JPS6053748B2 - Manufacturing method of coated cemented carbide - Google Patents

Manufacturing method of coated cemented carbide

Info

Publication number
JPS6053748B2
JPS6053748B2 JP999878A JP999878A JPS6053748B2 JP S6053748 B2 JPS6053748 B2 JP S6053748B2 JP 999878 A JP999878 A JP 999878A JP 999878 A JP999878 A JP 999878A JP S6053748 B2 JPS6053748 B2 JP S6053748B2
Authority
JP
Japan
Prior art keywords
cemented carbide
reaction vessel
reaction
coated
coated cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP999878A
Other languages
Japanese (ja)
Other versions
JPS54102296A (en
Inventor
正明 飛岡
末弘 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP999878A priority Critical patent/JPS6053748B2/en
Publication of JPS54102296A publication Critical patent/JPS54102296A/en
Publication of JPS6053748B2 publication Critical patent/JPS6053748B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、被覆超硬合金の製造法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing coated cemented carbide.

超硬合金の表面により耐摩耗性のあるTiC、TiN、
Ti(CN)、A12Oa等のセラミックスの薄層を被
覆したいわゆる被覆超硬合金部材は、従来の超硬合金部
材に比し、優れた切削工具であるとして広く実用に供さ
れている。このような被覆超硬合金は、一般に次に示す
ような方法によつて製造されている。TiCを被覆する
場合を一例にとると、原料たるTiC1。
TiC, TiN, which has wear resistance due to the cemented carbide surface.
So-called coated cemented carbide members coated with a thin layer of ceramics such as Ti(CN) and A12Oa are widely used in practical use as cutting tools that are superior to conventional cemented carbide members. Such coated cemented carbide is generally manufactured by the following method. Taking the case of coating TiC as an example, the raw material is TiC1.

、CH、、H、をそれぞれ所要量、計取し、混合後、1
0卯℃近傍に加熱した反応容器に導入し、予め反応容器
内に収容された超硬合金表面にTiCを析出被覆させ、
被覆超硬合金を製造しており、析出させた後のガスはそ
の後反応容器外に排気している。TiCを被覆する場合
の具体例を示すと第1図の如くである。流量計1、2で
流量調整されたCH、およびH2はウォーターバス3に
よつて所定温度に保たれたTICI、蒸発器4に通過す
ることにより、所定割合のTiC1。
After measuring and mixing the required amounts of , CH, and H, 1
Introduced into a reaction vessel heated to around 0 μC, TiC is precipitated and coated on the surface of the cemented carbide previously housed in the reaction vessel,
Coated cemented carbide is manufactured, and the gas after precipitation is then exhausted to the outside of the reaction vessel. A specific example of coating with TiC is shown in FIG. The CH and H2 whose flow rates were adjusted by the flow meters 1 and 2 pass through the TICI maintained at a predetermined temperature by the water bath 3 and the evaporator 4, thereby producing TiC1 at a predetermined ratio.

を飽和させた後、抵抗加熱炉5によつて所定温度に加熱
された反応容器6へ導入される。そして吸気口Mより導
入されたガスは、反応容器6内に予め収容された超硬合
金表面にTiCを析出被覆した後、排気口Nより排気さ
れ、液体窒素によつて冷却されたコールドトラップ7に
おいて、未反応原料および反応副生物を補集され、真空
ポンプ8によつて大気中へ排出される。さて、このよう
な製法において、反応容器6内におけるTiCの析出速
度は、通常次の条件で決定されるものと認識されている
After being saturated, it is introduced into a reaction vessel 6 heated to a predetermined temperature by a resistance heating furnace 5. The gas introduced from the inlet M is deposited and coated with TiC on the surface of the cemented carbide previously housed in the reaction vessel 6, and is then exhausted from the exhaust port N to the cold trap 7 cooled by liquid nitrogen. At , unreacted raw materials and reaction by-products are collected and discharged into the atmosphere by a vacuum pump 8. Now, in such a manufacturing method, it is recognized that the deposition rate of TiC in the reaction vessel 6 is usually determined by the following conditions.

り=にCPTiC1〕ACPCH。ri=niCPTiC1]ACPCH.

〕。exp(−Q/RT) ・・・1式但し、り :T
iCの成長速度 円゛C14:反応ガス中のTiC14の分圧PCH。
]. exp(-Q/RT)...1 set, however, :T
iC growth rate circle C14: Partial pressure PCH of TiC14 in the reaction gas.

:反応ガス中のCH、の分圧Q:活性化エネルギー R:気体定数 T:反応温度 A、B、に:定数 ところで、反応容器6の軸方向におけるTiC1。: Partial pressure of CH in the reaction gas Q: Activation energy R: gas constant T: reaction temperature A, B, to: constant By the way, TiC1 in the axial direction of the reaction vessel 6.

およびCH、の分圧の変化を模式的に示すと第2図およ
び第3図の如くなる。即ち、吸気口Mより反応容器6内
に導入された反応ガス中のTiC1、およびCH4はT
iC14+CH4→TiC+4HC1 の式に従がつて反応し、超硬合金にTiCが析出被覆さ
れる際に、TiCl4およびCH4の一部が消費され、
TiCl4およびCH4の分圧は除々に低下する。
Changes in the partial pressures of and CH are schematically shown in FIGS. 2 and 3. That is, TiC1 and CH4 in the reaction gas introduced into the reaction vessel 6 from the inlet M are T
The reaction follows the formula iC14+CH4→TiC+4HC1, and when TiC is deposited and coated on the cemented carbide, a part of TiCl4 and CH4 is consumed,
The partial pressures of TiCl4 and CH4 gradually decrease.

この為、1式より明らかなように、TiCの析出速度が
除々に低下する。この被覆物質たるTiCの析出速度の
変化は被覆超硬合金の性能に対して極めて重要な影響を
及ぼしている。即ち、被覆膜は薄すぎれは被覆超硬合金
本来の耐摩耗性の効果が認められず、逆に厚すぎると耐
摩耗性は向上するが超硬合金としての靭性が低下する。
TlCを被覆した切削工具用被覆超硬合金部材を例にと
ると、被覆膜の厚さは一般的に2〜15p1特に4〜1
0μが好ましいとされており、通常工業的には膜厚の許
容誤差は±10%以内とされている。
For this reason, as is clear from equation 1, the precipitation rate of TiC gradually decreases. Changes in the precipitation rate of TiC, which is the coating material, have a very important effect on the performance of the coated cemented carbide. That is, if the coating film is too thin, the inherent wear resistance effect of the coated cemented carbide will not be recognized, and if it is too thick, the wear resistance will improve but the toughness of the cemented carbide will decrease.
Taking a coated cemented carbide member for a cutting tool coated with TLC as an example, the thickness of the coating film is generally 2 to 15 p1, especially 4 to 1 p1.
It is said that 0μ is preferable, and the film thickness tolerance is usually within ±10% in industry.

この為、被覆超硬合金の用途に応じて被覆物質の析出速
度を適切に制御する必要がある。
For this reason, it is necessary to appropriately control the precipitation rate of the coating material depending on the use of the coated cemented carbide.

従来、前述の如き、吸気口M側と排出口N側との析出速
度の差異を減少させる方法として、反応容器6の排出口
N側の温度を、吸気口M側より高くし、反応容器6の軸
方向における温度分布を制御することによつて、即ち1
式のTを制御することによつて、反応容器6内の原料ガ
スの析出速度の均一を保つていた。
Conventionally, as a method for reducing the difference in precipitation rate between the inlet M side and the outlet N side, as described above, the temperature on the outlet N side of the reaction vessel 6 is made higher than that on the inlet port M side. By controlling the temperature distribution in the axial direction of 1
By controlling T in the equation, the deposition rate of the raw material gas in the reaction vessel 6 was kept uniform.

しかし、従来の方法には、いくつかの欠点があつた。特
に、(イ)化学蒸着法によつて析出されるTlC粒子は
反応温度が高い程大きくなるので、排出口N側の超硬合
金に析出されるTiC粒子は大きくなり、被覆超硬合金
の性能に対し好ましくないこと。
However, conventional methods had several drawbacks. In particular, (a) TlC particles precipitated by chemical vapor deposition become larger as the reaction temperature increases, so the TiC particles precipitated on the cemented carbide on the N side of the discharge port become larger, and the performance of the coated cemented carbide increases. Unfavorable things.

(ロ)被覆超硬合金の性能に最も重要な影響を与える母
材たる超硬合金と被覆層との界面に生ずる脱炭層の量お
よび組成は反応温度に著しい影響を受けること。(ハ)
Ti(CN)やT1(CNO)等を被覆する場合には反
応ガスの組成が同一であつても、反応温度一の違いによ
り、被覆されたTi(CN)がTi(CNO)のC.l
5Nl又はCとNとOの比率が異なつてくること。
(b) The amount and composition of the decarburized layer formed at the interface between the base cemented carbide and the coating layer, which has the most important effect on the performance of the coated cemented carbide, is significantly affected by the reaction temperature. (c)
When coating Ti(CN), T1(CNO), etc., even if the composition of the reaction gas is the same, the coated Ti(CN) may differ from the C.I. of Ti(CNO) due to the difference in reaction temperature. l
5Nl or the ratio of C, N and O becomes different.

(ニ)反応容器6内における反応温度差に限界がある為
、装置の大きさ、特に吸気口Mから排出ローNの長さが
制限され、量産が困難であること。
(d) Since there is a limit to the reaction temperature difference within the reaction vessel 6, the size of the device, especially the length from the inlet M to the discharge row N, is limited, making mass production difficult.

等は最終製品の性能および工業性に対して重大な阻害要
因として働いていた。本発明は前記の如き、従来技術の
諸欠点を除いた発明であり、化学蒸着法によつて被覆超
硬合金を製造する方法において、被覆反応の行なわれる
反応容器の吸気側と排気側を交互に転換させ、該反応容
器内における原料ガスの流れ方向を変化せしめて、被覆
物質を超硬合金に被覆せしめることを特徴とする被覆超
硬合金の製造法である。
etc. acted as a serious impediment to the performance and industrializability of the final product. The present invention is an invention that eliminates the various drawbacks of the prior art as described above, and is a method for producing coated cemented carbide by chemical vapor deposition, in which the intake side and exhaust side of a reaction vessel where the coating reaction is carried out are alternately connected. This is a method for producing a coated cemented carbide, which is characterized in that the coating substance is coated on the cemented carbide by changing the flow direction of the raw material gas in the reaction vessel.

以下図面に基づいて説明する。第4図は本発明の一実施
例を示す図であり、第5図および第6図は、吸排気口P
又は吸排気口Qノより反応ガスを導入した場合の、Ti
Cl,およびCI(4の分圧の変化を示す図である。
This will be explained below based on the drawings. FIG. 4 is a diagram showing an embodiment of the present invention, and FIGS.
Or when the reaction gas is introduced from the intake/exhaust port Q, Ti
It is a diagram showing changes in the partial pressures of Cl and CI (4).

第4図において、流量計41,42により、流量を調整
されたCH4およびH2はウォーターバス43によつて
所定温度保たれたTiCl4蒸発器44を通過すること
により、所定割合のTlCl4を飽和させた後、三方コ
ックXにより吸排気口Pに案内され、反応容器46内て
超硬合金にTiCを被覆した後、吸排気口Qから排出さ
れ、三方コックYによりコールドトラップ47に案内さ
れる。
In FIG. 4, CH4 and H2 whose flow rates were adjusted by flow meters 41 and 42 passed through a TiCl4 evaporator 44 maintained at a predetermined temperature by a water bath 43, thereby saturating a predetermined proportion of TlCl4. Thereafter, it is guided to the intake/exhaust port P by the three-way cock X, and after coating the cemented carbide with TiC in the reaction vessel 46, it is discharged from the intake/exhaust port Q, and guided to the cold trap 47 by the three-way cock Y.

この場合、反応容器46内においては、第5図および第
6図の実線に従つて、吸排気口P側から吸排気口Q側に
近づくにつれて、TiCI4およびCI(iの分圧が低
下してゆく。
In this case, in the reaction vessel 46, the partial pressures of TiCI4 and CI(i) decrease as the side approaches the intake/exhaust port Q from the intake/exhaust port P side, according to the solid lines in FIGS. 5 and 6. go.

次に所定時間を経た後、三方コックXとYを調整し、T
iCl4蒸発器44を通過した反応ガスを、吸排気口P
への案内を遮断し、吸排気口Qに案内し、反応容器46
内を通過させた後、吸排気口Pより排出させ、コールド
トラップ47に案内する。
Next, after a predetermined period of time, adjust the three-way cocks X and Y, and
The reaction gas that has passed through the iCl4 evaporator 44 is transferred to the intake and exhaust port P.
The guide to the reaction vessel 46 is cut off, guided to the intake/exhaust port Q, and the reaction vessel 46
After passing through the inside, it is discharged from the intake/exhaust port P and guided to the cold trap 47.

この場合、反応容器46内におけるTiCl4およびC
H4の分圧は、第5図および第6図の点線の方向に近づ
く。この三方コックX,Yを適切に調整し、反応容器2
6内における反応ガスの流れを変えることにより、反応
温度を一定に保ちながら、反応容器46内の全ての超硬
合金に対して均一の被覆膜を設けることが可能となつた
。第4図は、本発明の一実施例であり、必ずしも三方コ
ックX,Yを用いる必要はなく、第7図の如く、吸排気
口P″,Q″を付加し、各吸排気口P,P″,Q,Q″
にコック4,Z2,Z3,乙を設ける等、反応容器76
の吸気側とと排気側とを交互に転換させうることが出き
ればその方法は如何は問われない。
In this case, TiCl4 and C in the reaction vessel 46
The partial pressure of H4 approaches the direction of the dotted lines in FIGS. 5 and 6. Adjust these three-way cocks X and Y appropriately, and
By changing the flow of the reaction gas in the reaction vessel 46, it became possible to provide a uniform coating film on all the cemented carbide in the reaction vessel 46 while keeping the reaction temperature constant. FIG. 4 shows an embodiment of the present invention, and it is not necessary to use three-way cocks X and Y, but instead, as shown in FIG. P″, Q, Q″
The reaction vessel 76 is equipped with cocks 4, Z2, Z3, and
As long as it is possible to alternately switch between the intake side and the exhaust side of the engine, any method may be used.

前記した実施例はTiCを被覆する場合を中心に説明し
たが、本発明はTiCに限らず、化学蒸着法により超硬
合金に被覆膜を設ける技術には全て適用可能である。
Although the above-mentioned embodiments have mainly been described with reference to the case where TiC is coated, the present invention is not limited to TiC, but is applicable to all techniques for providing a coating film on cemented carbide by chemical vapor deposition.

本発明により被覆速度の差異に基づく被覆膜の厚さのバ
ラツキを容易に防ぐことが可能となり、さらに本発明は
超硬合金製品に要求される量産性を十分満足させた発明
である。
The present invention makes it possible to easily prevent variations in the thickness of the coating film due to differences in coating speed, and further satisfies the mass productivity required for cemented carbide products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の被覆超硬合金の製造装置の一実施例を示
す系統図。 第2図は反応ガスを吸気口Mから導入させた場合の反応
容器6の軸方向におけるTiCl4の分圧分布図。第3
図はCH4の分圧分布図、第4図は本発明の一実施例を
示す系統図、第5図は本発明を用いた場合におけるTi
CI4の分圧分布図、第6図は本発明を用いた場合にお
けるCH4の分圧分布図、第7図は本発明の他の実施例
を示す系統図。1,41,71,2,42,72・・・
・・流量計、3,43,73・ ・・ウォーターバス、
4,44,74・・・・・・TiCl4蒸発器、6,4
6,76・・・・・反応容器、7,47,77・・・・
コールドトラップ、8,48,88・・・・・・真空ポ
ンプ、M・・・・・・吸気口、”N・・・・・・排気口
、P,P″,Q,Q″・・・・・・吸排気口、X,Y・
・・・・・三方コック、4,Z2,Z3,4・・・・・
・コック。
FIG. 1 is a system diagram showing an embodiment of a conventional coated cemented carbide manufacturing apparatus. FIG. 2 is a partial pressure distribution diagram of TiCl4 in the axial direction of the reaction vessel 6 when the reaction gas is introduced from the inlet M. Third
The figure is a CH4 partial pressure distribution diagram, Figure 4 is a system diagram showing one embodiment of the present invention, and Figure 5 is a Ti
FIG. 6 is a partial pressure distribution diagram of CH4 when the present invention is used, and FIG. 7 is a system diagram showing another embodiment of the present invention. 1, 41, 71, 2, 42, 72...
...Flowmeter, 3,43,73...Water bath,
4,44,74...TiCl4 evaporator, 6,4
6,76...Reaction container, 7,47,77...
Cold trap, 8, 48, 88... Vacuum pump, M... Intake port, "N... Exhaust port, P, P", Q, Q"... ...Intake and exhaust ports, X, Y・
...Three-way cock, 4, Z2, Z3, 4...
·cock.

Claims (1)

【特許請求の範囲】[Claims] 1 化学蒸着法によつて被覆超硬合金を製造する方法に
おいて被覆反応の行なわれる反応容器の吸気側と排気側
とを交互に転換させ、該反応容器内における原料ガスの
流れ方向を変化せしめることを特徴とする被覆超硬合金
の製造法。
1. In a method of manufacturing coated cemented carbide by chemical vapor deposition, the intake side and exhaust side of a reaction vessel in which the coating reaction is carried out are alternately switched to change the flow direction of the raw material gas in the reaction vessel. A method for producing coated cemented carbide characterized by:
JP999878A 1978-01-31 1978-01-31 Manufacturing method of coated cemented carbide Expired JPS6053748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP999878A JPS6053748B2 (en) 1978-01-31 1978-01-31 Manufacturing method of coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP999878A JPS6053748B2 (en) 1978-01-31 1978-01-31 Manufacturing method of coated cemented carbide

Publications (2)

Publication Number Publication Date
JPS54102296A JPS54102296A (en) 1979-08-11
JPS6053748B2 true JPS6053748B2 (en) 1985-11-27

Family

ID=11735503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP999878A Expired JPS6053748B2 (en) 1978-01-31 1978-01-31 Manufacturing method of coated cemented carbide

Country Status (1)

Country Link
JP (1) JPS6053748B2 (en)

Also Published As

Publication number Publication date
JPS54102296A (en) 1979-08-11

Similar Documents

Publication Publication Date Title
US4619866A (en) Method of making a coated cemented carbide body and resulting body
CA2149567C (en) Coated cutting tool and method of making same
US4803127A (en) Vapor deposition of metal compound coating utilizing metal sub-halides and coated metal article
US3955038A (en) Hard metal body
US3721577A (en) Process for the deposition of refractory metal and metalloid carbides on a base material
USRE29420E (en) Sintered cemented carbide body coated with two layers
GB1394108A (en) Coated hard metal body
GB1565399A (en) Sintered cemented carbide body coated with three layers
CN101023199A (en) Pulsed mass flow delivery system and method
US4294871A (en) Method for depositing a layer on the inside of cavities of a work piece
Kim et al. Effects of the experimental conditions of chemical vapour deposition on a TiC/TiN double-layer coating
US4040870A (en) Deposition method
US4153483A (en) Deposition method and products
JPS6053748B2 (en) Manufacturing method of coated cemented carbide
US4147820A (en) Deposition method and products
EP0045291A1 (en) Method of making a coated cemented carbide body and body produced in such a manner
EP0117542A2 (en) Chemical vapor deposition of metal compound coatings utilizing metal sub-halides
CA1052639A (en) Deposition method and products
JPH01294868A (en) Vapor growth apparatus
JPS6242996B2 (en)
EP0275978B1 (en) A method for depositing composite coatings
Goujard et al. On the chemical vapor deposition of Si/B/C-based coatings in various conditions of supersaturation
JPH01195277A (en) Formation of thin film
JPS58130180A (en) Coated hard product and manufacture
CA1224091A (en) Chemical vapor deposition of metal compound coatings utilizing metal sub-halide