JPS6053841A - Electrode apparatus for measuring concentration of hydrogen ion - Google Patents

Electrode apparatus for measuring concentration of hydrogen ion

Info

Publication number
JPS6053841A
JPS6053841A JP58161470A JP16147083A JPS6053841A JP S6053841 A JPS6053841 A JP S6053841A JP 58161470 A JP58161470 A JP 58161470A JP 16147083 A JP16147083 A JP 16147083A JP S6053841 A JPS6053841 A JP S6053841A
Authority
JP
Japan
Prior art keywords
membrane
film
hydrogen ion
tube
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58161470A
Other languages
Japanese (ja)
Other versions
JPH0367220B2 (en
Inventor
Takeshi Shimomura
猛 下村
Hideichiro Yamaguchi
秀一郎 山口
Tsutomu Murakami
勉 村上
Norihiko Ushizawa
牛沢 典彦
Noboru Koyama
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP58161470A priority Critical patent/JPS6053841A/en
Publication of JPS6053841A publication Critical patent/JPS6053841A/en
Publication of JPH0367220B2 publication Critical patent/JPH0367220B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component

Abstract

PURPOSE:To obtain a stable H<+> measuring electrode apparatus having quick response speed, by sequentially laminating a porous film, a platinum film, and a hydrogen-ion selecting and transmitting film from the inside of a tube at one opening end of a tubular body comprising an insulating material, thus providing an H<+> ion response film structure, and passing hydrogen gas in the tube. CONSTITUTION:A hydrogen-ion-concentration response-film structure 12 is attached to one end of a tube 11 comprising an insulating material such as polycarbonate so as to cover the opening part of the tube 11 by using an insulating material 13 such as epoxy resin. The response-film structure 12 is formed by laminating the following films, a porous film 12 comprising fluorine or the like, a Pt film 12b formed by evaporating Pt on the film 12a, and an H<+> ion selecting and transmitting film 12c, which is formed by electrolytic-oxidation polymerization of a poly (hydroxy) aromatic compound and an aromatic compound including N such as poly (1,2-diamino benzene). The structure 12 is attached so that the film 12c is contacted with a sample liquid. On the other end of the tube 11, a stopper 15, which is provided with an H2-gas introducing pipe 16a and an exhaust pipe 16b, is fixed. A lead wire 14 is attached to the platinum film 12a beforehand. Thus a compact sensor and the like, wherein an electrode is miniaturized, and which can be inserted into the living body, can be obtained.

Description

【発明の詳細な説明】 ■発明の背景 〔技術分野〕 この発明は水素イオン濃度測定用電極装置に関する。[Detailed description of the invention] ■Background of the invention 〔Technical field〕 The present invention relates to an electrode device for measuring hydrogen ion concentration.

〔先行技術および問題点〕[Prior art and problems]

電極の微小化によって生体中に直接センサーを挿入した
シ、その他ディスポ装置と併用し体内の情報を得ること
は医用分野で重要となっている。また、微址試料の分析
や粘度の高い試料分析は市販ガラス膜電極では測定が難
しい。したがって、線電極表面に直接高分子膜を被覆し
た膜電極を用いて、上記の問題点を解決することが提案
されてきている。これらの膜電極は、1)測定液中のイ
オンが残存し、水素イオン濃度の異る指で゛の411j
定液中の測定誤差の原因となる(これをメモリー効果と
呼んでいる)。2)高分子膜中をイオンが拡散して、感
応膜(ここでは、白金系金属導電体を意味する)表面に
到達するまでの応答時間が遅いなどの問題点があシ改善
を望まれていた。
It has become important in the medical field to obtain information inside the body by inserting sensors directly into the living body by miniaturizing electrodes, and by using them in conjunction with other disposable devices. Furthermore, it is difficult to analyze microscopic samples or samples with high viscosity using commercially available glass membrane electrodes. Therefore, it has been proposed to solve the above problems by using a membrane electrode in which the surface of the wire electrode is directly coated with a polymer film. These membrane electrodes have the following characteristics: 1) ions remain in the measurement solution, and the 411j
This causes measurement errors in constant solutions (this is called the memory effect). 2) Problems such as slow response time for ions to diffuse through the polymer membrane and reach the surface of the sensitive membrane (here, platinum-based metal conductor) are desired to be improved. Ta.

■発明の目的 この発明の目的r」:検体液に悪影響を与えることなく
、応答時間も短くかつ安定に水素イオン濃度を測定でき
る[他装置を提供することにある。
(Objective of the Invention) Objective of the Invention: To provide an apparatus capable of stably measuring hydrogen ion concentration without adversely affecting the sample liquid and with a short response time.

との発明によれば、絶縁性祠刺で形成された中空体、該
中空体の内外に連通ずる開口部を閉塞する水素イオン濃
度感応膜構造であって多孔質膜と、この多孔+1膜外側
面上に破着された白金膜と、この白金膜上に形成された
水素イオン選択透過膜とを具備するもの、および該中空
体内に水素ガスを導入するだめの4褒構を備えてな)、
該白金膜における電位応答によって液体中の水素イオン
誦度を測定するだめの電極装置が提供される。
According to the invention, there is provided a hollow body formed of an insulating knife, a hydrogen ion concentration sensitive membrane structure that closes an opening communicating between the inside and outside of the hollow body, a porous membrane, and a porous membrane + 1 outside the membrane. (Equipped with a platinum membrane broken on the side surface, a hydrogen ion selectively permeable membrane formed on the platinum membrane, and four mechanisms for introducing hydrogen gas into the hollow body.) ,
An electrode device is provided for measuring hydrogen ion enrichment in a liquid by the potential response in the platinum membrane.

一般に、上記水素イオン選択透過膜は、ヒドロキシ芳香
族化合物および窒素含有芳香族化合物からなる群の中か
ら選ばれた少なくとも1種の芳香族化合物の電解酸化重
合膜であって白金膜上に直接形成されたものと、との′
眠解酸化重合膜上に形成された高分子化合物膜および/
または無機化合物膜とを具備してなる。
Generally, the hydrogen ion selectively permeable membrane is an electrolytically oxidized polymer membrane of at least one aromatic compound selected from the group consisting of hydroxy aromatic compounds and nitrogen-containing aromatic compounds, and is formed directly on a platinum membrane. What was done and what was done
A polymer compound film formed on a sleep-deoxidizing polymer film and/or
or an inorganic compound film.

また、通常、上記水素ガス導入]幾構は、中空体に水素
ガスを導入する第1のパイプと、中空体内の余剰の水素
ガスを導出する第2のパイプとを具備してなる。
Further, the above-mentioned hydrogen gas introduction structure usually includes a first pipe for introducing hydrogen gas into the hollow body and a second pipe for leading out excess hydrogen gas from the hollow body.

また、この発明の一態様において、多孔質膜側に水素ガ
ス導入口管を1閣程度の間隔で多孔質膜に設置し、水素
イオン選択透過膜を介して測定液中の水素イオン濃度を
白金表面上に選択透過させ、白金表面上で水素イオンを
還元反応に基づく電位応答で測定する水素イオン濃度測
定用電極装置が提供される。
Further, in one embodiment of the present invention, hydrogen gas inlet pipes are installed on the porous membrane side at intervals of about one chamber, and the hydrogen ion concentration in the measurement liquid is measured through the hydrogen ion selectively permeable membrane. An electrode device for measuring hydrogen ion concentration is provided that allows selective permeation onto the platinum surface and measures hydrogen ions on the platinum surface using a potential response based on a reduction reaction.

■発明の詳細な説明 以下、この発明を図面に基いて詳しく説明する。■Detailed explanation of the invention Hereinafter, this invention will be explained in detail based on the drawings.

第1図にはこの発明に従う水素イオン濃度測定用電極装
置の基本構造が示されている。図示のようにこの電極装
置10は絶縁性材料(例えば、ポリカーボネート* x
 x x x + 71?リゾロビレン等)で形成され
た両端開放の中空体例えばチューブ1ノを備えている。
FIG. 1 shows the basic structure of an electrode device for measuring hydrogen ion concentration according to the present invention. As shown, this electrode device 10 is made of an insulating material (e.g. polycarbonate*
x x x + 71? It is provided with a hollow body, for example, a tube, which is open at both ends and is made of lysolobirene, etc.).

とのチューブ1ノの一端を閉塞して水素イオン濃度感応
膜構造12が設けられている。感応膜構造12は、チュ
ーブ11の内部側から順に、多孔質膜12a1白金膜1
2bおよび水素イオン選択透過膜12Cを積層してなる
ものである。
A hydrogen ion concentration sensitive membrane structure 12 is provided by closing one end of the tube 1. The sensitive membrane structure 12 includes, in order from the inside of the tube 11, a porous membrane 12a1, a platinum membrane 1,
2b and a hydrogen ion selectively permeable membrane 12C are laminated.

多孔質膜12aは、白金膜12bの支持体として働き、
また、水素ガスを白金膜12bへ自由に透過させるもの
である。このような多孔質膜12mとしては、フッ素含
有高分子(例えば、ポリフッ化ビニリデン、xxxx)
、セルロース系高分子(例えば、ニトロセルロース、再
生5− セルロース) 、rj5 lJ塩化ビニルおよびその共
重合体(例えば、ポリ(iM化化工ニルエチレン))、
ポリ塩化ビニリデン、シリコーン、ポリアクリロニトリ
ルおよびその共重合体(1+!Iえば、ぼり(アクリロ
ニトリル−ブタジェン))L9’カ用いられる。この多
孔質膜12aは不織布等の気体通過性担体(図示せず)
に相持させてもよい。
The porous membrane 12a acts as a support for the platinum membrane 12b,
Further, hydrogen gas is allowed to freely permeate through the platinum film 12b. Such a porous membrane 12m is made of a fluorine-containing polymer (for example, polyvinylidene fluoride, xxxx).
, cellulose polymers (e.g., nitrocellulose, regenerated 5-cellulose), rj5lJ vinyl chloride and its copolymers (e.g., poly(iM chemical engineering nylethylene)),
Polyvinylidene chloride, silicone, polyacrylonitrile and copolymers thereof (1+!I, for example, acrylonitrile-butadiene) L9' are used. This porous membrane 12a is made of a gas-permeable carrier (not shown) such as a nonwoven fabric.
may be compatible with each other.

多孔質膜1211の孔径は0.005〜1101tで、
その厚さは50μn1〜1.OMであることが望ましい
The pore diameter of the porous membrane 1211 is 0.005 to 1101t,
Its thickness is 50 μn1~1. Preferably OM.

多孔質膜12a上への白金膜12bの被着はスパッタ、
蒸着、イオンブレーティング等の真空蓄積法によってお
こなうことができる。
The platinum film 12b is deposited on the porous film 12a by sputtering,
This can be done by vacuum accumulation methods such as vapor deposition and ion blating.

水素イオン透過膜12cは水素イオン濃度を測定しよう
とする溶液と接してその溶液中の水素イオンを透過きせ
るものである。このような水素イオン透過膜12cとし
ては、ポリ(ヒドロキシ芳香族化合物)例えば、Iq 
IJフェノール、ポリ(窒素含有芳香族化合物)列えば
yjelJ(1゜2−ジアミノベンゼン)もしくはこれ
らの共重6一 合体、ポリカーボネート、ポリ(ビニル芳香族化合物)
例えばポリスチレン、これらのアニオン系もしくはカチ
オン系誘導体例えばポリ(ビニルピリジン)j四級化物
、Iリエーテル、ポリウレタン等が用いられる。この膜
12cの厚さは0.05μmないし0.2 wnである
ことが望ましい。
The hydrogen ion permeable membrane 12c is in contact with a solution whose hydrogen ion concentration is to be measured and allows the hydrogen ions in the solution to permeate therethrough. Such a hydrogen ion permeable membrane 12c may be made of poly(hydroxy aromatic compound) such as Iq
IJ phenol, poly(nitrogen-containing aromatic compound) such as yjelJ (1°2-diaminobenzene) or a copolymer thereof, polycarbonate, poly(vinyl aromatic compound)
For example, polystyrene, anionic or cationic derivatives thereof such as poly(vinylpyridine) quaternized products, I-reathers, polyurethanes, etc. are used. The thickness of this film 12c is preferably 0.05 μm to 0.2 wn.

中空体1ノの上端を閉塞して、栓体15が設置されてい
る。この栓体15を貫通して、水素ガス導入用パイプ1
6hと排出用パイプ16bが中空体11内に設置されて
いる。パイプ16yLの下端と多孔質膜12mとの間隔
tは約1問程度とするのがよい。
A plug body 15 is installed to close off the upper end of the hollow body 1. A pipe 1 for introducing hydrogen gas passes through this stopper 15.
6h and a discharge pipe 16b are installed inside the hollow body 11. The distance t between the lower end of the pipe 16yL and the porous membrane 12m is preferably about one inch.

白金膜12hからは、中空体11の下部周囲と感応膜構
造12の周端部を覆う絶縁材(例えばxxxx)73を
介してリード、6接続している。
A lead 6 is connected to the platinum film 12h via an insulating material (for example, xxxx) 73 that covers the lower part of the hollow body 11 and the peripheral edge of the sensitive film structure 12.

■発明の具体的作用 以上の電極装置を用いて溶液中の水素イオン濃度を測定
するには、電極装置10を基準電極(例えは、塩化ナト
リウム飽和カロメル電極)とともに検体液中に入れ、電
極装置lOのリード線14と基準電極とを電圧計に接続
し、基準電極に対する電極装置の起電力(白金膜におけ
る電極電位)を読み取る。この電位値に基いて、予め沖
]定しておいた電極平衡電位対p!(値の関係νIから
PIl値を知ることができる。
■Specific Effects of the Invention To measure the hydrogen ion concentration in a solution using the above-mentioned electrode device, place the electrode device 10 together with a reference electrode (for example, a sodium chloride saturated calomel electrode) into the sample liquid, and The IO lead wire 14 and the reference electrode are connected to a voltmeter, and the electromotive force of the electrode device (electrode potential on the platinum film) with respect to the reference electrode is read. Based on this potential value, the electrode equilibrium potential pair p! (The PIl value can be known from the value relationship νI.

水素イオン透過膜12cは、ポリ(ヒドロキシ芳香族化
合物)および(または)ポリ(オ素含有芳香族化合物)
の電解酸化重合膜であって白金膜12bに直接形成され
たものと、この重合膜上に形成された疎水性膜(例えば
、ポリカーボネート)または疎水性膜と親水性膜(例え
ハ、71?す(ヒrロキシC4〜C6アルキル(メタ)
アクリレート)等)との組合せとの多層膜であることが
望ましい。
The hydrogen ion permeable membrane 12c is made of poly(hydroxy aromatic compound) and/or poly(oxygen-containing aromatic compound)
An electrolytic oxidation polymer film formed directly on the platinum film 12b, and a hydrophobic film (for example, polycarbonate) formed on this polymer film, or a hydrophobic film and a hydrophilic film (for example, 71? (HiroxyC4-C6 alkyl (meth)
It is preferable to use a multilayer film in combination with acrylate (acrylate, etc.).

チューブ11と感応膜構造12とはエポキシ樹脂等の絶
縁性接着剤J3で固定しておくとよい。この絶縁性接着
剤13を通して白金膜12bに接続したリード線14が
外部へ導出1〜でいる。
The tube 11 and the sensitive film structure 12 are preferably fixed with an insulating adhesive J3 such as epoxy resin. A lead wire 14 connected to the platinum film 12b through the insulating adhesive 13 is led out to the outside.

チーープ1ノの他方の開放端は気密な閉塞体15で封止
されておシ、この閉塞体15を通して、多孔質膜12m
近傍に達する・平イブ16aとi4イブ16bとがチュ
ーfll内に挿通している。バイア’ 16 mから水
素ガスがチューブ11内に導入され、余剰のガスはノ4
イグ16bから排出される。
The other open end of the cheap 1 is sealed with an airtight closure 15, and the porous membrane 12m is passed through this closure 15.
Reaching the vicinity - The flat tube 16a and the i4 tube 16b are inserted into the tube full. Hydrogen gas is introduced into the tube 11 from the via' 16 m, and excess gas is
It is discharged from the iguage 16b.

実施例1 ポリエチレン不織布に担持されたポリフッ化ビニリデン
多孔質膜(バイオメディカル社製ダイヤフィルターM型
)の表向(第1図121L)に白金を、厚さ0.04μ
mにスパッタ法(二極式高速スバ、り法(200WX1
5秒))で破着した。この多孔質膜担持白金膜を、白金
膜が外側となるようにシャントコネクター(ポリカーy
Nネート製中空体、開口部直径3憩)の開口部を覆って
設置し、エポキシ樹脂13で固定した。白金膜の端部に
は予め銅線を銀ペーストで接続してリード線14として
おいた。多孔質膜121L近傍に達するパイプ16 a
 (xxxx製)、9− 排気パイプ16b(xxxx)を設定し、・ぐイア’ 
16 aは口径1咽で多孔質膜12h上に1咽に設定し
た。乙の電極構造の白金膜上に、通常の三電極式電解セ
ルを用いて下記条件の下でポリ(フェノール−1,2−
ジアミノベンゼン)電解酸化重合膜を形成した。
Example 1 Platinum was applied to the surface (121L in Fig. 1) of a polyvinylidene fluoride porous membrane (Diafilter M type manufactured by Biomedical Co., Ltd.) supported on a polyethylene nonwoven fabric to a thickness of 0.04μ.
Sputtering method (dipolar high speed sputtering method (200WX1)
The bond broke in 5 seconds)). This porous membrane supported platinum membrane was connected to a shunt connector (polycarbonate y
It was installed to cover the opening of a hollow body made of Nate (opening diameter 3 mm) and fixed with epoxy resin 13. A copper wire was previously connected to the end of the platinum film using silver paste to form a lead wire 14. Pipe 16a reaching near porous membrane 121L
(made by xxxx), 9- Set the exhaust pipe 16b (xxxx), and
16a had a diameter of 1 mm and was set on a porous membrane 12h. Poly(phenol-1,2-
diaminobenzene) electrolytically oxidized polymer film was formed.

動作電極二上で得た白金被覆膜電極 基準電極:飽和カロメル電極 対 極:白金網 電解液:5mMフェノール、5mM1.2−ジアミノベ
ンゼンおよび30 mMの 水酸化ナトリウムを含むメタノー ル溶液。電解前にアルゴンガスで 充分に脱酸素した。
Platinum coated membrane electrode obtained on working electrode 2 Reference electrode: saturated calomel electrode Counter electrode: Platinum mesh electrolyte: methanol solution containing 5mM phenol, 5mM 1.2-diaminobenzene and 30mM sodium hydroxide. Before electrolysis, oxygen was sufficiently removed with argon gas.

すなわち、印加電圧を0■と1?ルト(対飽和カロメル
電極、 SCE )の間で走査させて、フェノールおよ
び1.2−ジアミノベンゼンの″酸化反応が白金膜上で
生起していることを確認した後、印加電圧を1.0テル
ト(対SCE )で止め、3分間定電位電解し、白金膜
上に所望の電解酸10− 化■゛合11&iを形成した。こわを蒸留水で3回収上
洗浄I7た。
In other words, the applied voltage is 0■ or 1? After confirming that the oxidation reaction of phenol and 1,2-diaminobenzene was occurring on the platinum film by scanning between saturated calomel electrodes (SCE), the applied voltage was increased to 1.0 telt. (vs. SCE), and constant potential electrolysis was carried out for 3 minutes to form the desired electrolytic acid 10-containing compound 11&i on the platinum membrane.The stiffness was collected three times with distilled water and washed I7.

次に、土WI−: Tri: lリイ酸化i、[i合f
lu土に高周波スノやツタ装置id (2o o w 
x を分間)を用いてポリカーがネート膜を(1,+1
2μmの厚さに被着した。その後、この11?リカー7
1−ネート膜上にポリ2−ヒドロキシエチルメタクリレ
ート(P−HEMA )のメタノール溶液(濃度0.5
 ’tri: bt%)1μlをキャストし、p−■r
gMAlla (厚さ01μm)を形成した。このP−
T(EMA膜1 糾(I Mrad )を照射した。こ
うして得た電極構造のP−T(F、MA膜の所定表面を
除く周囲を工yJeキシ樹脂で機構した。この′2!I
極構造のコネクター他端を栓で気密に封止し、水素ガス
導入パイプおよび排出・Pイブを第1図に示すように組
み込み、所望の電極装置を得た。
Next, soil WI−: Tri: l oxidation i, [i combination f
high frequency snow and ivy device id (2o o w
x minutes), the polycarbonate membrane was
A thickness of 2 μm was deposited. After that, this 11? liquor 7
A methanol solution of poly 2-hydroxyethyl methacrylate (P-HEMA) (concentration 0.5
'tri: bt%) Cast 1 μl, p-■r
gMAlla (thickness: 01 μm) was formed. This P-
The periphery of the thus obtained electrode structure P-T (F, MA film except for a predetermined surface) was irradiated with a resin.
The other end of the electrode structure connector was hermetically sealed with a stopper, and a hydrogen gas introduction pipe and a discharge pipe were assembled as shown in FIG. 1 to obtain a desired electrode device.

こうして得た′11f、極装置−を基準電極としての銀
/塩化銀電極とともに標準リン酸緩衝液(P116.8
6)が循環しているフローセル中に挿入し、水素イオン
測定の・IL衡電位に及ぼす測定液中の溶存酸素ガス圧
(PO2)の影響を調べた。結果を表1に示す。なお、
水素ガスは760 mm Hgで′電極装置内に導入し
た。
The thus obtained '11f, electrode device - was used with a standard phosphate buffer solution (P116.8) together with a silver/silver chloride electrode as a reference electrode.
6) was inserted into a circulating flow cell, and the influence of dissolved oxygen gas pressure (PO2) in the measurement liquid on the IL equilibrium potential of hydrogen ion measurement was investigated. The results are shown in Table 1. In addition,
Hydrogen gas was introduced into the electrode apparatus at 760 mm Hg.

*平衡電位値がほぼ一定に達するまでの時間測定温度3
7℃±1℃で実施しだ。
*Time measurement temperature until equilibrium potential value reaches almost constant value 3
It was carried out at 7℃±1℃.

この結果、Po2600 mmHgまでの酸素濃度であ
れば溶存酸素の影響を受けず、また応答速度も早い。
As a result, if the oxygen concentration is up to Po2600 mmHg, it will not be affected by dissolved oxygen, and the response speed will be fast.

次に、上記電極装置を用い、リン酸標準緩衝液のPHを
4.0から80まで変化させたときの平イ奮区位値の変
化をめたところ、Po2が192inHgおよび259
 mugにおいてP111当F) 35mVの傾きを持
つ直線関係を得た。また、このときの平衡電位の応答時
間はそれぞれ1分以内であった。したかっ−C1水素イ
オン濃度の広範囲にわたって、Po2か最高259 +
mmHg迄であれば、Po2の影響をほとんど受けずに
、tl測定が可能である。
Next, using the above electrode device, we measured the change in the normal range value when the pH of the phosphate standard buffer solution was changed from 4.0 to 80, and found that Po2 was 192 inHg and 259 inHg.
A linear relationship with a slope of 35 mV was obtained. Moreover, the response time of the equilibrium potential at this time was within 1 minute. - Over a wide range of C1 hydrogen ion concentrations, Po2 was up to 259 +
Up to mmHg, tl measurement is possible without being affected by Po2.

実施し112 ポリカーylぐネート膜を破着しなかった以外0実施例
1と同様に(〜で所望の電極装置を作成した。
Implementation 112 A desired electrode device was prepared in the same manner as in Example 1 except that the polycarbonate film was not ruptured.

実施I+l11と同様にしてP。2による影響を調べた
結果を、表2に示す。
P in the same manner as in implementation I+l11. Table 2 shows the results of examining the influence of 2.

との結果、Po2.600 mmHrrの02濃度の高
領域でも、又Po2.9 mnHg 02 ?/11度
低領域でも平衡13− 電位値はほとんど変化せず、)(+is+++定が可能
である。
As a result, even in the high 02 concentration region of Po2.600 mmHrr, Po2.9 mnHg 02 ? Even in the /11 degree low region, the equilibrium 13- potential value hardly changes, and it is possible to keep )(+is+++ constant).

また、実施例1と同様にl旧直と平1対′螺位1直との
関係を調べた結果44 mV7’i+Ilの傾きを持つ
直線関係を得た。なお、平衡電位の応答時間は1分以内
であった。
In addition, as in Example 1, the relationship between l-old straight and flat 1 versus 'spiral 1' was investigated, and as a result, a linear relationship with a slope of 44 mV7'i+Il was obtained. Note that the response time of the equilibrium potential was within 1 minute.

実施例3 実1(Mシリ1の電極装置を、ウサギのケイ動脈からの
動脈血を血液回路を経てゲイ静脈にもどす体外循環回路
中に設置し、本発明電極の平衡電位値が血液中のP。2
にどの程度影響を受けるか調べた。比較電極には寒天塩
橋で液絡をとったkg/AgC1電極を用いた。血液中
のPo2変化はホローファイバ型人工肺を用いて行った
。人工肺に、導入した全ガス圧が760 tnrnHg
 (PO2+PCO2十pN2)一定としかつPco2
を40 wnHgの一定値に保ってPo2をRI7,1
節した。またP。2はラジオメータ社の血圧ガス測定装
置によって測定した。
Example 3 The electrode device of Example 1 (M Series 1) was installed in an extracorporeal circulation circuit that returns arterial blood from the Kei artery of a rabbit to the Gei vein via the blood circuit, and the equilibrium potential value of the electrode of the present invention was determined to be equal to P in the blood. .2
We investigated to what extent it is affected by A kg/AgC1 electrode with a liquid junction made of an agar-salt bridge was used as a reference electrode. Po2 changes in blood were measured using a hollow fiber oxygenator. The total gas pressure introduced into the oxygenator was 760 tnrnHg.
(PO2 + PCO2 0 pN2) constant and Pco2
is maintained at a constant value of 40 wnHg and Po2 is set to RI7.1.
It was knotted. Also P. 2 was measured using a blood pressure gas measuring device manufactured by Radiometer.

実験結果を表3に示す。The experimental results are shown in Table 3.

14− 表 3 1 50.7 −(i43.1 7.4512 108
.2 −650.6 7.1163 112.5 −6
55.0 7.]、584 153.3 −656.4
 7.1605 ]、97.8 −647.6 7.1
546 296 −623.5 7.1517 449
 −574.8 7.1538 561 −563.9
 7.1689 67.5 −569.1. 7.1.
6610 428 −545.9 7.]、6411 
69.4 −576.7 7.15812 425 −
549.7 7.16413 199.9 −568.
9 7.15014 235.1 −567.2 6.
76815 270.0 −563.4 6.530表
3の結果から、Po2200 mmHg1では電極電位
値(6価)は溶存酸表の影響をほとんど受けない。しか
し、Po2が200 mm Hg以上になるとE値はP
O2濃度の影響を受けるようになることが明らかとなっ
た。
14-Table 3 1 50.7-(i43.1 7.4512 108
.. 2 -650.6 7.1163 112.5 -6
55.0 7. ], 584 153.3 -656.4
7.1605], 97.8 -647.6 7.1
546 296 -623.5 7.1517 449
-574.8 7.1538 561 -563.9
7.1689 67.5 -569.1. 7.1.
6610 428 -545.9 7. ], 6411
69.4 -576.7 7.15812 425 -
549.7 7.16413 199.9 -568.
9 7.15014 235.1 -567.2 6.
76815 270.0 -563.4 6.530 From the results in Table 3, at Po2200 mmHg1, the electrode potential value (hexavalent) is hardly affected by the dissolved acid level. However, when Po2 exceeds 200 mm Hg, the E value becomes P
It has become clear that the temperature is affected by the O2 concentration.

実施しu4 ポリ−エテルへキシルメタクリレート (P−HEMA)膜を形成させなかった以外は実施列1
と同様にして所望の電極装置を作製した。そして、多孔
質膜近傍にH2ガス流速10 tnl/gの割合で流し
たから、■+濃度を測定した。
Run u4 Run 1 except that no poly-etherhexyl methacrylate (P-HEMA) film was formed.
A desired electrode device was produced in the same manner as above. Then, since H2 gas was flowed near the porous membrane at a flow rate of 10 tnl/g, the ``+'' concentration was measured.

この電極装置を用い、それぞれ実施1+ll 1および
実施例3(ただし、被検動物はイヌである)と同様にし
てP。2濃度変化の平衡電位値への影響を調べたところ
、各々表4および表5に示す結果を得た。
Using this electrode device, P was carried out in the same manner as in Example 1+11 and Example 3 (however, the test animal was a dog). When the influence of 2 concentration changes on the equilibrium potential value was investigated, the results shown in Tables 4 and 5, respectively, were obtained.

人 5 (イヌのケイ動脈血中) 表4に示す平衡′電位値とP。2との関係をプロットす
ると第2図に純8で示す直線関係が得られた。
Human 5 (Canine arterial blood) Equilibrium potential values and P shown in Table 4. When the relationship with 2 was plotted, a linear relationship as shown by 8 in Figure 2 was obtained.

との自゛線の#4きから5 mV/log Po2.で
あり、溶存酸素分圧による影響はイ愼めて少ないことが
わかった。なお、平衡電位が一定1的に達する応答速度
は5分以内である。
5 mV/log Po2. It was found that the influence of dissolved oxygen partial pressure was extremely small. Note that the response speed at which the equilibrium potential reaches a constant level is within 5 minutes.

また、平衡′電位値とPII変化(あらかじめ市販pi
(メーターで測定した標準緩衝W* )はネルンストの
関係を満足し、このII!線の勾配は44mV/l)H
17−− (37℃)であった。
In addition, the equilibrium potential value and PII change (previously commercially available Pi
(Standard buffer W* measured with a meter) satisfies the Nernst relation, and this II! The slope of the line is 44mV/l)H
17-- (37°C).

また、表5に示す平衡電位値とP。2との関係をプロッ
トすると第2図に線すで示す関係が得られた。このこと
かられかるように、Po2=200mnHgまではP。
In addition, the equilibrium potential value and P shown in Table 5. When the relationship with 2 was plotted, the relationship shown by the line in FIG. 2 was obtained. As can be seen from this, P until Po2=200mnHg.

2分圧の影響をほとんど受けないけれども、200 m
mHg以上で急激に平衡電位値が上昇する傾向が見られ
た。したがって、本発明の膜組成電極はPo 2 ””
 20 OmmHg以内であれば血中のPl]値を測定
できる。そして、この場合の応答速度は1分以内である
2Although it is hardly affected by partial pressure, 200 m
There was a tendency for the equilibrium potential value to rise rapidly above mHg. Therefore, the membrane composition electrode of the present invention has Po 2 ""
Blood Pl] value can be measured if it is within 20 OmmHg. The response speed in this case is within 1 minute.

実施例5 実施例4と同様の電極装置において、イオン保画膜の作
製時の条件と、測定(P021B)値との関係を検討し
た。ポリカーボネート膜を被覆する際のス・9ツタ条件
(電力量WattXスパッタ時間)を変えた場合の平衡
電位値(測定温度37℃±0.1℃)とP。2(標準緩
衝液中の溶存酸素分圧)の関係を調べた(表6参照)。
Example 5 In the same electrode device as in Example 4, the relationship between the conditions during the production of the ion image retention film and the measured (P021B) value was investigated. Equilibrium potential value (measurement temperature 37°C ± 0.1°C) and P when changing the sputtering conditions (power consumption Watt x sputtering time) when coating a polycarbonate film. 2 (dissolved oxygen partial pressure in standard buffer) was investigated (see Table 6).

18− ■発明の具体的効果 以上述べたように、この発明の電極装置を用いると、検
体液中における溶存酸素の影徘が少なく検体液中の水素
イオン痰度を安定に測定できる。まだ、その際の応答時
間も短かい。また、検体液中に水素ガスを直接吹き込む
ことがないので、検体液への悪影響度合が少ない。
18- (1) Specific Effects of the Invention As described above, by using the electrode device of the present invention, the hydrogen ion sputum content in the specimen fluid can be stably measured with less influence of dissolved oxygen in the specimen fluid. However, the response time is still short. Furthermore, since hydrogen gas is not directly blown into the sample liquid, the degree of adverse effect on the sample liquid is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う水素イオン濃度測定用電極装
置を示す図、第2図はこの発明の電極装置の特性を示す
グラフ図。 1ノ・・・中空体、12a・・・多孔質膜、12b・・
・白金膜、12c・・・水素イオン選択透過膜、14・
・・リード線、13・・・絶縁材、16a・・・気体吸
込管、16b・・・気体排出管口、15・・・充填枠。
FIG. 1 is a diagram showing an electrode device for measuring hydrogen ion concentration according to the present invention, and FIG. 2 is a graph diagram showing the characteristics of the electrode device according to the present invention. 1 No. Hollow body, 12a Porous membrane, 12b...
・Platinum membrane, 12c... Hydrogen ion selective permeation membrane, 14・
...Lead wire, 13...Insulating material, 16a...Gas suction pipe, 16b...Gas discharge pipe opening, 15...Filling frame.

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁性相打で形成された中空体、該中空体の内外
に連通ずる開口1部を閉塞する水素イオン濃度感応膜構
造であって多孔質膜と、この多孔質膜外側面一ヒに被着
された白金膜と、この白金膜上に形成された水素イオン
選択透過膜とを具備するもの、および該中空体内に水素
ガスを導入するだめの機構を備えてなり、該白金膜にお
ける電位応答によって液体中の水素イオン濃度を測定す
るだめの電極装置。
(1) A hollow body formed by mutually insulating bonding, a hydrogen ion concentration-sensitive membrane structure that closes one part of the opening that communicates between the inside and outside of the hollow body, and includes a porous membrane and an outer surface of the porous membrane. and a hydrogen ion selectively permeable membrane formed on the platinum membrane, and a mechanism for introducing hydrogen gas into the hollow body. An electrode device that measures the hydrogen ion concentration in a liquid using potential response.
(2)水素イオン選択透過膜がヒドロキシ芳香族化合物
および窒素含有芳香族化合物からなる群の中から選ばれ
た少lくとも1種の芳香族化合物の電解酸化1.11合
膜であって白金膜上に直接形成されたものと、この電解
酸化重合膜上に形成された疎水性膜または疎水性膜およ
び親水性膜の組合せとを具備してなる特許請求の範囲第
1項記載の電極装置。
(2) The hydrogen ion selectively permeable membrane is an electrolytically oxidized 1.11 composite membrane of at least one aromatic compound selected from the group consisting of hydroxy aromatic compounds and nitrogen-containing aromatic compounds, and the hydrogen ion permselective membrane is platinum-based. An electrode device according to claim 1, comprising an electrode device formed directly on a membrane, and a hydrophobic membrane or a combination of a hydrophobic membrane and a hydrophilic membrane formed on this electrolytic oxidation polymer membrane. .
(3)水素ガス導入機構が中空体の内外に連通し、多孔
質膜内側面近傍に水素ガスを導入する第1のパイプと、
中空体内の余剰の水素ガスを導出する第2のパイプとを
具備してなる特許請求の範囲第1項または第2項記載の
電極装置。
(3) a first pipe in which a hydrogen gas introduction mechanism communicates with the inside and outside of the hollow body and introduces hydrogen gas into the vicinity of the inner surface of the porous membrane;
3. The electrode device according to claim 1, further comprising a second pipe for extracting excess hydrogen gas from the hollow body.
JP58161470A 1983-09-02 1983-09-02 Electrode apparatus for measuring concentration of hydrogen ion Granted JPS6053841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58161470A JPS6053841A (en) 1983-09-02 1983-09-02 Electrode apparatus for measuring concentration of hydrogen ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58161470A JPS6053841A (en) 1983-09-02 1983-09-02 Electrode apparatus for measuring concentration of hydrogen ion

Publications (2)

Publication Number Publication Date
JPS6053841A true JPS6053841A (en) 1985-03-27
JPH0367220B2 JPH0367220B2 (en) 1991-10-22

Family

ID=15735703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58161470A Granted JPS6053841A (en) 1983-09-02 1983-09-02 Electrode apparatus for measuring concentration of hydrogen ion

Country Status (1)

Country Link
JP (1) JPS6053841A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429145A2 (en) * 1986-09-17 1991-05-29 K. Jagan Mohan Rao Ion selective electrode
US5161058A (en) * 1988-05-31 1992-11-03 Canon Kabushiki Kaisha Focusing screen
KR100345233B1 (en) * 1999-11-08 2002-07-25 한국전기연구원 Toxic gas measuring apparatus and an apparatus for controlling the amount of fuel to use according to the measured toxic gases from vehicles
US8529114B2 (en) 2007-11-13 2013-09-10 Panasonic Corporation Sheet and light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429145A2 (en) * 1986-09-17 1991-05-29 K. Jagan Mohan Rao Ion selective electrode
US5161058A (en) * 1988-05-31 1992-11-03 Canon Kabushiki Kaisha Focusing screen
KR100345233B1 (en) * 1999-11-08 2002-07-25 한국전기연구원 Toxic gas measuring apparatus and an apparatus for controlling the amount of fuel to use according to the measured toxic gases from vehicles
US8529114B2 (en) 2007-11-13 2013-09-10 Panasonic Corporation Sheet and light emitting device

Also Published As

Publication number Publication date
JPH0367220B2 (en) 1991-10-22

Similar Documents

Publication Publication Date Title
CA2809149C (en) Analytical instruments and biosensors, and methods for increasing their accuracy and effective life
US4861454A (en) Oxygen sensor
CA2448713C (en) Analytical instruments, biosensors and methods thereof
EP0025110B1 (en) Electrochemical measuring apparatus provided with an enzyme electrode
EP2261647B1 (en) Composite membrane for an enzyme sensor
US3911901A (en) In vivo hydrogen ion sensor
US4844097A (en) Apparatus and method for testing liquids
JPS6026978B2 (en) Polarographic analysis method
JP2003516549A (en) Device and method for enhanced hydration of dry chemical sensors
JP2000512745A (en) Membrane electrode for measuring glucose concentration in liquid
JPH03503677A (en) reference electrode
JPS63304150A (en) Enzyme electrode for inspecting glucose and glucose inspection
JPS6114565A (en) Instrument for measuring concentration of hydrogen ion
JPS6114562A (en) Ph measuring instrument
JPS6053841A (en) Electrode apparatus for measuring concentration of hydrogen ion
DK174989B1 (en) Enzyme electrode and method of assay
JPS61155949A (en) Ph sensor
JPS6052759A (en) Oxygen sensor
JP4184568B2 (en) Ion selective electrode
CN106483182A (en) A kind of dry type determines biology sensor of hemoglobin and preparation method thereof
JPH08502348A (en) Sensor device
JPS62261341A (en) Internal stay type sensor for measuring level of glucose
WO2022051888A1 (en) Film-forming composition for biosensor, and preparation method therefor
JPH0368691B2 (en)
JPS63187149A (en) Oxygen sensor