JPS6053769B2 - Mixing ratio control device for electronically controlled fuel injection engines - Google Patents

Mixing ratio control device for electronically controlled fuel injection engines

Info

Publication number
JPS6053769B2
JPS6053769B2 JP3439380A JP3439380A JPS6053769B2 JP S6053769 B2 JPS6053769 B2 JP S6053769B2 JP 3439380 A JP3439380 A JP 3439380A JP 3439380 A JP3439380 A JP 3439380A JP S6053769 B2 JPS6053769 B2 JP S6053769B2
Authority
JP
Japan
Prior art keywords
fuel
amount
air amount
signal
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3439380A
Other languages
Japanese (ja)
Other versions
JPS56129731A (en
Inventor
正寛 日比野
俊一 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3439380A priority Critical patent/JPS6053769B2/en
Publication of JPS56129731A publication Critical patent/JPS56129731A/en
Publication of JPS6053769B2 publication Critical patent/JPS6053769B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【発明の詳細な説明】 この発明は、電子制御燃料噴射機関の混合比制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mixture ratio control device for an electronically controlled fuel injection engine.

従来の混合比制御装置としては特開昭52一1514
21に示されるように、市街地走行域を機関回の空燃比
を効外走行時より濃くするものがある。
A conventional mixing ratio control device is JP-A-52-1514.
As shown in Fig. 21, there is a system in which the air-fuel ratio at engine speed is made richer when driving in an urban area than when driving outside the engine.

しカルながら、このように一定の機関回転数および吸
入負圧により市街地走行を判別すると、低負荷で回転変
動の多い市街地走行では混合比の切換頻度が増大して運
転性が悪化すると共に、高負荷時には燃料増量が解除に
なり出力不足を生じるという問題点がある。 この発明
は、このような従来の問題点に着目してなされたもので
、エアフローメータから吸入空気量検出信号と絞弁開度
スイッチからの絞弁開度信号を用いて混合比制御をする
ことにより上記問題点を解決し、定常走行時の混合比切
換時のトルク変化によるショックを低減すると共に、混
合比の切換自体もその頻度を減らして、信頼性、制御精
度、応答性、機関出力、運転性等の諸性能の向上を図る
ことを目的とする。
However, if urban driving is determined based on a constant engine speed and suction negative pressure in this way, when driving in urban areas with low load and many rotational fluctuations, the frequency of switching the mixture ratio increases, deteriorating drivability, and increasing the engine speed. There is a problem in that the fuel increase is canceled when the engine is under load, resulting in a lack of output. This invention was made by focusing on these conventional problems, and involves controlling the mixture ratio using an intake air amount detection signal from an air flow meter and a throttle valve opening signal from a throttle valve opening switch. This solves the above problems and reduces the shock caused by torque changes when changing the mixture ratio during steady driving, and also reduces the frequency of changing the mixture ratio itself, improving reliability, control accuracy, responsiveness, engine output, The purpose is to improve various performances such as drivability.

そのために、この発明は吸気路に設けた絞弁の開度を
検出する絞弁開度検出器と、エアフローメータにより検
出した吸入空気量信号を空気量の設定値ど比較する空気
量比較手段と、空気量が設定値未満の市街地運転域のと
き燃料を増量する第1増量手段と、空気量が設定値以上
でかつ絞弁が設定開度未満のとき第1増量手段による増
量を解除する増量解除手段と、空気量が設定値以上でか
つ絞弁が設定開度以上の高負荷運転域のとき燃料を増量
する第2増量手段とを設け、少なくとも3つの運転域で
混合比を変えるようにしたものである。
To this end, the present invention includes a throttle valve opening degree detector that detects the opening degree of a throttle valve provided in an intake passage, and an air amount comparison means that compares an intake air amount signal detected by an air flow meter with an air amount setting value. , a first increasing means for increasing the amount of fuel when the air amount is less than a set value in an urban driving area; and a first amount increasing means for canceling the increase by the first amount increasing means when the air amount is more than the set value and the throttle valve is less than the set opening degree. A release means and a second increase means for increasing the amount of fuel when the air amount is at least a set value and the throttle valve is in a high-load operating range at a set opening or more are provided, and the mixture ratio is changed in at least three operating ranges. This is what I did.

以下、この発明を図面に基づいて説明する。The present invention will be explained below based on the drawings.

第2図は、この発明の一実施例を示す図である。まず構
成を説明すると、、1はスロットルチャンバ、2は吸気
マニホールド、3は排気マニホールド、4はEGR(排
気還流)バルブ、5は負圧進角制御装置、6はデイスト
リビユータ、7は絞弁であつて、絞弁7の上流の吸気通
路8に設けたエアフローメータ9で検出された吸入空気
量の電気信号(吸入空気量信号)S1と、絞弁7に設け
た絞弁開度スイッチ10で検出された絞弁開度信号S2
と、イグニッションコイル(点火柱)11のマイナス端
子より検知された点火信号S3と、および図示しない水
温センサで検出された冷却水温信号や吸気温センサ9″
で検出された吸気温信号等S4とが、コントロールユニ
ット12に送られ、コントロールユニット12により燃
料噴射弁(フユーエルインジエクター)13の噴射燃料
の制御が行われる。
FIG. 2 is a diagram showing an embodiment of the present invention. First, to explain the configuration, 1 is the throttle chamber, 2 is the intake manifold, 3 is the exhaust manifold, 4 is the EGR (exhaust gas recirculation) valve, 5 is the negative pressure advance control device, 6 is the distributor, and 7 is the throttle valve. , an electric signal (intake air amount signal) S1 of the intake air amount detected by an air flow meter 9 provided in the intake passage 8 upstream of the throttle valve 7, and a throttle valve opening switch 10 provided in the throttle valve 7. Throttle valve opening signal S2 detected in
, the ignition signal S3 detected from the negative terminal of the ignition coil (ignition column) 11, and the cooling water temperature signal detected by the water temperature sensor (not shown) and the intake air temperature sensor 9''
The detected intake temperature signal S4 is sent to the control unit 12, and the control unit 12 controls the fuel injected by the fuel injection valve (fuel injector) 13.

第3図は、上記コントロールユニット12の制御回路の
一例を示すものであるが、次にこの図に基つき作用を説
明する。
FIG. 3 shows an example of the control circuit of the control unit 12. Next, the operation will be explained based on this figure.

まず、イグニッションコイル11の点火信号S3が、エ
ンジン回転信号発生回路21で波形整形されてエンジン
回転パルス信号P1となる。
First, the ignition signal S3 of the ignition coil 11 is waveform-shaped by the engine rotation signal generation circuit 21 to become the engine rotation pulse signal P1.

このパルス信号P1とエアフローメータ9の吸入空気量
信号S1とが、燃料噴射パルス幅を制御する基本パルス
発生回路22に入力されて基本パルスP2が算出され、
そのパルスP2は増量パルス発生回路23へ入力される
。吸入空気量信号S1は、また空気量信号比較及び増量
信号発生回路24にも入力され、吸入空気量Qと設定空
気量Q1の大小関係の判別が行われる。
This pulse signal P1 and the intake air amount signal S1 of the air flow meter 9 are input to a basic pulse generation circuit 22 that controls the fuel injection pulse width, and a basic pulse P2 is calculated.
The pulse P2 is input to the increase pulse generation circuit 23. The intake air amount signal S1 is also input to the air amount signal comparison and increase signal generation circuit 24, and the magnitude relationship between the intake air amount Q and the set air amount Q1 is determined.

一般に、実際の吸入空気量Qと吸入空気量信号S1の電
圧Vの関係は、第4図に示すように、吸入空気量Qの増
大につれて吸入空気量信号S1の電圧vは小さくなる。
Generally, the relationship between the actual intake air amount Q and the voltage V of the intake air amount signal S1 is as shown in FIG. 4, as the voltage V of the intake air amount signal S1 decreases as the intake air amount Q increases.

そこで、吸入空気量Qが設定値Q1(例えば、ロードロ
ード50−1Hに相当するQ1=30イ/時)以下の時
、即ち吸入空気量信号S1が設定電圧値■1より大にな
る場合(例えば、第5図のIの運転領域時の場合)には
、上記回路24より増量指示信号が第1増量回路25に
送られて増量パルス幅が算出され、そのパルス幅が増量
パルス発生回路23へ送られる。増量パルス発生回路2
3では入力した増量パルス幅から増量パルスを発生し、
前記基本パルスP2と増量パルスを合成した合成パルス
P3を出力増幅回路26へ出力する。
Therefore, when the intake air amount Q is less than the set value Q1 (for example, Q1 = 30 i/hour corresponding to a load of 50-1H), that is, when the intake air amount signal S1 becomes larger than the set voltage value ■1 ( For example, in the case of the operating region I in FIG. sent to. Increased pulse generation circuit 2
In 3, an increase pulse is generated from the input increase pulse width,
A composite pulse P3 obtained by combining the basic pulse P2 and the increased pulse is output to the output amplification circuit 26.

合成パルスP3は出力増幅回”路26を経て増幅されて
噴射パルスP4となり、噴射弁13に伝達されて、これ
を作動し、混合比を濃くする(例えば空燃比(A/F)
13〜15)(第6図参照)。次に、吸入空気量信号S
1の電圧が設定値以下に変化した場合(例えば第5図の
■の領域時)には、前記空気量信号比較回路24より増
量解除指示信号が出力される。
The composite pulse P3 is amplified through the output amplification circuit 26 to become an injection pulse P4, which is transmitted to the injection valve 13 and actuates it to enrich the mixture ratio (for example, the air-fuel ratio (A/F)).
13-15) (see Figure 6). Next, the intake air amount signal S
When the voltage No. 1 changes below the set value (for example, in the area of ■ in FIG. 5), the air amount signal comparison circuit 24 outputs an air amount increase release instruction signal.

この指示信号は増量解除を一定時間(例えば5秒から托
秒間)遅らせるための増量解除遅延回路27を経て遅延
され、増量解除回路28により増量解除信号P5となる
。この増量解除信号P5が第1増量回路25に入ると、
第1増量回路25はその作動を停止する。そのため、基
本パルスP2のパルス幅がそのまま出力増幅回路26を
経て噴射弁13に伝達されるから混合比は薄くなる(例
えば、A/F=15〜17)(第6図参照)。上記増量
解除遅延回路27は、車両の発進時等で短時間に吸入空
気量が増大し、次に定常走行に移行することで吸入空気
量が減少するような場合に、増量の作動や解除が交互に
頻繁に行なわれると、運転性を損うため、その防止と制
御の安定性を図るために設けられたものである。
This instruction signal is delayed through an increase canceling delay circuit 27 for delaying the canceling of the increase for a certain period of time (for example, 5 seconds to one second), and is turned into an increase cancel signal P5 by the increase cancel circuit 28. When this increase release signal P5 enters the first increase circuit 25,
The first increase circuit 25 stops its operation. Therefore, since the pulse width of the basic pulse P2 is directly transmitted to the injection valve 13 via the output amplification circuit 26, the mixture ratio becomes thin (for example, A/F=15 to 17) (see FIG. 6). The increase release delay circuit 27 is configured to activate or release the increase when the intake air amount increases in a short period of time, such as when the vehicle starts, and then decreases when the vehicle shifts to steady driving. Frequent alternation would impair drivability, so this was provided to prevent this and improve control stability.

一方、絞弁開度スイッチ10が設定絞弁開度(例えば4
0度)以上になると、絞弁スイッチ信号(絞弁開度信号
)S2が第2増量回路29と、前記増量解除回路28に
入力される。
On the other hand, the throttle valve opening switch 10 is set to the throttle valve opening (for example, 4
0 degree) or more, the throttle valve switch signal (throttle valve opening signal) S2 is input to the second increase circuit 29 and the increase release circuit 28.

ことにより、第1増量回路25は作動を停止し、第2増
量回路29が作動することにより、高負荷域での機関要
求混合比(例えばA/F=11〜14)に合つた増量燃
料を独立して供給することができる(第5図の■および
■の運転領域を参照)。即ち、第2増量回路29では絞
弁開度に応じた増量パルス幅を算出してこれを増量パル
ス発生回路23へ出力するからである。また、冷却水温
信号などのその他の制御信号S,はその他の増量回路3
0に入力して、増量パルス幅が算出される。
As a result, the first increase circuit 25 stops operating, and the second increase circuit 29 operates, thereby increasing the amount of fuel that matches the engine required mixture ratio (for example, A/F = 11 to 14) in the high load range. It can be supplied independently (see the operating ranges ■ and ■ in Figure 5). That is, the second increase circuit 29 calculates the increase pulse width according to the opening degree of the throttle valve and outputs it to the increase pulse generation circuit 23. In addition, other control signals S, such as a cooling water temperature signal, are transmitted to the other increase circuit 3.
0 and the increase pulse width is calculated.

この増量パルス幅は増量パルス発生回路23により第1
または第2増量回路25または29で出力される増量パ
ルス幅と基本パルス幅と合成され、噴射パルスP4のパ
ルス幅が決定される(第7図参照)。そのため、機関の
暖機状態に応じた混合比要求に対し、細かな対応が可能
になる。第5図は、上記実施例の混合比特性図であるが
、一定空気量制御曲線Aに達するまでの比較的低負荷の
領域1では、第1増量回路25より増量パルス幅が出力
されるから、やや濃い基本混合比となる。
This increasing pulse width is determined by the increasing pulse generating circuit 23.
Alternatively, the increasing pulse width output from the second increasing circuit 25 or 29 is combined with the basic pulse width to determine the pulse width of the injection pulse P4 (see FIG. 7). Therefore, it becomes possible to respond in detail to the mixture ratio request according to the warm-up state of the engine. FIG. 5 is a mixture ratio characteristic diagram of the above embodiment. In the relatively low load region 1 until the constant air flow control curve A is reached, the increase pulse width is output from the first increase circuit 25. , resulting in a slightly richer basic mixture ratio.

一定空気量制御曲線Aと一定絞弁開度(400)曲線B
とではさまれた比較的中負荷の領域■では、第1増量回
路25が作動を停止するので、混合比は薄くなる。絞弁
開度が一定以上となる一定絞弁開度曲線Bと全負荷曲線
Cとで囲まれた高負荷域■および■では、第2増量回路
29が作動するので濃い出力混合比となる。なお、実線
Dは10モードエミツシヨン運転領域を示す曲線、実線
EはR/L(ロードロード)走行曲線である。これらの
運転領域1〜■の混合比の状態を表にしたのが第2表で
ある。第2表の従来の特性を示す第1表と比較すると、
ほぼ同じになるが、第5図の一定空気量制御曲線Aで混
合比が切換えように吸入空気量に応じた混合比制御が可
能になるため、車両の定常走行時の混合比の切換ショッ
クを防止することができ運転性が改善される。
Constant air flow control curve A and constant throttle valve opening (400) curve B
In the relatively medium load region (2) between 2 and 3, the first increasing circuit 25 stops operating, so the mixture ratio becomes leaner. In the high load ranges (1) and (2) surrounded by the constant throttle valve opening curve B and the full load curve C, where the throttle valve opening is above a certain level, the second increase circuit 29 operates, resulting in a rich output mixture ratio. Note that the solid line D is a curve showing the 10-mode emission operation region, and the solid line E is an R/L (road) running curve. Table 2 shows the mixing ratios of these operating regions 1 to 2. Comparing Table 2 with Table 1 showing the conventional characteristics,
Although the results are almost the same, it is possible to control the mixture ratio according to the intake air amount, as shown in the constant air amount control curve A in Figure 5, which reduces the shock of changing the mixture ratio when the vehicle is running steadily. This can be prevented and drivability is improved.

また、その吸入空気量の検知手段としては、従来の電子
制御燃料噴射機関で基本パルス幅演算用として既に用い
られていたエアフローメータ9の吸入空気量信号S1を
、混合比増量信号として用いることができるため新たな
検知手段を要せず安価になるとともに、システムが簡素
化してシステム全体の信頼性が向上し、かつ制御精度も
向上する。
Furthermore, as a means for detecting the intake air amount, it is possible to use the intake air amount signal S1 of the air flow meter 9, which has already been used for basic pulse width calculation in conventional electronically controlled fuel injection engines, as the mixture ratio increase signal. This makes it possible to reduce the cost by not requiring new detection means, simplify the system, improve the reliability of the entire system, and improve control accuracy.

また、車速・エンジン回転数といつた車両仕様によつて
決まる要素を検知手段に用いていないため、タイヤ径、
フアイナルドライブギヤー比等の車両仕様の異なる車両
にも対応が容易になる利点もある。
In addition, since the detection means does not use factors determined by vehicle specifications such as vehicle speed and engine rotation speed, tire diameter,
Another advantage is that it can be easily adapted to vehicles with different vehicle specifications such as final drive gear ratio.

また、この実施例では設定空気量に達した場合でも、遅
延回路27により増量解除を一定時間保留できるため、
発進時等の一時的な加速状態では吸入空気量が設定値を
超えても、増量を解除せずに持続できるので、良好な運
転性能を確保することができる。
Furthermore, in this embodiment, even if the set air amount is reached, the delay circuit 27 can suspend the release of the air amount increase for a certain period of time.
Even if the intake air amount exceeds a set value in a temporary acceleration state such as when starting, the increase can be maintained without being canceled, so good driving performance can be ensured.

第8図には、この発明のコントロールユニット12の別
の実施例を示す。
FIG. 8 shows another embodiment of the control unit 12 of the invention.

この実施例は、基本パルス発生回路22で得られた基本
パルスP2を単位時間当り基本パルス幅積分回路31で
単位時間当りに積分し、この積分値(ある出力電圧)と
設定値を比較して空気量を判別するものである。
In this embodiment, the basic pulse P2 obtained by the basic pulse generation circuit 22 is integrated per unit time by the basic pulse width integrating circuit 31, and this integrated value (a certain output voltage) is compared with a set value. This is to determine the amount of air.

これは、単位時間当りの基本パルスの積分値が吸入空気
量と比例関係にあることを利用したものであり、上記積
分値は、積分値比較及び増量信号発生回路32で設定値
ど比較され、積分値が設定値以下の時は第1増量回路2
5が作動して混合比が濃くなり、一方積分値が設定値以
上の時は増量解除遅延回路27と増量解除回路28が作
動して第1増量回路25の増量を解除し、混合比を薄く
するように作動する。第9図は、この基本パルス積分法
による増量のタイムチャートを示している。その他の構
成は前記実施例の場合と略同様なので省略する。第10
図には、この発明の他の実施例を示す。
This takes advantage of the fact that the integral value of the basic pulse per unit time is proportional to the amount of intake air, and the above integral value is compared with the set value in the integral value comparison and increase signal generation circuit 32. When the integral value is below the set value, the first increase circuit 2
5 operates to enrich the mixture ratio, and on the other hand, when the integral value is greater than the set value, the increase release delay circuit 27 and the increase release circuit 28 operate to cancel the increase in the amount of the first increase circuit 25 and make the mixture ratio leaner. It operates as follows. FIG. 9 shows a time chart of increase in amount using this basic pulse integration method. The rest of the configuration is substantially the same as that of the previous embodiment, so a description thereof will be omitted. 10th
The figure shows another embodiment of the invention.

この実施例は、吸入空気量信号S1を用いて混合比制御
を行なうだけでなく、点火時期及びEGR制御も行う場
合を示している。一般に混合比を切換えた場合には燃費
、出力、排気工ミッション等から機関要求の点火時期お
よ・びEGR量がその切換の前後で変化する。
This embodiment shows a case where not only mixture ratio control is performed using the intake air amount signal S1, but also ignition timing and EGR control are performed. Generally, when the mixture ratio is switched, the ignition timing and EGR amount required by the engine change before and after the switch, depending on fuel efficiency, output, exhaust engineering mission, etc.

即ち、一般に濃い混合比においては点火時期を進め、か
つEGR量を多くして運転するのが燃費、出力、排気工
ミッションから有利であるが、薄い混合比にした場合は
点火時期を遅らせEGR量を減するノ必要がある。通常
点火時期及びEGR量はそれぞれ負圧信号により制御さ
れており、負圧信号を大気で希釈することにより負圧値
を変えて制御する方法がとらえている。この実施例は、
図示のように点火時期制御負圧信号系通路33及びEG
R制御負圧信号系通路34の合流点にソレノイドバルブ
35を設け、第3図ないし第8図の破線で示したように
、設定空気量以上で作動する増量解除遅延回路27から
の信号を出力増幅回路36で増幅し、上記ソレノイドバ
ルブ35を駆動開弁する。
In other words, it is generally advantageous in terms of fuel economy, output, and exhaust system to operate with a rich mixture ratio by advancing the ignition timing and increasing the amount of EGR, but when using a lean mixture ratio, the ignition timing is delayed and the amount of EGR is increased. It is necessary to reduce the Normally, the ignition timing and the EGR amount are each controlled by a negative pressure signal, and a method of controlling the negative pressure signal by changing the negative pressure value by diluting the negative pressure signal with the atmosphere is available. This example is
As shown in the figure, the ignition timing control negative pressure signal system passage 33 and EG
A solenoid valve 35 is provided at the confluence of the R control negative pressure signal system passage 34, and outputs a signal from the increase release delay circuit 27 that operates when the air amount exceeds the set amount, as shown by the broken line in FIGS. 3 to 8. The amplification circuit 36 amplifies the signal and drives the solenoid valve 35 to open it.

ソレノイドバルブ35が開弁すると、フィルター37を
通して大気と導通状態になり、スロットルチャンバー1
に設けた点火時期制御負圧(■C負圧)取出孔38とデ
イストリユビユータ6の負圧進角制御装置5を連通する
点火時期制御負圧信号系通路33の負圧信号、およびス
ロットルチャンバー1のベンチユリー部39に設けたベ
ンチユリー負圧取出孔40とVVTバルブ(EGR補正
バルブ)41とを連通するEGR制御負圧信号系通路3
4の負圧信号が大気により希釈される。その結果、混合
比切換と同時に負圧の絶対値が小さくなり、点火時期を
遅らせかつEGRを減少させることが可能となる。この
実施例で得られる点火時期とEGR特性を下記第3表に
示す。なお、領域1〜■は第2表と同様に第5図に対応
する運転領域である。ただし、上記■領域では実際には
負圧進角制御装置作動用の負圧源がなくなるので遅角す
る。
When the solenoid valve 35 opens, it is in communication with the atmosphere through the filter 37, and the throttle chamber 1
The negative pressure signal of the ignition timing control negative pressure signal system passage 33 that communicates the ignition timing control negative pressure (■C negative pressure) outlet hole 38 provided in the ignition timing control negative pressure (■C negative pressure) outlet 38 and the negative pressure advance control device 5 of the distributor 6, and the throttle An EGR control negative pressure signal system passage 3 that communicates between a ventilated negative pressure outlet hole 40 provided in the ventilated part 39 of the chamber 1 and a VVT valve (EGR correction valve) 41.
The negative pressure signal of 4 is diluted by the atmosphere. As a result, the absolute value of the negative pressure becomes smaller at the same time as the mixture ratio is switched, making it possible to delay the ignition timing and reduce EGR. The ignition timing and EGR characteristics obtained in this example are shown in Table 3 below. Note that regions 1 to 3 are operating regions corresponding to FIG. 5, similar to Table 2. However, in the above region (2), there is actually no negative pressure source for operating the negative pressure advance angle control device, so the angle is retarded.

また、同様に■領域では実際にはEGRバルブ作動用の
負圧源がなくなるのでEGR量は小から無となる。この
ように、吸入空気量信号S1による増量切換信号で適切
な点火時期やEGR制御ができ、その制御性能を向上さ
せることができる。
Similarly, in the region (2), there is actually no negative pressure source for operating the EGR valve, so the EGR amount changes from small to zero. In this way, appropriate ignition timing and EGR control can be performed using the increase switching signal based on the intake air amount signal S1, and the control performance can be improved.

以上説明してきたように、この発明よれば、吸.気通路
に設けた絞度の開弁を検出する絞弁開度検出器と、エア
フローメータにより検出した吸入空気量信号を空気量の
設定値ど比較する空気量比較手段と、空気量が設定値未
満の市街地運転域のとき燃料を増量する第1増量手段と
、空気量が設定−値以上でかつ絞弁が設定開度未満のと
き第1増量手段による増量を解除する増量解除手段と、
空気量が設定値以上でかつ絞弁が設定開度以上の高負荷
運転域のとき燃料を増量する第2増量手段とを設け、エ
アフローメータと絞弁開度信号とから空気量に応じた少
なくとも3つの運転領域を区画して、前記各領域毎に混
合比を変えるようにしたので、各運転域に適合した精度
のよい混合比制御ができ、従つて燃費、排気組成、出力
性能を共に満足させることができる。
As explained above, according to this invention, the suction. A throttle valve opening degree detector installed in the air passage detects the opening of the throttle valve, an air amount comparison means that compares the intake air amount signal detected by the air flow meter with the air amount set value, and an air amount comparing means that compares the intake air amount signal detected by the air flow meter with the air amount set value. a first amount increasing means for increasing the amount of fuel when the amount of fuel is in an urban driving range of less than 100 degrees, and an amount increasing canceling means for canceling the amount increase by the first amount increasing means when the air amount is equal to or more than a set value and the throttle valve is less than the set opening degree;
a second increase means for increasing the amount of fuel when the air amount is at least a set value and the throttle valve is in a high-load operation region where the throttle valve opening is at least the set opening; By dividing the engine into three operating regions and changing the mixture ratio for each region, it is possible to control the mixture ratio with high precision to suit each operating region, thereby satisfying fuel efficiency, exhaust composition, and output performance. can be done.

また、所定市街地運転域(領域1)の混合比切換点をエ
アフローメータからの信号により高負荷側および高回転
側に拡大できるので、混合比切換に伴うトルク変化及び
シヨLツクを相対的に減少させ、かつ市街地運転域での
切換頻度を減少させて運転性の大巾な改善が望める。さ
らに、高負荷運転域は絞弁開度検出器により検出するの
で、エアフローメータの信号とは比較にはならないほど
応答速度が速く、従つて燃料量を速やかに増量して運転
性及び出力性能の向上を図れる。なお、本発明は車両の
変速機仕様等に応じて車種ごとに対応しなければならな
い車速センサその他の車速検出手段が不要であるため汎
用性が高く、かつ低コストという特徴を有する。ま−た
、本発明における燃料増量信号を利用して点火時期やE
GRの制御精度ないし性能を向上させることも可能であ
る。
In addition, since the mixture ratio switching point in the specified urban driving area (area 1) can be expanded to the high load side and high rotation side using the signal from the air flow meter, torque changes and shocks due to mixture ratio switching can be relatively reduced. It is hoped that this will significantly improve drivability by reducing switching frequency in urban driving areas. Furthermore, since the high-load operating range is detected by a throttle valve opening detector, the response speed is incomparably faster than that of an airflow meter signal, and therefore the fuel amount can be quickly increased to improve driveability and output performance. You can improve your skills. Note that the present invention is characterized by high versatility and low cost because it does not require a vehicle speed sensor or other vehicle speed detection means that must be adapted for each vehicle type depending on the transmission specifications of the vehicle. Also, the fuel increase signal in the present invention can be used to adjust the ignition timing and E.
It is also possible to improve the control accuracy or performance of the GR.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の混合比制御装置の混合比特性図、第2図
はこの発明の第1実施例の断面図、第3図は第2図の要
部であるコントロールユニットの回路図、第4図は吸入
空気量とエアフローメータの電気信号(吸入空気量信号
)の相関図、第5図は第2図の実施例の混合比特性図、
第6図は吸入空気量信号による空気量判別法の増量のタ
イム・チャートを示す図、第7図は噴射パルスの構成を
示す図、第8図はこの発明の第2実施例の要部であるコ
ントロールユニットの回路図、第9図は基本パルス積分
法による増量のタイム・チャートを示す図、第10図は
この発明の第3実施例の断面図である。 4・・・・・・EGRバルブ、5・・・・・・負圧進角
制御装置、6・・・・・・デイストリビユータ、7・・
・・・・絞弁、9・・・・エアフローメータ、10・・
・・・絞弁開度スイッチ、11・・・・・・イグニッシ
ョンコイル、12・・・・・・コントロールユニット、
13・・・・・噴射弁、21・エンジン回転信号発生回
路、22・・・・・・基本パルス発生回路、23・・・
・・・増量パルス発生回路、24・・・・・空気量信号
比較および増量信号発生回路、25・・・・・・第1増
量回路、26・・・・・・出力増幅回路、27・・・・
・・増量解除遅延回路、28・・・・・・増量解除回路
、29・・・・・・第2増量回路、31・・・・・・単
位時間当り基本パルス幅積分回路、32・・・・・・積
分値比較および増量信号発生回路、33・・・・・・点
火時期制御負圧信号系通路、34・・・・・・EGR制
御負圧信号系通路、35・・・・・・ソレノイドバノヒ
ブ、36・・・・・・増幅回路、41・・・・・・VV
Tバルブ。
FIG. 1 is a mixture ratio characteristic diagram of a conventional mixture ratio control device, FIG. 2 is a sectional view of a first embodiment of the present invention, and FIG. 3 is a circuit diagram of a control unit which is the main part of FIG. Fig. 4 is a correlation diagram between the intake air amount and the electrical signal of the air flow meter (intake air amount signal), Fig. 5 is a mixture ratio characteristic diagram of the embodiment shown in Fig. 2,
FIG. 6 is a diagram showing a time chart of increase in air amount determination method using an intake air amount signal, FIG. 7 is a diagram showing the configuration of an injection pulse, and FIG. 8 is a main part of a second embodiment of the present invention. FIG. 9 is a circuit diagram of a certain control unit, FIG. 9 is a diagram showing a time chart of increase in quantity using the basic pulse integration method, and FIG. 10 is a sectional view of a third embodiment of the present invention. 4... EGR valve, 5... Negative pressure advance control device, 6... Distributor, 7...
... Throttle valve, 9... Air flow meter, 10...
... Throttle valve opening switch, 11... Ignition coil, 12... Control unit,
13... Injection valve, 21... Engine rotation signal generation circuit, 22... Basic pulse generation circuit, 23...
...Increase pulse generation circuit, 24...Air amount signal comparison and increase signal generation circuit, 25...First increase circuit, 26...Output amplification circuit, 27...・・・
... Increase release delay circuit, 28... Increase release circuit, 29... Second increase circuit, 31... Basic pulse width integration circuit per unit time, 32... ... Integral value comparison and increase signal generation circuit, 33... Ignition timing control negative pressure signal system passage, 34... EGR control negative pressure signal system passage, 35... Solenoid vanohib, 36...Amplification circuit, 41...VV
T valve.

Claims (1)

【特許請求の範囲】[Claims] 1 エアフローメータからの吸入空気量信号と、機関の
回転数信号とにもとづいて燃料供給量を制御するコント
ロールユニットと、このコントロールユニットからの噴
射パルスにもとづいて燃料を吸気系に噴射する燃料噴射
弁を備えた電子制御燃料噴射機関において、吸気通路に
設けた絞弁の開度を検出する絞弁開度検出器と上記エア
フローメータにより検出した吸入空気量信号を空気量の
設定値と比較する空気量比較手段と、空気量が該設定値
未満の所定市街地運転域のとき燃料を増量する第1増量
手段と、空気量が該設定値以上でかつ絞弁が設定開度未
満のとき該第1増量手段による増量を解除する増量解除
手段と、空気量が設定値以上でかつ絞弁が設定開度以上
の所定高負荷運転域のとき燃料を増量する第2の増量手
段とを設けて少なくとも3つの運転域を画成し各運転域
の混合比を変えるようにしたことを特徴とする電子制御
燃料噴射機関の混合比制御装置。
1. A control unit that controls the fuel supply amount based on the intake air amount signal from the air flow meter and the engine rotation speed signal, and a fuel injection valve that injects fuel into the intake system based on the injection pulse from this control unit. In an electronically controlled fuel injection engine equipped with a throttle valve opening detector that detects the opening of a throttle valve provided in the intake passage and an air flow meter that compares the intake air amount signal detected by the air flow meter with the air amount set value. a first amount increasing means for increasing the amount of fuel when the air amount is less than the set value in a predetermined urban driving area; A fuel increase canceling means for canceling the fuel increase by the fuel increasing means, and a second fuel increasing means for increasing the amount of fuel when the air amount is equal to or higher than a set value and the throttle valve is in a predetermined high load operating range than the set opening degree are provided. 1. A mixture ratio control device for an electronically controlled fuel injection engine, characterized in that two operating ranges are defined and the mixture ratio in each operating range is changed.
JP3439380A 1980-03-18 1980-03-18 Mixing ratio control device for electronically controlled fuel injection engines Expired JPS6053769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3439380A JPS6053769B2 (en) 1980-03-18 1980-03-18 Mixing ratio control device for electronically controlled fuel injection engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3439380A JPS6053769B2 (en) 1980-03-18 1980-03-18 Mixing ratio control device for electronically controlled fuel injection engines

Publications (2)

Publication Number Publication Date
JPS56129731A JPS56129731A (en) 1981-10-12
JPS6053769B2 true JPS6053769B2 (en) 1985-11-27

Family

ID=12412923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3439380A Expired JPS6053769B2 (en) 1980-03-18 1980-03-18 Mixing ratio control device for electronically controlled fuel injection engines

Country Status (1)

Country Link
JP (1) JPS6053769B2 (en)

Also Published As

Publication number Publication date
JPS56129731A (en) 1981-10-12

Similar Documents

Publication Publication Date Title
JPH1122533A (en) Control device for direct injection spark ignition internal combustion engine
JPH0347454A (en) Control device for internal combustion engine
JPS6165038A (en) Air-fuel ratio control system
JPH0734915A (en) Fuel supply control device for internal combustion engine
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
US4714064A (en) Control device for internal combustion engine
JPS6053769B2 (en) Mixing ratio control device for electronically controlled fuel injection engines
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2932183B2 (en) Engine fuel supply
US4656988A (en) Automobile fuel supply control
JP2594943Y2 (en) Fuel control device for internal combustion engine
JPH068287Y2 (en) Air-fuel ratio controller
JPH0221580Y2 (en)
JPS63992Y2 (en)
JPS61155639A (en) Method for controlling idle of internal-combustion engine
JPH09287506A (en) Throttle valve controller for internal combustion engine
JPH04295138A (en) Throttle valve controller of engine
JPH0727003A (en) Air-fuel ratio controller of engine
JPH10299536A (en) Control device for cylinder injection type spark ignition type internal combustion engine
JPS62153540A (en) Deceleration controller for internal combustion engine
JPS6062661A (en) Ignition-timing controller for engine
JPH06108908A (en) Fuel injection device of engine
JPS6299655A (en) Fuel supply device for engine
JPH02119655A (en) Fuel supply device for engine