次疾病の誘発により回復が遅延し又は死の転機を
とるようになる。 薬剤による免疫力低下の典型的な例
は、癌患者に対する大部分の化学療法剤や抗生物質制癌
剤の投与である。
If the body's immune system is weakened, the body's resistance to infections and other diseases will naturally decrease, and recovery will be delayed or death will occur due to the induction of secondary infections and diseases rather than the original illness itself. . A typical example of drug-induced immunity reduction is the administration of most chemotherapy drugs and antibiotic anticancer drugs to cancer patients.

これらの薬剤は一般に強い免疫抑制作用を持つため、患
者は屡々本来の癌以外の病因 で死亡する。かつ、従来
の制癌剤は一般に極めて毒性が強いため、より低毒性の
制癌剤の開発が嘱望されている。 近年、少数ながら癌
の自然治癒例が報告されるようになり、その原因として
、癌細胞に対する生体の免疫力の増強が考えられている
Because these drugs generally have strong immunosuppressive effects, patients often die from causes other than the original cancer. Furthermore, since conventional anticancer drugs are generally extremely toxic, there is a strong desire to develop anticancer drugs with lower toxicity. In recent years, a small number of cases of spontaneous cure of cancer have been reported, and the reason for this is thought to be enhancement of the immune system of the body against cancer cells.

そこで、生体の免疫力の増強により癌細胞を制圧しよう
とする免疫制癌剤が考えられるようになり、この線に沿
つて、例えばサルノコシカケの多糖類(PSK)や溶血
連鎖状菌製剤のピシバニル(Picibanil8)が
既に製品化されており、また新しい研究として、低分子
化合物のレバミゾール(Levamisole8)やベ
スタチン(Bestatin8)が開発途上にある。
免疫増強作用を有する物質の発見は、また薬剤耐性防止
剤としての応用を示唆する。
Therefore, immuno-anticancer drugs that try to control cancer cells by increasing the body's immune system have been considered, and along this line, for example, polysaccharide of Sarunokoshike mushroom (PSK) and Picibanil (Picibanil8), a hemolytic streptococcus drug, have been developed. have already been commercialized, and as new research, the low molecular weight compounds Levamisole (Levamisole 8) and Bestatin (Bestatin 8) are currently under development.
The discovery of substances with immunoenhancing effects also suggests applications as anti-drug resistance agents.

即ち、スルホンアミド剤及びペニシリンやストレプトマ
イシンなどの発見を契機とする化学療法の進歩により、
今日微生物感染症に対する治療手段の発展に”は目覚ま
しいものがあるが、反面、薬剤耐性菌の衆現が重大な問
題となつて来ている。薬剤耐性菌の発現は、治療を困難
にすると共に残存耐性菌による新感染の機会を多くする
から、耐性菌の発生を抑制する手段の開発も今日渇望さ
れている重要問題の1つである。この耐性菌発生の機作
としては、抗菌剤の使用による自然突然変異と選択の他
に、多剤耐性因子(Rプラスミド)の感染伝達、DNA
による形質転換及びバクテリオファージによる形質導入
などが考えられている。
That is, due to advances in chemotherapy triggered by the discovery of sulfonamide drugs, penicillin, and streptomycin,
Today, the development of treatment methods for microbial infections is remarkable, but on the other hand, the emergence of drug-resistant bacteria has become a serious problem.The development of drug-resistant bacteria makes treatment difficult and The development of means to suppress the emergence of resistant bacteria is one of the most important issues today, as it increases the chances of new infections caused by remaining resistant bacteria. In addition to natural mutation and selection due to use, infection and transmission of multidrug resistance factors (R plasmids), DNA
Transformation using bacteriophage and transduction using bacteriophage are considered.

これらの諸原因の中、最も頻度の高いのは自然突然変異
と選択によるもので、R因子による場合がそれに次ぐの
であろう。前者の自然突然変異により生体内に発生した
耐性菌、抗菌剤の投与を続けても生き残るので、若し生
体の免疫防禦機構(例えは喰菌作用及び細胞免疫)が正
常(増強)に作用すれば、結果的に絶滅されることにな
るであろう。以上の如く、免疫増強効果は、制癌効果や
薬剤耐性防止効果は互に宿主を介して生体の本来持つて
いる防禦機構(例えば喰菌作用又は喰異細胞作用)と関
連して、その活性化により結果的には共通の治療目的に
役立つであろうと推定される。
Among these causes, the most frequent ones are natural mutation and selection, followed by the R factor. The former type of resistant bacteria that has developed in the body due to natural mutations survives even if antibiotics are continuously administered, so if the body's immune defense mechanisms (e.g., glucocorticoid action and cellular immunity) function normally (enhancement). If so, they will probably become extinct as a result. As mentioned above, the immune-enhancing effect, anti-cancer effect, and anti-drug resistance effect are mutually related to the body's inherent defense mechanism (e.g., glucophagic action or anti-cytophagic action) through the host. It is assumed that this will eventually serve a common therapeutic purpose.

以上の理念に基き、本発明者は免疫増強剤として卓効を
有するならは免疫制癌剤や薬剤耐性防止剤としても有用
なものがあるてあろうと推測し、アントラキノン系列化
合物の他多数の化合物について実験を行つた結果、ここ
に1・4−ジヒドローキシーアントラキノンカルボン酸
誘導体に属するラツカイン酸、カルミン酸はケルメス酸
がほぼ所期の目的に合致するものであることを見出した
。因みに、免疫増強効果の有無、強弱は上の仮定に従つ
てスクリーニングの鍵となるものであるが、発明者はこ
のため、今日も治療が最も困難とされている緑濃菌と、
細胞内へ菌が侵入するため抗生作用が奏効しにくいとさ
れる腸炎菌(グラム陰性杵菌)と、マクロファージに抵
抗する特殊なブドウ状球菌の株であるスミスデイフユー
ズ(Smlthdiffuse)株(グラム陽性球菌)
と多剤耐性大腸菌とを指標として取り上げた。本発明の
要旨は、ラツカイン酸、カルミン酸はケルメス酸を免疫
増強剤として利用することである。
Based on the above philosophy, the present inventor speculated that if it is highly effective as an immune enhancer, it may also be useful as an immunosuppressive agent or anti-drug resistance agent, and conducted experiments on many other compounds in addition to anthraquinone series compounds. As a result, it was found that kermesic acid, which belongs to 1,4-dihydroxyanthraquinonecarboxylic acid derivatives such as latsukaic acid and carminic acid, almost satisfies the intended purpose. Incidentally, the presence or absence and strength of immune-enhancing effects are the keys to screening based on the above assumptions, and for this reason, the inventor decided to treat Bacillus aeruginosa, which is still considered the most difficult to treat today.
Enteritidis (Gram-negative rodent bacteria), which is said to be difficult to respond to antibiotics because the bacteria invade the cells, and Smlthdiffuse strain (Gram-negative), a special strain of Staphylococcus that resists macrophages. positive cocci)
and multidrug-resistant E. coli were taken up as indicators. The gist of the present invention is to utilize latsukaic acid, carminic acid, and kermesic acid as immune enhancers.

以上の各化学物質において、ラツカイン酸(ラツカ酸;
Laccaicacid)はラツクカイガラムシ(Ta
chardialacca..Kerr)の分泌する樹
脂成分の総称である。
In each of the above chemical substances, latsukaic acid (latsukaic acid;
Laccaicacid) is a Japanese scale insect (Ta
chardialacca. .. This is a general term for the resin components secreted by Kerr.

その主要な成分は、ラツカイン酸A(又はA1)で1●
3・4・6ーテトラヒドロキシー2−〔2″−ヒドロキ
シー5−(β−アセトアミドエチル)−フエニルーアン
トラキノンー7・8−ジカルボン酸(下式参照)である
が、この他に2一位フェニル基の5″一位の末端置換基
の異なるラツカイン酸B及びC並びにラツカイン酸D(
1・3・6−トリヒドロキシー8−メルアントラキノン
ー7−カルボン酸)も含まれている。またカルミン酸(
又はカルミン)(Carminicacid)は、中央
アメリカ及び南アメリカに産するウチワサボテン類に寄
生するエンジムシの一種、COccuscactiL.
の雌の虫体に含まれ、7−α−D−グルコピラノシルー
3・5・6・8−テトラ・ヒドロキシー1−メチルー2
−アントラキノンカルボン酸(下式参照)の構造を持つ
。さらにケルメス酸(Kermesicacid)は南
西ヨーロッパに産するケルメスカシの枝に寄生するエン
ジムシの一種、KermOcOccusillcesL
.の雌の虫体中に含まれ、1●3●4●6ーテトラヒド
ロキシー2−メチルカボニルー8−メチルアントラキノ
ンー5−カルボン酸(下式参照)の構造を持つ。
Its main component is latsukaic acid A (or A1).
3,4,6-tetrahydroxy-2-[2″-hydroxy-5-(β-acetamidoethyl)-phenyl-anthraquinone-7,8-dicarboxylic acid (see the formula below), but in addition to this, phenyl at the 21-position Lacukaic acids B and C and laccaic acid D (with different terminal substituents at the 5″1 position of the group)
1,3,6-trihydroxy-8-meranthraquinone-7-carboxylic acid). Also, carminic acid (
Carminicacid is a type of insect that parasitizes prickly pear cacti, which is found in Central and South America.
7-α-D-glucopyranosyl-3,5,6,8-tetrahydroxy-1-methyl-2
-Has the structure of anthraquinone carboxylic acid (see formula below). Furthermore, Kermesic acid (Kermesic acid) is a type of insect that parasitizes the branches of the Kermes oak tree that grows in southwestern Europe.
.. It is contained in the body of female worms and has the structure of 1●3●4●6-tetrahydroxy-2-methylcarbonyl-8-methylanthraquinone-5-carboxylic acid (see the formula below).

(但し2一位のケト基は存在せずとの説がある。)以上
の各アントラキノン誘導体は全部天然物であつて、就中
赤色系天然食用色素として古くから利用されている。
(However, there is a theory that the keto group at the 21-position does not exist.) All of the above anthraquinone derivatives are natural products, and have been used since ancient times as red natural food pigments.

従つて、これらの化合物は下表の示す如く無毒乃至際め
て低毒性であつて、それ4培養法 緑膿菌、腸炎菌及び
多剤耐性大腸菌は普通ブイヨンに種菌を接種し、3rC
で2m間静置培養する。
Therefore, as shown in the table below, these compounds are non-toxic or have extremely low toxicity.
Incubate for 2 m.

r事ELjζ反LlOA.マヤ」ンら 故、薬剤として非常に安全性が高いという特色がある。r thingELjζantiLlOA. Mayan et al. Therefore, it has the characteristic of being extremely safe as a drug.

以下の実験が示すように、これらの化合物は、自体免疫
増強作用及び制癌作用を示し、一般構成物質、ワクチン
類及び制癌剤とも併用効果を奏する。さらに多剤耐性菌
の侵襲を防衛する作用を有するところから、微生物の薬
剤耐性を抑制する作用をも有すべきことが推定されてい
るが、このような多岐に亘る薬理作用の実体がどうであ
れ、自体全く抗菌性乃至静菌性を有しない物質によるか
かる薬理効果の発見は、類例を見ない新規な知見である
。以下発明の前提となつた実験事実について記載する。
A実験方法1供試菌種(株) 緑膿菌70P■、腸炎菌NO.ll.ブドウ状球菌S
mithdlffuse及び多剤耐性大腸菌Mあ株2供
試動物 マウス雄、平均体重20y,.ddY系3接種
菌量及び毒力 ブドウ状球菌は脳心臓浸出液(BrainHeart
InfuslOn)に接種して振盪培養(37℃、2(
転)間)する。
As shown in the experiments below, these compounds exhibit immune-enhancing and anticancer effects by themselves, and also exhibit effects in combination with general constituents, vaccines, and anticancer agents. Furthermore, since it has the effect of defending against the invasion of multidrug-resistant bacteria, it is presumed that it should also have the effect of suppressing drug resistance in microorganisms, but the actual nature of these wide-ranging pharmacological actions is unclear. The discovery of such a pharmacological effect by a substance that itself has no antibacterial or bacteriostatic properties is an unprecedented and novel finding. The experimental facts that are the premise of the invention will be described below.
A Experimental method 1 Test bacterial species: Pseudomonas aeruginosa 70P■, Salmonella enteritidis NO. ll. Staphylococcus S
mithdlffuse and multidrug-resistant E. coli M strain 2 test animals Male mice, average weight 20 y. ddY system 3 inoculum amount and virulence Staphylococcus is
InfuslOn) was inoculated and cultured with shaking (37℃, 2 (
(transition) between).

(種菌は血液寒天に培養したものを使用) r+C,l
−1邊;1101−+−0A5薬剤(検体)及び投与法 検体の中、水溶性のものは生理食塩水に必要濃度に溶
解して皮下注射及び経口投与。
(Use the seed cultured on blood agar) r+C,l
-1 side; 1101-+-0A5 drug (specimen) and administration method Among the specimens, water-soluble ones are dissolved in physiological saline to the required concentration and administered by subcutaneous injection or orally.

水にやや離溶ないし不溶性のものは、1%CMC溶液中
へ同様に懸濁させて皮下注射又は経口投与。
For those that are slightly dissolvable or insoluble in water, suspend them in a 1% CMC solution and administer by subcutaneous injection or orally.

感染接種の5日前、3日前及び1日前(24時間前)
に各検体を皮下注射又は経口投与し、その2$f間後に
夫々の菌種(株)の接種菌量を0.2m1の生理食塩水
中に懸濁して腹腔内に接種する。
5 days before, 3 days before and 1 day before (24 hours before) vaccination
Each specimen is subcutaneously injected or orally administered, and 2 hours later, the inoculum of each strain is suspended in 0.2 ml of physiological saline and inoculated intraperitoneally.

対照動物には薬剤の代りに同量の生理食塩水を皮下注
射し、以下同様に試験菌液を腹腔内に接種する。 実験
の都度、毒力を調べるため2倍、4倍、8倍、1皓及び
32倍に稀釈した菌量(即ち112量、114量、11
8量、1116量及び1132量)を対照として接種す
る。
Control animals are injected subcutaneously with the same amount of physiological saline instead of the drug, and then similarly inoculated intraperitoneally with the test bacterial solution. For each experiment, the amount of bacteria diluted 2 times, 4 times, 8 times, 1 time, and 32 times (i.e., 112 amounts, 114 amounts, 11 times) was tested for virulence.
8, 1116 and 1132) were inoculated as controls.

さらに、各感染実験毎にその際の1m1当り生菌数及び
接種菌数を検定する。6効果の判定法 検体投与マウス群及び対照マウス群の生残率により効
果を判定する。
Furthermore, for each infection experiment, the number of viable bacteria and the number of inoculated bacteria per 1 m1 are verified. 6. Method for determining efficacy The efficacy is determined by the survival rate of the sample-administered mouse group and the control mouse group.

判定の時期は、緑膿菌、ブドウ状球菌及び多剤耐性大腸
菌の場合は接種1週間後、腸炎菌の場合は同じく22週
間後である。各群、各段階のマウスは5〜10匹とし、
数回以上実験を繰り返し、その再現性を確認する。7生
残マウスの体内における菌の消長 死亡及び生残マウスを無菌的に解剖し、そ5B実験成績
I惑染防禦効果(免疫増強効果)以下、薬剤の名称を下
記のように略記す る。
The timing of determination is one week after inoculation in the case of Pseudomonas aeruginosa, Staphylococcus and multidrug-resistant E. coli, and 22 weeks after inoculation in the case of Salmonella Enteritidis. There were 5 to 10 mice in each group and at each stage.
Repeat the experiment several times to confirm its reproducibility. 7. Evolution of bacteria in the bodies of surviving mice.Death and surviving mice were dissected aseptically.

(1)緑膿菌惑染及び防禦効果 の心臓、肝臓及び牌臓なお必要に応じ腎臓を無菌的に全
摘出して各臓器毎にホモジナイザーに入れ、これに減菌
ブイヨン2m1を加えて磨砕して得たホモジネートを1
@づつブイヨンで稀め、その原液ならびにその10−1
、10−2、10−3、10−4及び10−5各稀釈液
から0.1m1づつ採取し、これらを緑膿菌、腸菌及び
多剤耐性大腸菌については普通寒天培地及び変法ドリガ
ルスキー培地に、ブドウ状球菌では血液寒天培地及びブ
レインハートインフエジヨン寒天培地又は普通寒天培地
に夫々塗布してコンラージ棒でよく混ぜ、全面に拡げる
(本操作ももちろん無菌的に行う。
(1) Heart, liver, and spleen for protection against Pseudomonas aeruginosa infection. If necessary, remove the entire kidney aseptically and place each organ in a homogenizer. Add 2 ml of sterile broth and grind. The homogenate obtained by
@ Dilute with bouillon, its undiluted solution and Part 10-1
, 10-2, 10-3, 10-4, and 10-5. Collect 0.1 ml of each diluted solution and place them on ordinary agar medium or modified Drigalsky for Pseudomonas aeruginosa, enterobacteria, and multidrug-resistant E. coli. For staphylococci, apply to blood agar medium, brain heart infusion agar medium, or ordinary agar medium, mix well with a Conlage rod, and spread over the entire surface (this operation is also performed aseptically, of course).

)。後、各培地を24〜招時間、3TCの恒温器中で培
養してからコロニー数を数え、各臓器当りの菌数を算出
する。制癌効果及び制癌剤との併用効果 国立がんセンターから入手した肉腫180A移殖マウス
の腹水を無菌的に採取し、その0.05m1をICR/
JCLl雄、5週令のマウス鼠跳部皮下に移殖し、固形
癌を形成させる。
). After that, each medium is cultured in a 3TC incubator for 24 to 30 hours, and the number of colonies is counted to calculate the number of bacteria per organ. Anticancer effect and combination effect with anticancer drugs Ascites from mice transplanted with sarcoma 180A obtained from the National Cancer Center was collected aseptically, and 0.05 ml of it was injected into ICR/
JCL1 is transplanted subcutaneously into the inguinal region of a 5-week-old male mouse to form a solid tumor.

移殖2峙間後に各薬剤を1m9、0.1m9及び0.0
1m9づつ(但しレバミゾールの場合は毒性が強いので
0.1m9及び0.01m9づつ)毎日1回腹腔内に注
射する。
1 m9, 0.1 m9 and 0.0 m9 of each drug after 2 hours of transplantation
Inject 1 m9 each (however, levamisole is highly toxic, so 0.1 m9 and 0.01 m9 each) intraperitoneally once a day.

移殖30日後に固形癌を全部取り出して、その大きさ及
び重量を計り、各群、各投与群の個々のマウスの平均値
と対照のそれとを比較し、下式により阻止率を求める。
30 days after transplantation, all solid tumors are taken out, their size and weight are measured, and the average values of individual mice in each group and each administration group are compared with that of the control, and the inhibition rate is calculated using the following formula.

(1)MLDは最小致死量を意味する。故に−2ML.
Dは最少致死量の2倍量の意である(以下同じ)。(2
)腸炎菌感染防禦効果 (3)ブドウ状球菌感染防禦効果 (4)多剤耐性大腸菌感染防禦効果 以上の実験結果が示すように、カルミン酸(又はカルミ
ン)、ラツカイン酸及びケルメス酸は緑膿菌、腸炎菌、
ブドウ状球菌及び多剤耐性大腸菌のいずれの惑染に対し
ても優れた感染防禦効果を示しており、その成績は公知
の代表的免疫増強性薬剤であるレバミゾールに比し卓越
している。
(1) MLD means minimum lethal dose. Therefore -2ML.
D means twice the minimum lethal dose (the same applies below). (2
) Effect on preventing infection with Salmonella Enteritidis (3) Effect on preventing infection with Staphylococcus (4) Effect on preventing infection with multidrug-resistant Escherichia coli As shown by the above experimental results, carminic acid (or carmine), latukaic acid, and kermesic acid are effective against Pseudomonas aeruginosa. , S. Enteritidis ,
It shows excellent infection prevention effects against both staphylococcus and multidrug-resistant E. coli infections, and its results are superior to that of levamisole, a known representative immunostimulating drug.

そして生き残つたマウスの挙動は健康マウスと全く差異
が認められない。発明者が供試した非例示の多数のアン
トキラノン系化合物を含めて、カルミン酸(又はカルミ
ン)以下3種の薬剤が優れた効果を示すが、感染量が増
加すると、ラツカイン酸の方力幼ルミン酸(又はカルミ
ン)に比し、より優れた効果を示す場合がある。
The behavior of the surviving mice showed no difference at all from healthy mice. Including a large number of non-example anthochyranone compounds tested by the inventor, three drugs including carminic acid (or carmine) show excellent effects; It may show better effects than acids (or carmine).

ケルメス酸の効果は、概して前2者に劣るけれども、そ
れでもレバミゾールに比し優れており、この傾向は本薬
剤を経口投与したときでも同様である。接種量の多少を
問わず、投与薬剤量の1多い方が効果が大きく、1W1
9投与(体重Kg当り約50mg)でも全く副作用は認
められない。しかし0.01m9(体重K9当り約0.
5m9)の微量投与でも、0.1m9投与群に劣らぬ成
績を示す場合のあることが注目される。 1
なお、以下の実験では、すべてカルミン酸のデータを示
したが、カルミンも全く同様の効果を示すので、カルミ
ンを含めてカルミン酸として例示した。
Although the efficacy of kermesic acid is generally inferior to the first two, it is still superior to levamisole, and this trend is the same even when the drug is administered orally. Regardless of the amount of inoculation, the effect is greater if the amount of drug administered is 1 more, 1W1
No side effects were observed even after 9 doses (approximately 50 mg/kg body weight). However, 0.01 m9 (approximately 0.0 m9 per body weight K9)
It is noteworthy that even a microdose administration of 5m9) may show results comparable to those of the 0.1m9 administration group. 1
In the following experiments, all data are shown for carminic acid, but since carmine also shows exactly the same effect, carmine was included and exemplified as carminic acid.

カルミンの場合はや)難溶であるので、必要に応じて1
%CMCに懸2濁して使用した。■ 感染防禦生残マウ
スの生体内の菌の消長並びに薬剤耐性防止効果(1)緑
膿菌惑染防禦生残マウスの生体内の菌の消長惑染防禦実
験において、各1〜1Pi2.致死量接種群及び1〜0
.01m9各投与群における、7日後生き残つたマウス
の各臓器(心、肝、牌)内の生菌数を検査した。
In the case of carmine, it is hardly soluble, so if necessary,
It was suspended in %CMC and used. ■ Infection prevention in vivo bacteria evolution and drug resistance prevention effect in surviving mice (1) Pseudomonas aeruginosa infection prevention in vivo bacteria infection prevention experiment, 1 to 1 Pi2. Lethal dose inoculation group and 1 to 0
.. In each of the 01m9 administration groups, the number of viable bacteria in each organ (heart, liver, tiles) of mice that survived 7 days was examined.

各致死量及び各投与量ともほ〜同じ傾向を示したので、
10匹分についての成績を第1図3(に示す。
Each lethal dose and each dose showed similar trends, so
The results for 10 animals are shown in Figure 1 (3).

図に示されるように、7日で70%が全く無菌の状態と
なり、菌が生存してもいずれも101/V以下てある。
As shown in the figure, 70% of the cells became completely sterile after 7 days, and even if the bacteria survived, they were all below 101/V.

それらの平均生存菌数は10!/y前後て、対照死亡の
マウス3Sの107〜1CP/yと比べて、平均生存菌
数は10−5〜10−6以下であることが実証された。
即ち、本実験により、CA又はLAにより、生体の防禦
機構が活性化され、増強した結果、生き残りマウスの7
0%が7日で、4C100%が14日て無菌となる。
The average number of viable bacteria is 10! It was demonstrated that the average number of viable bacteria was less than 10-5 to 10-6 around 10-1 CP/y, compared to 107-1 CP/y for control mouse 3S that died.
In other words, in this experiment, CA or LA activated and strengthened the body's defense mechanism, and as a result, 7
0% becomes sterile in 7 days and 100% 4C becomes sterile in 14 days.

そして、仮に残存する菌があつても極めて少数であるた
め、7日以後に結果的に絶滅されるものと推定される。
Even if there are any remaining bacteria, it is estimated that they will be extinct after 7 days, as they will be in extremely small numbers.

(2)腸炎菌感染防禦生残マウスの生体内の菌の消長腸
炎菌感染の場合には、第2図に示す如く、14日で60
%が全く無菌となる。
(2) Prevention of Infection with Salmonella Enteritidis In the case of Infection with Salmonella enteritidis, 60%
% is completely sterile.

残りの40%には、なお少数であるが、1σ/y前後の
生菌が各臓器に生存する。CA,.LAとも同じ傾向を
示し、各臓器中、心臓に最も少なく肝、牌に比較的多く
生存する。
In the remaining 40%, although still a small number, viable bacteria of around 1σ/y survive in each organ. CA,. The same tendency is observed with LA, with the least amount surviving in the heart and relatively more in the liver and tiles.

(3)ブドウ球菌感染防禦生残マウスの生体内の菌の消
長ブドウ球菌の場合は、第3図に示す如 く、40%は7日で全く無菌となるが、残りの60%の
マウスでは1σ/y程度の菌が生体内に残存する程度で
ある。
(3) Prevention of staphylococcal infection In the case of staphylococcal bacteria, as shown in Figure 3, 40% of the mice become completely sterile within 7 days, but the remaining 60% of the mice are 1σ /y bacteria remain in the living body.

本実験に用いたSmithdiffuse株は莢膜を有
し、マクロファージに対し抵抗性が強く、このためマウ
スを1Cf3程度で致死させうるが、SmithcOm
pact株及び通常の株では、一般に、1Cf)/マウ
スでも致死させえない菌株が多い。
The Smithdiffuse strain used in this experiment has a capsule and is highly resistant to macrophages, so it can kill mice with about 1 Cf3, but SmithcO
Among pact strains and normal strains, there are generally many strains that cannot be killed even with 1 Cf)/mouse.

本実験において、40%が7日で無菌化 し、60%が僅かに1σ/y程度の菌しか残存しないこ
とは、CA又はLAが、生体内でマクロファージなどの
防禦機構を顕著に増強したことを示している(対照死亡
マウスの菌数は107〜1018/y)。
In this experiment, 40% became sterile in 7 days and 60% had only about 1σ/y bacteria remaining, indicating that CA or LA significantly enhanced defense mechanisms such as macrophages in vivo. (The number of bacteria in control dead mice is 107-1018/y).

(4) 多剤耐性大腸菌惑染防禦生残マウスの生体内の
消長本実験に用いた多剤耐性大腸菌は、アム ピシリン、セフアロチン、セフアロジン、カナマイシン
、ストレプトマイシン、テトラサイクリン及びクルラム
フエニコールの7剤に対し高度耐性の菌株であつて、こ
れらの薬剤は本大腸菌の感染に対し臨床的に無効なもの
である。
(4) Multidrug-resistant Escherichia coli infection prevention In vivo fate of surviving mice The multidrug-resistant Escherichia coli used in this experiment was resistant to seven drugs: ampicillin, cephalothin, cephalozin, kanamycin, streptomycin, tetracycline, and curramphenicol. As a highly resistant strain, these drugs are clinically ineffective against this E. coli infection.

多剤耐性大腸菌の場合、第4図が示す如 く、緑膿菌の場合と殆んど同じ傾向で、80%が7日で
無菌となり、僅かに20%に生菌が残つているが、その
実数は1σ/y程度と少ない。
In the case of multidrug-resistant E. coli, as shown in Figure 4, the trend is almost the same as that of Pseudomonas aeruginosa, with 80% becoming sterile within 7 days and only 20% remaining viable bacteria. The real number is as small as about 1σ/y.

斃死マウス(対照)においてはやはり107〜1σ/y
である。
In dead mice (control), it was still 107~1σ/y.
It is.

即ち、死亡するマウスの体内には、菌は増殖するが、薬
剤(CA.LAなど)の投与により、生残つたマウスで
は菌は減少して80%が全く無菌となり、7日後に生体
内に残存する菌は僅かに1σ/y程度である。
In other words, bacteria proliferate in the bodies of mice that die, but by administering drugs (CA, LA, etc.) in mice that survive, the bacteria decrease and 80% become completely sterile, and after 7 days they are no longer present in the body. The remaining bacteria is only about 1σ/y.

本実験により、CA又はLAは惑染症における化学療
法剤、抗生物質の治療効果を相乗的に増強させるのみな
らず、生体内にお5いて変異して耐性となつた菌、もま
た本菌の如き多剤耐性菌も、本剤の単独投与により、増
強した生体の防衛機構により、普遍的かつ非特異的に絶
滅されることが示唆される。
This experiment showed that CA or LA not only synergistically enhances the therapeutic effects of chemotherapeutic agents and antibiotics in infectious diseases, but also inhibits this bacterium that has mutated and become resistant in vivo. This suggests that multi-drug resistant bacteria such as Bacteria can be universally and non-specifically exterminated by the enhanced defense mechanism of the body by the single administration of this drug.

76■ ワクチ
ンとの併用による免疫増強効果腸炎菌は一般に生菌ワク
チンでないと免疫効果が少ないとされている。
76■ Immunity-enhancing effect when used in combination with a vaccine It is generally said that the immune effect of Salmonella Enteritidis is low unless it is a live bacterial vaccine.

そこで、免疫効果が少ないとされている死菌ワクチンの
免疫効果がCA..LAとの併用により、どの程度増1
.強されるかを実験した。本実験において、攻撃菌量は
8倍及び托倍致死量を用いた。
Therefore, the immunological effect of killed bacteria vaccine, which is said to have little immunological effect, is due to CA. .. How much does it increase when used in combination with LA?
.. I experimented to see if it would make me stronger. In this experiment, the amount of attacking bacteria was 8 times and the lethal dose.

(1)死菌ワクチンの免疫効果 100死C30分加熱して殺した腸炎菌NO.ll2l
の菌体とマウス当り1(PllCfllO3個づつ0.
2m1の生理食塩水に懸濁し、攻撃日のn日前、18日
前及び14日前に皮下注射しておいてから、夫々同菌の
8倍致死量及び1皓致死量を腹腔内に接種して、2週間
その生2死を観察する。
(1) Immune effect of killed bacteria vaccine 100% Enteritidis No. 1 killed by heating for 30 minutes at C. ll2l
of bacterial cells and 1 per mouse (3 PllCfllO 0.
Suspended in 2 ml of physiological saline and subcutaneously injected n days, 18 days, and 14 days before the challenge date, and then intraperitoneally inoculated with 8 times the lethal dose and 1 times the lethal dose of the same bacteria, respectively. Observe their life and death for two weeks.

第5図及び第6図に示される如く、 1CP/マウス接種群においては、8倍致死量の攻撃に
対し、25%、1皓致死量の攻撃に対して10%生残す
るのみであつた。
As shown in Figures 5 and 6, in the group inoculated with 1 CP/mouse, only 25% survived the challenge with an 8-fold lethal dose, and only 10% survived the challenge with a 1-fold lethal dose. .

ワク3チン接種量10i/マウス及び1CP/マウスで
は、8倍及び16@致死量攻撃のいずれでも生残マウス
は認められなかつた。(2)CべLAとの併用による免
疫増強効果上述の如く前処置して死菌ワクチンを皮3下
注射したマウスの各群に、CA,.LAを攻撃日の5日
前、3日前、及び1日前(24J1!f間前)に夫々1
Tn9、0.1Tn9及び0.01mgづつを皮下注射
し、これらの群に、8倍致死量及び16倍致死量の同菌
を0.2m1腹腔内に接1種攻撃後、2週間その生死を
観察した。
At vaccine doses of 10i/mouse and 1CP/mouse, no surviving mice were observed in either the 8x or 16@lethal challenge. (2) Immune-enhancing effect of combined use with Cbe-LA Each group of mice pretreated as described above and injected subcutaneously with a killed vaccine were given CA,... 1, respectively, 5 days before, 3 days before, and 1 day before (24J1!f before) the LA attack date.
Tn9, 0.1 Tn9, and 0.01 mg each were injected subcutaneously, and these groups were challenged intraperitoneally with 0.2 ml of the same bacteria at 8 times the lethal dose and 16 times the lethal dose, and then their survival was determined for 2 weeks. Observed.

(a)CAとの併用効果 1σ/マウスの死菌ワクチンとCAとの併用では、1
m9、0.1m9及び0.01m9とも8倍致死量では
100%の生残率を示した。
(a) Effect of combination with CA When using 1σ/mouse killed vaccine in combination with CA,
m9, 0.1m9 and 0.01m9 all showed a 100% survival rate at an 8 times lethal dose.

1皓致死量の攻撃では、0.01m9投与群でも90%
の救助率であつた。
When challenged with a lethal dose of 1 g, 90% even in the 0.01 m9 dose group.
The rescue rate was

101/マウスの死菌ワクチンとCAとの併用では、
8倍致死量攻撃に対し、1即、0.1m9とも90%、
0.01m9でも70%の救助率を示した。
101/When used in combination with killed mouse vaccine and CA,
Against 8x lethal attack, 90% for 1 instant and 0.1m9,
Even at 0.01m9, the rescue rate was 70%.

l皓致死量攻撃に対しては夫々80%、85%及び、7
0%の救助率を示している。
80%, 85%, and 7% for lethal attack, respectively.
The rescue rate is 0%.

1σ/マウスの死菌ワク チンにおいても、10i/マウスよりや)劣るが、なお
、各投与群とも80〜50%の救助率を示している。
The 1σ/mouse killed vaccine also showed a rescue rate of 80 to 50% in each administration group, although it was inferior to 10i/mouse.

本実験成績は免疫効果の強くない死菌 又は菌種でもCA及び後述のLAとの併用により、免疫
効果が著しく増強され、か つ、少量の菌数により、よく免疫効果が 発揮されることを示している。
The results of this experiment show that even with dead bacteria or bacterial species that do not have a strong immune effect, the combined use of CA and LA (described below) can significantly enhance the immune effect, and that even with a small number of bacteria, the immune effect is well exerted. ing.

(b)LAとの併用効果 LAとの併用によるワクチンの免疫効 果の上昇は、第6図に示す如くCAの場 合と殆んど同じである。(b) Effect of combination with LA Immunological efficacy of vaccine when used in combination with LA As shown in Figure 6, the increase in the result is due to the CA field. It is almost the same as the case.

なお、以上の実験から、本発明に係る 薬剤は腸炎菌ワクチンのみならず、その 他のクチン類、例えばポリオワクチン、 麻疹ワクチン、日本脳炎ワクチン、イン フルエンザワクチン、痘苗、百日咳ワク チンなどとも優れた併用効果が期待され ると共に、他面、それらの使用量を減少 させ、これにより、ワクチン麻痺などの 副作用の発生を防止できるものと推定さ れるが、本発明はさらに別個の知見か ら、本薬剤が単独でもインフルエンザ等 のウィルス病に対し有効であろうとの示 唆を得ている。 In addition, from the above experiments, it was found that the present invention Drugs include not only Enteritidis vaccine but also Other cutins, such as polio vaccine, Measles vaccine, Japanese encephalitis vaccine, Fluenza vaccine, smallpox seedlings, whooping cough vaccine It is expected to have excellent combination effects with other drugs such as chin. while also reducing their usage. This will prevent vaccine paralysis, etc. It is estimated that it can prevent the occurrence of side effects. However, the present invention is based on further separate findings. However, even if this drug is used alone, it may cause influenza, etc. It has been shown that it may be effective against viral diseases such as I'm getting hints.

化学療法剤(抗生物質)との併用効果 本発明に係る薬剤は、さらに化学療法剤 (抗生物質)との併用により前者の薬効を相乗的に増大
させる作用を有し、このことから、本薬剤は化学療法剤
、抗生物質等の投与でも治効が現われにくい難治性、慢
性疾患もしくは免疫力の低下している場合に主剤との併
用により優れた治効を示す可能性を持つている。
Effect of combined use with chemotherapeutic agents (antibiotics) The drug according to the present invention has the effect of synergistically increasing the efficacy of the former when used in combination with chemotherapeutic agents (antibiotics). has the potential to show excellent therapeutic efficacy when used in combination with the main drug in cases of refractory, chronic diseases, or weakened immune systems that are difficult to cure even with the administration of chemotherapeutic agents, antibiotics, etc.

第10図は、8倍致死量(8MLD)の腸炎菌を接種さ
れたマウスに対し、接種2時間後から各日1回、5日間
に亘つてテトラサイクリン(TC)を夫々1m9、0.
5WL9、0.1m9、0.057n9、0.01Tn
9、0.005m9又は0.001m9を皮下注射し、
28日目に生死を観察した例を示す。
FIG. 10 shows that mice inoculated with an 8-fold lethal dose (8MLD) of S. enteritidis were given tetracycline (TC) (1 m9 and 0.0 m9, respectively) once each day for 5 days starting 2 hours after inoculation.
5WL9, 0.1m9, 0.057n9, 0.01Tn
9, inject 0.005m9 or 0.001m9 subcutaneously,
An example in which life and death were observed on the 28th day is shown.

生残率(救助率)は夫々1m9:80%、0.5m9:
60%、0.1m9:50%、0.05m9:30%、
0.01u9:20%、0.005m9、0.001m
g及び対照(無処置又は食塩水注射):0%である。次
いで0.1mg投与群(生残率50%)及び0.01m
9投与群(生残率20%)にし夫々CA又はLAを1T
n9、0.1m9、0.01m9、又は0.001m9
をTCと併用注射し、同様に生死を観察した。
The survival rate (rescue rate) is 80% for 1m9 and 80% for 0.5m9:
60%, 0.1m9:50%, 0.05m9:30%,
0.01u9:20%, 0.005m9, 0.001m
g and control (no treatment or saline injection): 0%. Next, 0.1 mg administration group (survival rate 50%) and 0.01 m
9 administration groups (survival rate 20%) and 1T of CA or LA, respectively.
n9, 0.1m9, 0.01m9, or 0.001m9
was injected in combination with TC, and the survival and death were observed in the same manner.

同図が示すように、CAはTCO.lm9投与群に対し
1〜0.01m9の併用により生残率を100〜80%
に、0.001m9の併用でも60%に上昇させた。同
様に、TCO.Olm9投与群に対しても、CAの1〜
0.001m9の併用は冗単独に比し顕著に優れ、70
〜30%の救助率を示した。LAとTCとの併用もほぼ
LAと同傾向を示したが、むしろ一層効果があり、TC
O.lm9とLAl〜0.001m9との併用により生
存率は100〜65%に上昇し、TCO.Olm9との
併用でも救助率は65〜40%に上昇した。以上の実験
の結果から、毒性もしくは副作用が強いため大量投与の
困難な又は長期投与のため副作用の発生が懸念される抗
生物質等の薬剤において、少量のCA又はLAの併用に
より、その使用量を常用量の1′10又はそれ以下に減
じうる可能性が察知される。
As shown in the figure, CA is TCO. The survival rate was 100-80% for the lm9 administration group when combined with 1-0.01m9.
In addition, the combined use of 0.001 m9 also increased it to 60%. Similarly, TCO. Also for the Olm9 administration group, CA 1 to
The combined use of 0.001m9 is significantly superior to redundant alone, and 70
It showed a rescue rate of ~30%. The combined use of LA and TC showed almost the same tendency as LA, but it was even more effective, and TC
O. The combined use of lm9 and LAl~0.001m9 increased the survival rate to 100-65%, and the TCO. When used in combination with Olm9, the rescue rate increased to 65-40%. From the results of the above experiments, we found that the use of drugs such as antibiotics, which are difficult to administer in large quantities due to strong toxicity or side effects, or where there is a concern that side effects may occur due to long-term administration, can be reduced by combining small amounts of CA or LA. It is envisaged that the usual dose could be reduced to 1'10 or less.

なお、.TC以外にも、アムピシリンなどの合成ペニシ
リン、セフアロスポリンC系のセフアレキシン、アミノ
グリコシド系のゲンタミン、カナマイシン等との併用に
よつても、主剤の抗微生物効果を顕著に高めることが実
証され.た。■ 制癌効果と制癌剤との併用効果 (1)制癌効果 肉種180Aの固形癌に対する阻止率は、CAでは1
m9投与群は41%、0.1119投与群は・36%、
0.01WL9投与群で45%であつた。
In addition,. In addition to TC, it has been demonstrated that the antimicrobial effect of the main drug can be significantly enhanced when used in combination with synthetic penicillins such as ampicillin, cephalexin from the cephalosporin C family, gentamine from the aminoglycoside series, kanamycin, etc. Ta. ■ Anti-cancer effect and combined effect with anti-cancer drugs (1) Anti-cancer effect The inhibition rate against solid cancer of meat type 180A is 1 for CA.
m9 administration group: 41%; 0.1119 administration group: 36%;
It was 45% in the 0.01WL9 administration group.

またLAでは11n9投与群で36%、0.1m9投与
群で37%、0.01m9投与群で49%、KAでは約
18〜29%程度であつた。いずれも0.01m9投与
がむしろ良好な成績を示している。(第7 図参照
)(2)アドリアマイシンとの併用効果 アドリアマイシン(Ad)単独の阻止効 果は、
0.17FL9及び0.017F19を投与(腹腔内注
射)では夫々坐%及び52%の阻止率を示し た。
In LA, the rate was 36% in the 11n9 administration group, 37% in the 0.1m9 administration group, 49% in the 0.01m9 administration group, and about 18-29% in KA. In both cases, administration of 0.01 m9 showed rather good results. (See Figure 7) (2) Effect of combination with adriamycin The inhibitory effect of adriamycin (Ad) alone is as follows:
Administration of 0.17FL9 and 0.017F19 (intraperitoneal injection) showed inhibition rates of 1% and 52%, respectively.

一方、CA及びLA単独のとき、1119及 び0.
0111L9では40%前後、0.1m9でも10〜2
5%前後の阻止率を示した。ところが、JAdO.Ol
mg投与に加え、CA及びLAの1m9、0.1m9、
0.01W!9との併用において、 夫々?%、96%
程度の阻止効果を示した。
On the other hand, when CA and LA are used alone, 1119 and 0.
Around 40% for 0111L9, 10-2 for 0.1m9
The inhibition rate was around 5%. However, JAdO. Ol
In addition to mg administration, CA and LA 1 m9, 0.1 m9,
0.01W! In combination with 9, each? %, 96%
It showed some inhibition effect.

また、CA又はLAO.lTn9との併用では、阻
止率74〜80%前後、さらに同じく1m9との 併
用では同じく82〜89%前後であつて、い ずれも
CA及びLAが制癌剤との併用によ り、その治療効
果を著しく増強することを 示している(第8図参照)
。以上詳述したように、本発明に係る薬剤は生体内防禦
機構の動員による喰菌作用などの活性化により、化学療
法剤・抗生物質との相乗効果をもたらすと共に、結果的
に薬剤耐性発現の防止となり、さらに、副腎皮質ホルモ
ン、一般制癌剤の連用による免疫力低下を防止すると共
に、抗性物質などの連用に基く菌交代現象ないし交代症
の防止にもなり、極めて多方面に亘る有利な関連効果を
もたらす。
Also, CA or LAO. When used in combination with lTn9, the inhibition rate was around 74-80%, and when used in combination with 1m9, the inhibition rate was also around 82-89%. (See Figure 8)
. As detailed above, the drug according to the present invention brings about a synergistic effect with chemotherapeutic agents and antibiotics by activating the bactericidal action by mobilizing the in-vivo defense mechanism, and as a result, it reduces the development of drug resistance. Furthermore, it prevents the weakening of immunity caused by the repeated use of adrenocortical hormones and general anticancer drugs, and also prevents the bacterial replacement phenomenon or alternation caused by the repeated use of antibiotics, etc., and has an extremely beneficial relationship in many fields. bring about an effect.

さらに、癌の免疫療法剤として、ワクチン、制癌剤など
との併用により著しい効果をもたらすなど、免疫増強作
用を基盤として多方面に亘る臨床上の応用可能性を有す
るものであるが、さらに膠原病などの疾患に対しても免
疫調整作用による効果が期待される。本発明に係る改薬
剤は、単独又は混合物の形で、静脈内、筋肉内又は皮下
注射用として注射剤の形で、又は水剤、エリキサー、カ
プセル、錠剤、顆粒剤、散剤もしくはトローチ、バツカ
ル等経口投与剤の形て、あるいは膣もしくは肛門座薬さ
らには軟膏の如き経粘膜(経皮)投与剤の形で使用され
る。
Furthermore, as a cancer immunotherapeutic agent, it has a remarkable effect when used in combination with vaccines, anticancer drugs, etc. Based on its immune-enhancing effect, it has a wide range of potential clinical applications. It is also expected that the immunomodulatory effect will be effective against these diseases. The modified drug according to the present invention may be used alone or in the form of a mixture, in the form of an injection for intravenous, intramuscular or subcutaneous injection, or in the form of a liquid solution, elixir, capsule, tablet, granule, powder, troche, vagina, etc. It is used in the form of oral preparations or transmucosal (transdermal) preparations such as vaginal or rectal suppositories and even ointments.

製剤化に際しては、製剤技術的に公知の稀釈剤、担体賦
形剤、粘結剤、ビークル等が使われる。液状油脂の如き
無毒のビークルは、薬剤を懸濁剤として注射用に供した
いとき有用てある。本薬剤はまた所望により生理的に許
容される塩基との塩の形に変形されていてもよい。適当
な塩基としては、例えばLi,.Na,.K..Ca,
,M?亭のイオンを供給するアルカリ性物質が例示され
る。また、本薬剤はに、Fe..CO、Cuなどの金属
と塩又は錯塩の形に変ぜられてもよい。本品の適当な投
与量は大体0.5〜50m91k9であるが、投与方法
、投与形態などにより変化するので断定的に述べるのは
難しい。
For formulation, diluents, carrier excipients, binders, vehicles, etc. known in the art of formulation are used. Non-toxic vehicles such as liquid oils and oils are useful when it is desired to present the drug as a suspension for injection. The drug may also be transformed into a salt form with a physiologically acceptable base, if desired. Suitable bases include, for example, Li, . Na,. K. .. Ca,
,M? An example is an alkaline substance that supplies ions. This drug also has Fe. .. It may be converted into a salt or complex salt form with a metal such as CO or Cu. The appropriate dosage for this product is approximately 0.5 to 50m91k9, but it is difficult to state definitively because it varies depending on the administration method, dosage form, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は緑膿菌惑染実験で生き残つたマウスの体内にお
ける生菌数を示すグラフ、第2図は腸炎菌惑染実験後の
マウスの体内生菌数を示す第1図と同様のグラフ、第3
図はブドウ状球菌感染実験後のマウスの体内生菌数を示
す第1図と同様のグラフ、第4図は多剤耐性大腸菌感染
実験後のマウスの体内生菌数を示す第1図と同様のグラ
フ、第5図は腸炎菌死菌ワクチンによる免疫に対するカ
ルミン酸の併用効果を示すグラフ、第6図はラツカイン
酸の併用効果を示す第5図と同様のグラフ。
Figure 1 is a graph showing the number of viable bacteria in the bodies of mice that survived the Pseudomonas aeruginosa infection experiment, and Figure 2 is a graph similar to Figure 1 showing the number of viable bacteria in the bodies of mice after the Pseudomonas enteritidis infection experiment. , 3rd
The figure is a graph similar to Figure 1 showing the number of viable bacteria in mice after an experiment of infection with Staphylococcus, and Figure 4 is the same as Figure 1 showing the number of bacteria in the body of mice after an experiment of infection with multidrug-resistant E. coli. FIG. 5 is a graph showing the effect of combined use of carminic acid on immunity by killed bacteria enteritidis vaccine, and FIG. 6 is a graph similar to FIG. 5 showing the combined effect of latukaic acid.

Claims (1)

【特許請求の範囲】[Claims] 1 ラツカイン酸、カルミン酸及びケルメス酸からなる
アントラキノンカルボン酸化合物群から選ばれた化合物
を有効成分とする免疫増強剤。
1. An immune enhancer containing as an active ingredient a compound selected from the anthraquinone carboxylic acid compound group consisting of latukaic acid, carminic acid, and kermesic acid.
JP12053979A 1979-09-18 1979-09-18 immune enhancer Expired JPS6054286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12053979A JPS6054286B2 (en) 1979-09-18 1979-09-18 immune enhancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12053979A JPS6054286B2 (en) 1979-09-18 1979-09-18 immune enhancer

Publications (2)

Publication Number Publication Date
JPS5643210A JPS5643210A (en) 1981-04-21
JPS6054286B2 true JPS6054286B2 (en) 1985-11-29

Family

ID=14788784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12053979A Expired JPS6054286B2 (en) 1979-09-18 1979-09-18 immune enhancer

Country Status (1)

Country Link
JP (1) JPS6054286B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ217193A (en) * 1985-10-08 1992-12-23 Grace W R & Co Plastics bag having a plurality of slits extending in a transverse direction of the bag
GB9103075D0 (en) * 1991-02-13 1991-03-27 Washington Odur Ayuko Trinitrobenzene derivatives and their therapeutic use
EP0705601B1 (en) * 1994-10-04 2000-01-19 LOMAPHARM Rudolf Lohmann GmbH KG Pharmazeutische Fabrik Anthraquinones containing solutions for parenteral administration
CN107921134B (en) * 2016-02-04 2021-05-25 覃扬 New use of tumor gene methylation regulator and antitumor drug

Also Published As

Publication number Publication date
JPS5643210A (en) 1981-04-21

Similar Documents

Publication Publication Date Title
DE69930944T2 (en) BACILLUS COAGULANS COMPOSITION AND ITS USE
CA1246445A (en) Intestinal microflora-improving agent
US7521040B2 (en) Immunotherapy for humans
WO1992010177A1 (en) Pharmaceutical compositions
KR102403453B1 (en) Composition for the management of Helicobacter pylori infection
Shlaes et al. Infection caused by vancomycin-resistant Streptococcus sanguis II
CA2130117A1 (en) Mycobacterium vaccae for treatment of long term autoimmune conditions
Holmes et al. Cinoxacin: effectiveness against experimental pyelonephritis in rats
JPS6054286B2 (en) immune enhancer
Yokota et al. IMMUNOACTIVE PEPTIDES, FK-156 AND FK-565. II RESTORATION OF HOST RESISTANCE TO MICROBIAL INFECTION IN IMMUNOSUPPRESSED MICE
Shepard Minimal Effective Dosages in Mice of Clofazimine (B. 663) and of Ethionamide against Mycobacterium leprae
Contrepois et al. Kinetics and bactericidal effect of gentamicin and latamoxef (moxalactam) in experimental Escherichia coli endocarditis
Goldman et al. Effect of antibiotics on the prevention of experimental Bacteroides fragilis endocarditis
JP4193330B2 (en) Novel infectious disease lactic acid bacterium and lactic acid bacterium preparation mainly composed of lactic acid bacterium
CN103202861A (en) Application of composition of clostridium butyricum and bifidobacterium dual live bacteria preparation and anticancer medicament in preparation of medicament for treating intestinal cancer
Sonne et al. Comparison of the action of ampicillin and benzylpenicillin on enterococci in vitro
CN107789355B (en) Compound pharmaceutical composition containing piperacillin and application thereof
JP2023504887A (en) Use of myricetin in the manufacture of a Salmonella type III secretion system inhibitor
JPS6011686B2 (en) Novel anti-tumor agent
CN110652508B (en) Application of chrysin in preparation of streptococcus suis hemolysin inhibitor
KR102659126B1 (en) Pharmaceutical Anti-Tuberculosis Composition
CN108186617A (en) The new application of geraniol and its derivative in MRSA infectious disease medicaments are prepared
EP3733176A1 (en) Composition comprising piperacillin, pharmaceutical preparation thereof and use thereof
CN102283845B (en) Application of ectoine and derivatives thereof in preparing tuberculosis treatment medicine
Hobby et al. The control of experimental infection in mice produced by Pseudomonas pseudomallei