JPS6054099B2 - Preparation method of platinum catalyst - Google Patents

Preparation method of platinum catalyst

Info

Publication number
JPS6054099B2
JPS6054099B2 JP53059771A JP5977178A JPS6054099B2 JP S6054099 B2 JPS6054099 B2 JP S6054099B2 JP 53059771 A JP53059771 A JP 53059771A JP 5977178 A JP5977178 A JP 5977178A JP S6054099 B2 JPS6054099 B2 JP S6054099B2
Authority
JP
Japan
Prior art keywords
catalyst
platinum
activity
hours
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53059771A
Other languages
Japanese (ja)
Other versions
JPS54150385A (en
Inventor
竹徳 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSAN GAADORAA SHOKUBAI KK
Original Assignee
NITSUSAN GAADORAA SHOKUBAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSAN GAADORAA SHOKUBAI KK filed Critical NITSUSAN GAADORAA SHOKUBAI KK
Priority to JP53059771A priority Critical patent/JPS6054099B2/en
Publication of JPS54150385A publication Critical patent/JPS54150385A/en
Publication of JPS6054099B2 publication Critical patent/JPS6054099B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は産業プラント、自動車等の排ガスの浄化、特に
脱臭を目的とした排ガス中の臭のある化合物を完全に酸
化分解する貴金属触媒の製造法とその活性化法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing and activating a noble metal catalyst that completely oxidizes and decomposes odor-bearing compounds in exhaust gas for purification of exhaust gas from industrial plants, automobiles, etc., particularly for deodorization. It is something.

臭のある化合物としては、特に含酸素化合物、含窒素化
合物、含硫黄化合物等が挙げられ、その具体例としては
アルコール、アルデヒド、ケトン、アミン、メルカプタ
ン類がある。貴金属触媒例えば白金、ロジウム、パラジ
ウム等の金属又は塩類をシリカ、アルミナその他の無機
不活性担体上に担持せしめた触媒は一般に自動車排気ガ
ス中の有害成分を完全酸化する際用いられる代表的な触
媒として知られている。これらの触媒は、活性の具現が
早く比較的低温の状態でも所期の活性を発揮し得るもの
であることが要求され、通常の固体触媒と同様に使用す
べき触媒活性成分、担体の種類等の研究の他、触媒の調
製法、特に活性化の方法が重要な課WW: 11−呼
] よ一、、、AΔι同廿11^1ハブ、舶紬ffll
町料としての白金化合物に塩化白金酸が使用されている
ため、触媒の低温活性については極めて不十分な成果し
か得られていない。塩化白金酸を出発原料とする白金触
媒は水素による還元焼成あるいは空気焼成のいずれかの
方法で活性化しているが、更に改良方法として水蒸気を
共存せしむる方法が提案されている。例えば特公昭34
−1067として約1.5重量%の水分を含む空気によ
り250〜595℃て焼成する方法や特開昭49−12
9692として、容量3%以上の水蒸気を共存させた水
素、一酸化炭素等の還元性ガス、窒素、ヘリウム、アル
ゴン等の不活性ガス、及び空気の如き酸化性ガスにより
500〜9囲℃に加熱する方法が公知である。
Examples of odorous compounds include oxygen-containing compounds, nitrogen-containing compounds, sulfur-containing compounds, etc., and specific examples thereof include alcohols, aldehydes, ketones, amines, and mercaptans. Noble metal catalysts, such as platinum, rhodium, palladium, or other metals or salts supported on silica, alumina, or other inorganic inert carriers, are generally used as typical catalysts for completely oxidizing harmful components in automobile exhaust gas. Are known. These catalysts are required to exhibit activity quickly and to be able to exhibit the desired activity even at relatively low temperatures, and as with normal solid catalysts, there are various factors such as the catalytic active components to be used and the type of support. In addition to research on catalyst preparation methods, especially activation methods are important sections WW: 11-call
] Yoichi,,,AΔιdouji11^1 hub, ship pongeeffll
Since chloroplatinic acid is used as a platinum compound as a town charge, very insufficient results have been obtained regarding the low-temperature activity of the catalyst. Platinum catalysts using chloroplatinic acid as a starting material are activated by either reduction calcination with hydrogen or air calcination, but a method in which water vapor is allowed to coexist has been proposed as an improved method. For example, the special public
-1067, a method of firing at 250 to 595°C in air containing about 1.5% by weight of water, and JP-A-49-12
9692, heated to 500 to 9°C with a reducing gas such as hydrogen and carbon monoxide, an inert gas such as nitrogen, helium, and argon, and an oxidizing gas such as air, in the coexistence of 3% or more water vapor by volume. There are known methods for doing so.

本発明者は、無処理の白金触媒と水素、酸素、スチーム
夫々の単独処理の比較により、500℃の100%スチ
ーム処理により触媒の活性を向上し得ることを発見した
ことが端緒となり本発明に到達した。本発明者は、一般
にこの種の試験に使用され、J而も酸化分解反応が困難
なn−ブタンを触媒性能評価試験の標準物質とした。
The present inventors discovered that the activity of the catalyst could be improved by 100% steam treatment at 500°C by comparing untreated platinum catalysts with single treatments of hydrogen, oxygen, and steam, which led to the present invention. Reached. The present inventor used n-butane, which is generally used in this type of test and is difficult to undergo an oxidative decomposition reaction, as a standard substance for the catalyst performance evaluation test.

即ち、空気中に100pμmの濃度で含まれるn−ブタ
ンの酸化により、スチーム処理の温度(この場合2時間
実施後水素還元した)と50%酸化に要する温度即ち、
7T5。%との関係を調べた結果、酸化活性は500〜
550℃で最高となり之以上温度を上げると活性はかえ
つて低下した。最高の活性は550℃において、T5O
%が196℃であつた。(第1表参照)因みに、通常の
空気焼成(500℃、2時間)及び水素還元によるT.
O%は286℃、低温長時間処理(170℃、4満間)
に続く水素還元後の触媒ではT5O%=21rcであつ
た。本発明者は白金触媒に残存する塩素イオンが活性に
影響を及ぼすものと推定し、上記の実験において活性と
塩素イオンの除去率の対応関係を確認した(第1表参照
)のであるが〔注〕1アルミナ担体0.2%白金含有触
媒30ccを使用。
That is, by oxidizing n-butane contained in air at a concentration of 100 pμm, the temperature of steam treatment (in this case, hydrogen reduction was performed after 2 hours) and the temperature required for 50% oxidation, that is,
7T5. As a result of investigating the relationship between oxidation activity and
The activity peaked at 550°C, and as the temperature was raised above this level, the activity actually decreased. The highest activity was at 550°C, T5O
% was 196°C. (See Table 1) Incidentally, T.
O% is 286℃, low temperature long time treatment (170℃, 4 hours)
The catalyst after subsequent hydrogen reduction had T5O%=21rc. The inventor presumed that the chlorine ions remaining in the platinum catalyst affected the activity, and confirmed the correspondence between the activity and the chlorine ion removal rate in the above experiment (see Table 1). ]1 30 cc of catalyst containing 0.2% platinum on alumina carrier was used.

2100%スチーム、SV:1000にて2時間処理後
水素還元。
Hydrogen reduction after treatment for 2 hours with 2100% steam and SV: 1000.

3塩素イオン除去率(%)は塩化白金酸の計算値を基準
として求めた。
The trichloride ion removal rate (%) was determined based on the calculated value of chloroplatinic acid.

上記の実験で使用した触媒と同様0.2%白金含有の触
媒ではあるが、実験室的にではなく工場で.試作された
触媒を温水処理し、塩素イオンの部%を除去したもの)
n−ブタン酸化活性は2屹℃であつたが、之を500℃
で3時間スチーム処理すると248℃に向上した。
Although the catalyst used in the above experiment contained 0.2% platinum, it was produced in a factory rather than in a laboratory. The prototype catalyst was treated with hot water to remove % of chlorine ions)
The n-butane oxidation activity was 2 degrees Celsius;
When steam-treated for 3 hours, the temperature increased to 248°C.

之に対し塩素イオンを含まないジニトロジアミン白金を
原料として調整した.”触媒について同様の実験を試み
た処、全く効果のないことが伴つた。ジニトロジアミン
の場合、白金が担体内部に浸透しているため分散効果が
現われない。
In contrast, dinitrodiamine platinum, which does not contain chloride ions, was prepared as a raw material. ``When we attempted similar experiments with catalysts, we found that they were completely ineffective.In the case of dinitrodiamine, the platinum penetrates into the carrier, so there is no dispersion effect.

従つて塩素イオンのない白金触媒に対するスチーム処理
の−効果は塩化白金酸を原料とした場合に特有なもので
あることを示している。担持された白金触媒の反応活性
が高まる因子には化学的なものと、物理的なものが考え
られ、スチーム処理による塩素イオンの除去は前者に相
当する。物理的なものとしては白金表面積の増加が考え
られ、事実1紡倍の電子顕鏡観察によりスチーム処理前
では白金粒子は平均部オングストロームであつたのにス
チーム処理後のものは微細で判別しにくく、25オング
ストローム程度になつていると認められた。以上により
スチーム処理をすると白金触媒の活性が著しく高まるの
は触媒表面から塩素イオンがノ除かれるのと白金の粒子
が微少化する二つの要因によるのであるが、本発明者は
更に考察を進め、塩素イオンの除去されていな高酸化状
態Ptδ8−C1δ−ーAIから酸化活性の高い?−A
1の状態にもちきたすため逆に電気陰性度の小さなもの
即ちア・ルカリ金属イオン、アルカリ土類金属イオンを
添加することに想到し、本発明を完成した。
This indicates that the effect of steam treatment on a platinum catalyst free of chloride ions is unique to the case where chloroplatinic acid is used as a raw material. Factors that increase the reaction activity of the supported platinum catalyst can be considered to be chemical or physical, and the removal of chlorine ions by steam treatment corresponds to the former. Physically, this is thought to be an increase in the platinum surface area; in fact, observation using an electron microscope at 1x magnification revealed that before steam treatment, the platinum particles had an average size of angstroms, but after steam treatment, they were so fine that they were difficult to distinguish. , it was recognized that the thickness was about 25 angstroms. As described above, the reason why the activity of the platinum catalyst is significantly increased by steam treatment is due to two factors: the removal of chlorine ions from the catalyst surface and the miniaturization of platinum particles. Is the oxidation activity high due to the highly oxidized state Ptδ8-C1δ--AI in which chlorine ions have not been removed? -A
In order to bring about the state of 1, we came up with the idea of adding ions with low electronegativity, ie, alkali metal ions and alkaline earth metal ions, and completed the present invention.

触媒は塩化白金酸と各種塩化物を金属原子比1:1に混
合した水溶液にアルミナ担体を浸漬し12CfCで2時
間乾燥後5000Cで4時間スチーム処理し更に200
℃、3時間の水素還元を実施したがスチーム処理による
塩素イオンの除去率とn−ブタン酸化活性は第2表に示
されるようにR−Ca系以外では十分なものであつた。
〔注〕 塩素イオン除去率(%)は塩化白金酸と塩化物
の計算値を基準として求めた。之に対しあらかじめスチ
ーム処理した触媒に苛性カリ又は塩化カリを添加した場
合の酸化活性は夫々23CfC1245℃で、かえつて
活性を低下せしめた。
The catalyst was prepared by immersing an alumina support in an aqueous solution containing chloroplatinic acid and various chlorides at a metal atomic ratio of 1:1, drying it at 12CfC for 2 hours, steaming it at 5000C for 4 hours, and further drying it at 200CfC for 4 hours.
C. for 3 hours, and as shown in Table 2, the removal rate of chlorine ions and n-butane oxidation activity by steam treatment were sufficient except for the R-Ca system.
[Note] The chloride ion removal rate (%) was determined based on the calculated values of chloroplatinic acid and chloride. On the other hand, when caustic potassium or potassium chloride was added to the catalyst which had been steam-treated in advance, the oxidation activity was 23CfC1245°C, respectively, which actually decreased the activity.

実施例1 白金量として0.135yを含む塩化白金酸と、塩化カ
リ0.05yを含む水溶液50ccをビーカーにとり、
これにあらかじめ120℃で2時間乾燥した3〜41m
の粒径で表面積150〜180rrt/flの球状活性
アルミナ100m1(67y)を投入し、十分混合吸収
させた後、水分をきり120℃で2時間乾燥スチーム処
理後冷却、更に200℃で3紛の水素還元を行なつた。
Example 1 50 cc of an aqueous solution containing chloroplatinic acid containing 0.135y of platinum and 0.05y of potassium chloride was placed in a beaker.
This was pre-dried at 120℃ for 2 hours.
100ml (67y) of spherical activated alumina with a particle size of Hydrogen reduction was performed.

スチーム処理法は次の手順で行なつた。管状電気炉中の
スチーム処理管に上記の未処理触媒30m1を充填し、
市販ボンベ入り窒素ガスで管内をパージした後昇温し、
150〜200℃に達した後、純水を注入し始め、処理
管の入口の予熱部で気化させ100%のスチームとしS
VlOOOにて触媒層に流した。500℃に達したら4
時間導入を続け冷却後200℃で3吟の水素還元を行な
つた。
The steam treatment method was performed as follows. A steam treatment tube in a tubular electric furnace was filled with 30 ml of the above untreated catalyst,
After purging the inside of the tube with nitrogen gas in a commercially available cylinder, the temperature was raised.
After the temperature reaches 150-200℃, pure water is started to be injected, and it is vaporized in the preheating section at the entrance of the processing tube to become 100% steam.
It was flowed into the catalyst layer at VlOOOO. 4 when it reaches 500℃
The introduction was continued for a certain period of time, and after cooling, 3 liters of hydrogen reduction was carried out at 200°C.

活性試験は20Tfnφの石英管に触媒30mtをつめ
市販の1%n−ブタン(窒素で希釈)ボンベのガスを空
気で希釈して100ppmn−ブタンとし、SV5OO
Oで流す。
In the activity test, 30 mt of catalyst was packed in a 20 Tfnφ quartz tube, and the gas in a commercially available 1% n-butane (diluted with nitrogen) cylinder was diluted with air to make 100 ppm n-butane.
Run with O.

400′Cで2時間流した後温度を下げてゆき、各温度
で定常状態となつたところで入口、出口の濃度をガスク
ロマトグラフで分析し、転化率が30%、50%、70
%に達する温度を測定した。
After flowing at 400'C for 2 hours, the temperature was lowered, and when a steady state was reached at each temperature, the concentrations at the inlet and outlet were analyzed using a gas chromatograph, and the conversion rates were 30%, 50%, and 70%.
The temperature reached was measured.

実施例2〜5 実施例1において塩化カリの代りに、夫々、塩化カルシ
ウム2水和物0.12y1塩化マグネシウム6水和物0
.15y1塩化ナトリウム0.04y1塩化バリウム2
水和物0.19yを使用すること以外は全く同様の処理
、試験を行なつた。
Examples 2 to 5 In Example 1, calcium chloride dihydrate 0.12y1 magnesium chloride hexahydrate 0
.. 15y1 Sodium chloride 0.04y1 Barium chloride 2
Exactly the same treatments and tests were carried out except that 0.19y of hydrate was used.

比較例6 実施例1において塩化カリを除外し、且つスチーム処理
時間を2時間に短縮した以外は全く同様の処理、試験を
行なつた。
Comparative Example 6 The same treatment and test as in Example 1 were carried out except that potassium chloride was omitted and the steam treatment time was shortened to 2 hours.

比較例2 実施例1において塩化カリを除外し、且つ、触媒調整後
、スチーム処理の代りに500℃で2時間、空気中で焼
成した以外は全く同様の処理試験を行なつた。
Comparative Example 2 A treatment test was carried out in exactly the same manner as in Example 1, except that potassium chloride was omitted, and after catalyst preparation, the product was calcined in air at 500° C. for 2 hours instead of steam treatment.

比較例3 あらかじめ500℃、4時間のスチーム処理を行なつた
白金触媒を塩化カリ水溶液に浸漬した以外は実施例1と
全く同様の処理、試験を行なつた。
Comparative Example 3 The same treatment and test as in Example 1 were carried out, except that a platinum catalyst that had been previously subjected to a steam treatment at 500° C. for 4 hours was immersed in an aqueous potassium chloride solution.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナ担体を、アルカリ金属の塩化物の一種を添
加した塩化白金酸の水溶液に浸漬乾燥した後、他のガス
を含まないスチームで処理することを特徴とする脱臭を
目的とした排ガス浄化用白金含有酸化触媒の製造法。
1 Platinum for exhaust gas purification for the purpose of deodorization, characterized in that an alumina carrier is immersed in an aqueous solution of chloroplatinic acid to which a type of alkali metal chloride is added, dried, and then treated with steam that does not contain other gases. Method for producing a containing oxidation catalyst.
JP53059771A 1978-05-19 1978-05-19 Preparation method of platinum catalyst Expired JPS6054099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53059771A JPS6054099B2 (en) 1978-05-19 1978-05-19 Preparation method of platinum catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53059771A JPS6054099B2 (en) 1978-05-19 1978-05-19 Preparation method of platinum catalyst

Publications (2)

Publication Number Publication Date
JPS54150385A JPS54150385A (en) 1979-11-26
JPS6054099B2 true JPS6054099B2 (en) 1985-11-28

Family

ID=13122874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53059771A Expired JPS6054099B2 (en) 1978-05-19 1978-05-19 Preparation method of platinum catalyst

Country Status (1)

Country Link
JP (1) JPS6054099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667387U (en) * 1979-10-29 1981-06-04

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230475A (en) * 1975-09-03 1977-03-08 Fujitsu Ltd Apparatus for measuring power line voltage
JPS5296993A (en) * 1976-02-10 1977-08-15 Nissan Motor Co Ltd Production of catalyst for purifying exhaust gas
JPS52148496A (en) * 1976-06-07 1977-12-09 Nissan Motor Co Ltd Purification catalyst for internal combustion engine exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230475A (en) * 1975-09-03 1977-03-08 Fujitsu Ltd Apparatus for measuring power line voltage
JPS5296993A (en) * 1976-02-10 1977-08-15 Nissan Motor Co Ltd Production of catalyst for purifying exhaust gas
JPS52148496A (en) * 1976-06-07 1977-12-09 Nissan Motor Co Ltd Purification catalyst for internal combustion engine exhaust gas

Also Published As

Publication number Publication date
JPS54150385A (en) 1979-11-26

Similar Documents

Publication Publication Date Title
KR100186680B1 (en) Absorbent for removal of trace oxygen from inert gases
TWI333428B (en) Adsorption composition and process for removing carbon monoxide from substance streams
Kisamori et al. Roles of surface oxygen groups on poly (acrylonitrile)-based active carbon fibers in SO2 adsorption
JPH02303539A (en) Production method of carrier catalyser to oxidize co, carrier catalyser and co-oxidation by contacting method
US1895724A (en) Process of removing sulphur compounds from gas mixtures
WO2004052536A1 (en) Composite catalyst for removing carbon monoxide and method for removing carbon monoxide using the same
KR101369021B1 (en) Low temperature oxidation catalyst improved water-stability for removal of toxic gases
JPH04219308A (en) Production of formed active coke for desulfurization and denitration having high denitration performance
JPS6054099B2 (en) Preparation method of platinum catalyst
US4491636A (en) Process using halogen/oxygen for reactivating iridium and selenium containing catalysts
JP2711463B2 (en) Exhaust gas purification method
JPH05111618A (en) Removing method of carbon monoxide
JPH05238703A (en) Manufacture of hydrogen preoxide
Radkevich et al. Catalytic systems based on carbon supports for the low-temperature oxidation of carbon monoxide
JPS63171623A (en) Removing method for nitrogen oxide
JP3760257B2 (en) Method for producing ammonia synthesis catalyst and catalyst obtained by the method
JPH05253435A (en) Nitrogen monoxide adsorbent and production thereof
JP2781518B2 (en) NO remover
JPH0249158B2 (en)
JP2500376B2 (en) Method for purifying exhaust gas from methanol mixed fuel vehicles
JPS5932169B2 (en) Adsorbent and adsorption method for hydrogen sulfide-containing gas
JPS62193633A (en) Reducing agent for nitrogen oxide
US4346019A (en) Stabilization and regeneration of activated carbon supported palladium chloride catalysts in the oxidation of vinyl halides
JPH03207448A (en) Catalyst and method for decomposition of nitrogen oxide
JP3362918B2 (en) Exhaust gas purification method