JPS6053650A - Bypass type rocket engine and operation method thereof - Google Patents

Bypass type rocket engine and operation method thereof

Info

Publication number
JPS6053650A
JPS6053650A JP16298784A JP16298784A JPS6053650A JP S6053650 A JPS6053650 A JP S6053650A JP 16298784 A JP16298784 A JP 16298784A JP 16298784 A JP16298784 A JP 16298784A JP S6053650 A JPS6053650 A JP S6053650A
Authority
JP
Japan
Prior art keywords
combustion chamber
oxygen
hydrogen
operating
main combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16298784A
Other languages
Japanese (ja)
Other versions
JPH0370108B2 (en
Inventor
ギユンテル・シユミツト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Publication of JPS6053650A publication Critical patent/JPS6053650A/en
Publication of JPH0370108B2 publication Critical patent/JPH0370108B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/56Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/46Feeding propellants using pumps
    • F02K9/48Feeding propellants using pumps driven by a gas turbine fed by propellant combustion gases or fed by vaporized propellants or other gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Testing Of Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 不発明は、地上近く用のエンジンおよび高所用のエンジ
ンとして作動し、推進ノズルを設けた主燃焼室と予燃焼
室を有し、酸素を多量に含むガスが予燃焼室で発生し、
このガスが続いて主燃焼室に流入し、この主燃焼室が地
上近くでの運転のときに酸素過剰でもって運転され、高
所運転のときに少ない水素過剰でもって運転される、液
体酸素と液体水素で動くバイパス型ロケットエンジンの
運転方法およびこの方法を実施するためのバイパス型ロ
ケ゛ン′トエンジンに関する。
Detailed Description of the Invention The invention operates as a near-ground engine and a high-altitude engine, and has a main combustion chamber provided with a propulsion nozzle and a pre-combustion chamber, in which oxygen-rich gas is pre-combusted. Occurs in the room,
This gas then flows into the main combustion chamber, which is operated with liquid oxygen with an excess of oxygen when operating near the ground and with a reduced excess of hydrogen when operating at altitude. The present invention relates to a method of operating a bypass type rocket engine powered by liquid hydrogen and a bypass type rocket engine for carrying out this method.

実用塔載量を宇宙へ運ぶためのキャリア航空機の駆動用
反動エンジンの運動理論によれば、地上近くでの飛行お
よび非常に高い所または真空空間での飛行において最適
の状態を得るために、地上近くの運転では例えば酸素お
よびケロシンのような密度の高い対をなす燃料を使用し
、非常に高い所では密度が小さく比出力が大きな対をな
す燃料を用いることが要求される。この燃料選択の理由
は次の点にある。すなわち、スタートおよび上昇時には
燃料タンク容量を比較的に小さくして多量の燃料を供給
する必要があシ一方、真空空間での運転の場合には空気
抵抗がないので、タンク容量は大切な問題ではなく、か
つ水素がもたらす大きな比インパルスの利点を不都合な
く利用できるという点にある。
The theory of motion of the reaction engines for the propulsion of carrier aircraft for transporting practical payloads into space suggests that for optimal conditions in flight near the ground and at great heights or in vacuum Nearby operations require the use of dense fuel pairs, such as oxygen and kerosene, while very high altitudes require the use of lower density, higher specific power fuel pairs. The reason for this fuel selection is as follows. In other words, when starting and climbing, it is necessary to supply a large amount of fuel by keeping the fuel tank capacity relatively small.On the other hand, when operating in a vacuum space, there is no air resistance, so tank capacity is not an important issue. This is because the advantages of the large specific impulse brought about by hydrogen can be utilized without any disadvantages.

ロケットエンジンを地上近く用エンジンおよび高所用エ
ンジンとして使用できるようにするために、例えば19
78年7月25〜27日のA工AA/SAP 14 T
H−Paper ”Joint Propulsion
千 〇an 、p、terence ”の特に第6頁に示さ
れているように、このようなエンジンを両運転相におい
て液体水素と液体酸素で運転することが知られている。
To enable rocket engines to be used as near-ground engines and high-altitude engines, e.g.
A engineering AA/SAP 14 T from July 25th to 27th, 1978
H-Paper ”Joint Propulsion
It is known to operate such engines with liquid hydrogen and liquid oxygen in both operating phases, as shown in particular on page 6 of 1,000 An, P. Terence.

このロケットエンジンは推進ノズルを取付けた1つの主
燃焼室と3つの予燃焼室を備え、この予燃焼室の2つは
酸素に富むプロペ2ントを発生し、他の1つは水素に富
むプロペラントを発生する。このロケットエンジンは地
上近くの領域では3つすべての予燃焼室のプロペラント
を酸素過剰の主燃焼室に搬入することに1つて作動する
。この場合、比インパルスは小さいが燃料密度は大でら
る。従って、キャリア航空機の構造容積は全体として小
さくガる。非常に高い所または真空空間ではこのロケッ
トエンジンは酸素に富む状態で運転される予燃室″fr
:遮断することによって狭い範囲内で水素に富む状態、
すなわち最適のインパルス状態で作動する。
The rocket engine has one main combustion chamber with a propulsion nozzle and three pre-combustion chambers, two of which produce an oxygen-rich propellant and the other a hydrogen-rich propellant. occurs. The rocket engine operates in the near-ground region by transporting the propellants from all three precombustion chambers into the oxygen-rich main combustion chamber. In this case, the specific impulse is small but the fuel density is large. Therefore, the overall structural volume of the carrier aircraft is smaller. At great heights or in a vacuum, this rocket engine operates in an oxygen-enriched pre-combustion chamber.
: Hydrogen-rich state within a narrow range by blocking,
That is, it operates in an optimal impulse state.

両運転相のための前記公知ロケットエンジンは構造的な
質および量に関するコストが大であシ、それによって高
価でありかつスタート時の重量が比較的に大である。
The known rocket engines for both operating phases have a high construction quality and quantity and are therefore expensive and have a relatively high starting weight.

不発明の課題は、概念的に簡単であり、それによって公
知の比較し得るエンジン装置よりも製作コストが安くか
つ軽量であり、その際その欠点を除去しかつ前記の利点
を持ち続ける、冒頭に述べた種のバイパス型ロケットエ
ンジンの運転方法およびこの方法を実施するためのエン
ジンを提供することである。
The object of the invention is, at the outset, to provide an engine system which is conceptually simpler and therefore cheaper to produce and lighter than known comparable engine arrangements, which eliminates its drawbacks and retains the aforementioned advantages. The object of the invention is to provide a method of operating a bypass rocket engine of the type described and an engine for carrying out this method.

この課題は特許請求の範囲第1項の上位概念記載のバイ
パス型ロケットエンジンの運転方法において、地上近く
での運転および非常に高い所での運転のときにそれぞれ
同じ量の液体酸素および液体水素が主燃焼室に直接的に
供給され、その際酸素と水素の質量比が約6=1であり
、地上近くでの運転のときにだけ、予燃焼室内で発生し
た、酸素と水素の質量比が約20:1の酸素に富むガス
が付加的に主燃焼室に供給され、それによって地上近く
での運転のときに主燃焼室が約16:1の酸素と水素の
質量比で作動し、非常に高い所での運転では予燃焼室が
遮断されることによって解決される。
This problem is solved in the method of operating a bypass rocket engine according to the generic concept of claim 1, in which the same amount of liquid oxygen and liquid hydrogen are generated during operation near the ground and at a very high place. It is supplied directly to the main combustion chamber, with a mass ratio of oxygen to hydrogen of approximately 6 = 1, and only when operating near the ground, the mass ratio of oxygen to hydrogen generated in the pre-combustion chamber is An approximately 20:1 oxygen-enriched gas is additionally supplied to the main combustion chamber so that during near-ground operation the main combustion chamber operates at an oxygen to hydrogen mass ratio of approximately 16:1, resulting in an This is solved by shutting off the pre-combustion chamber when operating at high altitudes.

不発明によるこの方法を実施するために、酸素ポンプと
水素ポンプを備え、この酸素ポンプが貯蔵容器から圧力
管路を経て主燃焼室の噴射ヘッドへ直接的に酸素を搬送
し、水素ポンプが貯蔵容器から圧力管路を経て推進ノズ
ルおよびその壁および主燃焼室の壁内を通ってその噴射
ヘッドへ搬送するバイパス型ロケットエンジンにお込て
、予燃焼室に通じる酸素バイパス管路が主燃焼室の噴射
ヘッドへ延びる酸素圧力管路から分岐し、予燃焼室に通
じる水素ノくイ、N−1ス管路が推進ノズル壁へ延びる
水素圧力管路から分岐し、この両バイパス管路内にそれ
ぞれ1個の遮断弁が設けられ、この両遮断弁が地上近く
での運転のときに開放し、非常に高い所での運転のとき
に閉じていることが提案される。
In order to carry out the method according to the invention, an oxygen pump and a hydrogen pump are provided, the oxygen pump conveying oxygen directly from the storage vessel via a pressure line to the injection head of the main combustion chamber, and the hydrogen pump conveying oxygen directly to the injection head of the main combustion chamber. In a bypass type rocket engine, oxygen is transported from the container via a pressure line through the propulsion nozzle and its walls and through the walls of the main combustion chamber to its injection head, where the oxygen bypass line leading to the pre-combustion chamber is connected to the main combustion chamber. An N-1 gas line branches off from the oxygen pressure line leading to the injection head and leads to the pre-combustion chamber. It is proposed that one shut-off valve is provided in each case, both shut-off valves being open when operating close to the ground and closed when operating at very high altitudes.

不発明による方法とこの方法を実施するために用いられ
る装置によって、従来のノくイノマス型ロケットエンジ
ンを地上近く用エンジンおよび高所用エンジンとして作
動させることができる。
The inventive method and the apparatus used to carry out the method allow conventional Nonomous rocket engines to operate as near-ground engines and as high-altitude engines.

その際、もとのエンジンまたは基礎とするエンジンにお
ける、地上相と高所相での冷却状態と噴射状態は変らな
い。なぜなら、前記両運転相のときにそれぞれ同じ量の
液体酸素および液体水素が主燃焼室に供給されるからで
ある。この場合、酸素対水素の質量比が約6=1である
ので、主燃焼室の冷却システムと噴射システムを両運転
範囲にわたって最適に設計することができる。更に、き
わめて大きな水素の冷却能力が地上近くの運転のときに
推進ノズル壁と燃焼室壁の充分な冷却を保証する。この
地上近くの運転のときには主燃焼室で最大出力が発生し
、たとえ主燃焼室で処理される水素の半分しか冷却に用
いられなくても、推進ノズル壁と燃焼室壁からの熱放出
が増大する。
In this case, the cooling and injection conditions in the ground phase and the high altitude phase of the original or underlying engine remain unchanged. This is because the same amounts of liquid oxygen and liquid hydrogen are supplied to the main combustion chamber during both operating phases. In this case, the mass ratio of oxygen to hydrogen is approximately 6=1, so that the cooling system of the main combustion chamber and the injection system can be designed optimally over both operating ranges. Furthermore, the extremely large hydrogen cooling capacity ensures sufficient cooling of the propulsion nozzle walls and the combustion chamber walls during near-ground operation. During this near-ground operation, maximum power is generated in the main combustion chamber, increasing the heat release from the propulsion nozzle walls and the combustion chamber walls, even if only half of the hydrogen processed in the main combustion chamber is used for cooling. do.

地上近くの運転相と高所の運転相のときに噴射ヘッドが
同じ構造的噴射状態で作動し得るようにするために、不
発明の実施態様では、噴射ヘッドが、地上近くの運転の
ときに予燃焼室で発生するガスを主燃焼室に搬入するた
めの特殊な吹込み装置を備えている。この吹込み装置は
不発明の他の実施態様に従って噴射ヘッドの中央に設け
られている。
In order to enable the injection head to operate in the same structural injection conditions during the near-ground and high-altitude operating phases, an inventive embodiment provides that the injection head during the near-ground operation phase It is equipped with a special blowing device to transport the gases generated in the pre-combustion chamber into the main combustion chamber. This blowing device is arranged in the center of the jet head according to another embodiment of the invention.

図には不発明による実施例が示されている。The figure shows an embodiment according to the invention.

図示のバイパス型ロケットエンジンは実質的に、前方に
設けた噴射ヘッド2と後方に設けた推進ノズルろを有す
る主燃焼室1、予燃焼室4、酸素ポンプ5、水素ポンプ
6、ポンプ駆動タービン7、酸素貯蔵容器8、水素貯蔵
容器9、バイパス推進ノズルin、酸素供給管路11、
水素供給管路12、酸素圧力管路13、水素圧力管路1
4、予燃焼室4から噴射ヘッド2忙至るガス管路15、
遮断弁17を備えかつ予燃焼室4に通じる酸素分岐管1
6、遮断弁19を備えかつ予燃焼室4に通じる水素管路
1日、推進ノズル3の端部からポンプ駆動タービン7ま
で延びているバイパスプロペラント管路20訃よびバイ
パスノズル10まで延びているタービン排ガ、ス管路2
1からなっている。
The illustrated bypass rocket engine essentially consists of a main combustion chamber 1 having an injection head 2 at the front and a propulsion nozzle at the rear, a pre-combustion chamber 4, an oxygen pump 5, a hydrogen pump 6, and a pump-driving turbine 7. , oxygen storage container 8, hydrogen storage container 9, bypass propulsion nozzle in, oxygen supply pipe 11,
Hydrogen supply line 12, oxygen pressure line 13, hydrogen pressure line 1
4. Gas pipe 15 leading from the pre-combustion chamber 4 to the injection head 2;
Oxygen branch pipe 1 equipped with a shutoff valve 17 and communicating with the precombustion chamber 4
6. A hydrogen line 1, provided with a shut-off valve 19 and leading to the precombustion chamber 4, a bypass propellant line 20 extending from the end of the propulsion nozzle 3 to the pump drive turbine 7 and to the bypass nozzle 10. Turbine exhaust gas, gas pipe 2
It consists of 1.

特に第2.4図に示すように、噴射ヘッド2け、予燃焼
室4内で発生した酸素に富むカスG■のための中央の吹
込み装!22と、酸素分配室23と、水素分配室25を
含んでいる。酸素OHは酸素分配室23から多数の噴射
ノズJl/24を通って主燃焼室1内に達する。水素H
I(は水素分配室25から多数の噴射孔26を通って主
燃焼室1の中へ噴射される。
In particular, as shown in Fig. 2.4, there are two injection heads and a central blowing device for the oxygen-rich scum G■ generated in the precombustion chamber 4! 22, an oxygen distribution chamber 23, and a hydrogen distribution chamber 25. Oxygen OH reaches the main combustion chamber 1 from the oxygen distribution chamber 23 through a number of injection nozzles Jl/24. Hydrogen H
I( is injected from the hydrogen distribution chamber 25 into the main combustion chamber 1 through a number of injection holes 26.

不発明によるバイパス型ロケットエンジンは次の如く作
用する。
The inventive bypass rocket engine operates as follows.

スタート時および地面に近い位置での運転のときには、
第1.2図から判るように1予燃焼室4も稼動している
。すなわち、両遮断弁17゜19が開放しているので、
多量の酸素Ovと水素HVがバイパス管路16.18を
通って予燃焼室4に達し、そこで互いに反応する。この
ようにして発生した酸素に富むガスGV//i吹込み装
置22を通って主燃焼室1の中に流入する。主燃焼室1
には更に、酸素OHが圧力管路13と分配室23と噴射
ノズル24を経て直接的に供給され、かつ水素HHが圧
力管路14と分配室25と噴射ノズ/I/26を経て主
燃焼室1に流入する。
When starting and driving close to the ground,
As can be seen from Figure 1.2, the first pre-combustion chamber 4 is also in operation. That is, since both cutoff valves 17 and 19 are open,
Large amounts of oxygen Ov and hydrogen HV pass through bypass line 16.18 into precombustion chamber 4, where they react with each other. The oxygen-enriched gas generated in this way flows through the GV//i injection device 22 into the main combustion chamber 1 . Main combustion chamber 1
Furthermore, oxygen OH is directly supplied via the pressure line 13, distribution chamber 23 and injection nozzle 24, and hydrogen HH is supplied via the pressure line 14, distribution chamber 25 and injection nozzle/I/26 to the main combustion chamber. Flows into chamber 1.

圧力管路14は末拡がりの推進ノズル領域で環状通路2
7に注いでいる。この環状通路から水素の一部HHhが
後方へ流れ、その際後方の推進ノズル壁部分を冷却し、
そして後方の環状通路28に集められる。この後方環状
通路にはプロペラント管路20が接続されている。水素
の他の部分HHvは推進ノズル3壁の前方領域と燃焼室
1の壁を流遇し、そして分配室25に達する。
The pressure line 14 is connected to the annular passage 2 in the area of the diverging propulsion nozzle.
It is poured into 7. Part of the hydrogen HHh flows rearward from this annular passage, cooling the rear propulsion nozzle wall portion,
Then, it is collected in the annular passage 28 at the rear. A propellant pipe line 20 is connected to this rear annular passage. The other portion of hydrogen HHv flows through the front region of the wall of the propulsion nozzle 3 and the wall of the combustion chamber 1 and reaches the distribution chamber 25 .

バイパス型ロケットエンジンの高所運転への切換えは弁
17.19を用いて両管路16.18を遮断することに
よって行われる。この運転相は第3゜4図に示されてい
る。この場合、予燃焼室4け稼動しない。
Switching over to high-altitude operation of the bypass rocket engine takes place by blocking both lines 16.18 using valve 17.19. This phase of operation is shown in Figures 3-4. In this case, four pre-combustion chambers will not operate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はバイパス型ロケットエンジンの地上近くでの運
転状態を示す図、第2図は噴射ヘッドの地上近くでの運
転状態を示す図、第3図はバイパス型ロケットエンジン
の高所運転状態を示す拡大図、第4図は噴射ヘッドの高
所運転状態を示す拡大図である。 1・・・主燃焼室 2・・・噴射ヘッド 4・・・予燃焼室 16・・・酸素圧力管路 14・・・水素圧力管路 16・・・酸素バイパス管路 17.19・・・遮断弁 18・・・水素バイパス管 22・・・吹込み装置 aV−・・ガス HH、HV・・・水素 OH,OV 、、、酸素 代理人江崎光好 代理人江崎光史
Figure 1 shows the operating status of the bypass type rocket engine near the ground, Figure 2 shows the operating status of the injection head near the ground, and Figure 3 shows the operating status of the bypass type rocket engine at high altitude. FIG. 4 is an enlarged view showing the ejection head operating at a high altitude. 1... Main combustion chamber 2... Injection head 4... Pre-combustion chamber 16... Oxygen pressure line 14... Hydrogen pressure line 16... Oxygen bypass line 17.19... Shutoff valve 18...Hydrogen bypass pipe 22...Blowing device aV-...Gas HH, HV...Hydrogen OH, OV... Oxygen agent Mitsuyoshi Ezaki Agent Mitsufumi Ezaki

Claims (1)

【特許請求の範囲】 (リ 地上近く用のエンジンおよび高所用のエンジンと
して作動し、推進ノズルを設けた主燃焼室と予燃焼室を
有し、酸素を多量に含むカスが予燃焼室で発生し、この
ガスが続いて主燃焼室に流入し、この主燃焼室が地上近
くでの運転のときに酸素過剰でもって運転され、高所運
転のときに少ない水素過剰でもって運転される、液体酸
素と液体水素で動くバイパス型ロケットエンジンの運転
方法において、地上近くでの運転および非常に高い所で
の運転のときにそれぞれ同じ量の液体酸素(O勇および
液体水素6世が上燃、焼室(りに直接的に供給され、そ
の際酸素(OH)と水素但勇の質量比が約6=1であり
、地上近くでの運転のときにだけ、予燃焼室(り内で発
生した、酸素(Ov)と水素のηの質量比が約20ニア
の酸素に富むガス0′v)が付加的に主燃焼、室(りに
供給され、それによって地上近くでの運転のときに主燃
焼室(1)が約75二1の酸素(OH十OV)と水素C
HH十HV )の質量比で作動し、非常に高い所での運
転では予燃焼室(りが遮断されることを特徴とする運転
方法。 (2)地上近く用のエンジンおよび高所用のエンジンと
して作動し、推進ノズルを設けた主燃焼室と予燃焼室を
有し、酸素を多量に含むガスが予燃焼室で発生し、この
カスが続いて主燃焼室に流入し、この主燃焼室が地上近
くでの運転のときに酸素過剰でもって運転され、高所運
転のときに少ない水素過剰でもって運転される、液体酸
素と液体水素で動くバイパス型ロケットエンジンの運転
方法にして、地上近くでの運転および非常に高い所での
運転のときにそれぞれ同じ量の液体酸素(0すおよび液
体水素但りが主燃焼室(りに直接的に供給され、その際
酸素(0勇と水素のWの質量比が約6=1であり、地上
近くでの運転のときにだけ、予燃焼室(り内で発生した
、酸素(OV)と水素([(力の質量比が約20:1の
酸素に富むガス(GV)が付加的に主燃焼室(1)に供
給され、それによって地上近くでの運・転のときに主燃
焼室(りが約13:1の酸素(OH十OV)と水素−(
HH十HV)の質量比で作動し、非常に高い所での運転
では予燃焼室(りが遮断される運転方法を実施するため
のバイパス型ロケットエンジンであって、酸素ポンプと
水素ポンプを備え、この酸素ポンプが貯蔵容器から圧力
管路を経て主燃焼室の噴射ヘッドへ直接的に酸素を搬送
し、水素ポンプが貯蔵容器から圧力管路を経て推進ノズ
ルおよびその壁および主燃焼室の壁内を通ってその噴射
ヘッドへ搬送するバイパス型ロケットエンジンにおいて
、予燃焼室(りに通じる酸素バイパス管路(16)が主
燃焼室(りの噴射ヘッド(2)へ延びる酸素圧力管路(
13)から分岐し、予燃焼室(りに通じる水素バイパス
管路(18)が推進ノズル壁へ延びる水素圧力管路(1
4)から分岐し、この両バイパス管路(16,18)内
にそれぞれ1個の遮断弁(17fた#−119)が設け
られ、この両遮断弁が地上近くでの運転のときに開放し
、非常に高い所での運転のときに閉じていることを特徴
とするノくイバス型ロケツートエンジン。 (3)地上近くでの運転時に予燃焼室(4)内で発生す
るガス([)V)を主燃焼室(1)へ搬入するために、
噴射ヘッド(2)が特殊な吹込み装置(22)を備えて
いることを特徴とする特許請求の範囲第2項記載のバイ
パス型ロケットエンジン。 (4)予燃焼室(り内で発生し念ガス(11)V)のた
めの特殊な吹込み装置(22)が噴射ヘッド(2)の中
で中央に設けられていることを特徴とする特許請求の範
囲第3項記載のバイパス型ロケットエンジン。
[Claims] (Li) Operates as an engine for use near the ground or as an engine for use at high altitudes, and has a main combustion chamber equipped with a propulsion nozzle and a pre-combustion chamber, and scum containing a large amount of oxygen is generated in the pre-combustion chamber. This gas subsequently flows into the main combustion chamber, which is operated with an excess of oxygen when operating near the ground and with a reduced excess of hydrogen when operating at altitude. In the operating method of a bypass rocket engine powered by oxygen and liquid hydrogen, the same amount of liquid oxygen (O-Yuu and Liquid Hydrogen The mass ratio of oxygen (OH) to hydrogen is approximately 6 = 1, and the pre-combustion chamber is supplied directly to the pre-combustion chamber. An oxygen-rich gas (0'v) with a mass ratio of oxygen (Ov) to hydrogen η of approximately 20 nia is additionally supplied to the main combustion chamber, thereby allowing the main combustion chamber to be The combustion chamber (1) contains about 7521 oxygen (OH1OV) and hydrogen C
The operating method is characterized in that the engine operates at a mass ratio of HH + HV, and the pre-combustion chamber is shut off when operating at very high altitudes. (2) As an engine for use near the ground or as an engine for use at high altitudes. It operates and has a main combustion chamber with a propulsion nozzle and a pre-combustion chamber, oxygen-rich gas is generated in the pre-combustion chamber, this dregs subsequently flows into the main combustion chamber, and this main combustion chamber This is a method of operating a bypass rocket engine powered by liquid oxygen and liquid hydrogen, which is operated with an excess of oxygen when operating near the ground and with a small excess of hydrogen when operating at high altitude. During operation at high altitudes and at very high altitudes, the same quantities of liquid oxygen and liquid hydrogen are fed directly into the main combustion chamber, with the same amount of oxygen and hydrogen The mass ratio of oxygen (OV) and hydrogen (with a force-to-mass ratio of approximately 20:1) is generated in the pre-combustion chamber only when operating near the ground. Oxygen-rich gas (GV) is additionally supplied to the main combustion chamber (1), so that during close-to-ground operation and hydrogen - (
It is a bypass type rocket engine that operates at a mass ratio of HH to HV and is equipped with an oxygen pump and a hydrogen pump to implement an operation method in which the pre-combustion chamber is shut off when operating at very high altitudes. , this oxygen pump conveys oxygen from the storage vessel via a pressure line directly to the injection head of the main combustion chamber, and the hydrogen pump conveys oxygen from the storage vessel via a pressure line to the propulsion nozzle and its walls and the walls of the main combustion chamber. In a bypass type rocket engine, the oxygen bypass line (16) leading to the pre-combustion chamber (the oxygen pressure line (16) leading to the injection head (2) of the main combustion chamber)
A hydrogen bypass line (18) branches from the pre-combustion chamber (13) and leads to a hydrogen pressure line (18) extending to the propulsion nozzle wall.
4), and one shutoff valve (17f/#-119) is installed in each of these bypass pipes (16, 18), and both of these shutoff valves are opened during operation near the ground. , a Nokui bus-type rocket engine that is characterized by being closed when operating at very high altitudes. (3) In order to carry the gas ([)V) generated in the pre-combustion chamber (4) during operation near the ground into the main combustion chamber (1),
3. Bypass rocket engine according to claim 2, characterized in that the injection head (2) is equipped with a special blowing device (22). (4) characterized in that a special blowing device (22) for the pre-combustion chamber (preliminary gas (11) V generated in the chamber) is provided centrally in the injection head (2); A bypass type rocket engine according to claim 3.
JP16298784A 1983-08-04 1984-08-03 Bypass type rocket engine and operation method thereof Granted JPS6053650A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3328117.3 1983-08-04
DE19833328117 DE3328117A1 (en) 1983-08-04 1983-08-04 Method for the operation of a bypass flow rocket engine

Publications (2)

Publication Number Publication Date
JPS6053650A true JPS6053650A (en) 1985-03-27
JPH0370108B2 JPH0370108B2 (en) 1991-11-06

Family

ID=6205734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16298784A Granted JPS6053650A (en) 1983-08-04 1984-08-03 Bypass type rocket engine and operation method thereof

Country Status (3)

Country Link
JP (1) JPS6053650A (en)
DE (1) DE3328117A1 (en)
FR (1) FR2550277B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318752A (en) * 1988-05-11 1989-12-25 Royal Ordnance Plc Two liquid type propellant rocket engine structure
JPH07174046A (en) * 1993-07-26 1995-07-11 Shoichi Nomoto Oxygen/hydrogen rocket engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506826A1 (en) * 1985-02-27 1986-08-28 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Method for the operation of a liquid-fuelled rocket engine and rocket engine for implementing the method
US4771600A (en) * 1986-10-20 1988-09-20 United Technologies Corporation Tripropellant rocket engine
RU2451202C1 (en) * 2011-04-27 2012-05-20 Открытое акционерное общество "Конструкторское бюро химавтоматики" Method of augmenting liquid-propellant rocket engine thrust and liquid-propellant rocket engine
RU2484286C1 (en) * 2011-12-07 2013-06-10 Николай Борисович Болотин Oxygen-hydrogen liquid-propellant engine
RU2484285C1 (en) * 2011-12-29 2013-06-10 Николай Борисович Болотин Oxygen-hydrogen liquid-propellant engine
CN115614185B (en) * 2022-11-22 2023-05-16 东方空间(西安)宇航技术有限公司 Gas-liquid supply system of rocket engine hot test bed
CN116480488A (en) * 2023-06-19 2023-07-25 西安航天动力研究所 Self-adaptive starting afterburning cycle engine system and starting method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3257800A (en) * 1963-02-01 1966-06-28 United Aircraft Corp Propellant flow control system
US3302406A (en) * 1963-10-14 1967-02-07 Curtiss Wright Corp Rocket engine throttling means
DE2155786A1 (en) * 1971-11-10 1973-05-17 Messerschmitt Boelkow Blohm LAUNCH PROCEDURE FOR A LIQUID ROCKET ENGINE
DE2241383C3 (en) * 1972-08-23 1978-07-27 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Main flow type liquid rocket engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318752A (en) * 1988-05-11 1989-12-25 Royal Ordnance Plc Two liquid type propellant rocket engine structure
JPH07174046A (en) * 1993-07-26 1995-07-11 Shoichi Nomoto Oxygen/hydrogen rocket engine

Also Published As

Publication number Publication date
DE3328117C2 (en) 1987-06-19
JPH0370108B2 (en) 1991-11-06
FR2550277B1 (en) 1986-08-08
DE3328117A1 (en) 1985-02-14
FR2550277A1 (en) 1985-02-08

Similar Documents

Publication Publication Date Title
US4771601A (en) Rocket drive with air intake
US9291124B2 (en) Combined cycle integrated combustor and nozzle system
US3955784A (en) Mixed mode propulsion aerospace vehicles
US6619031B1 (en) Multi-mode multi-propellant liquid rocket engine
JP2009041418A (en) Air-breathing engine for space transport and method of improving its accelerating performance
US9046057B2 (en) Method and device to increase thrust and efficiency of jet engine
JPS6053650A (en) Bypass type rocket engine and operation method thereof
GB2274881A (en) Jet propulsion engine
US3229459A (en) Turbojet-liquid air rocket and fuel system
US3724217A (en) Rocket system
GB2238080A (en) Propulsion system for an aerospace vehicle
US6227486B1 (en) Propulsion system for earth to orbit vehicle
US4223530A (en) Liquid fuel rocket engine having a propellant component pump turbine with a secondary thrust discharge and to a method of operating a liquid fuel rocket engine
US20220018314A1 (en) Thrust Augmentation for Liquid Rocket Engines
Foster et al. Air Augmented Rocket Propulsion Concepts
US4703694A (en) Single stage autophage rocket
US6155041A (en) Hybrid engine capable of employing at least a ramjet mode and a super ramjet mode
JP3005676B2 (en) Turbojet engine and combined engine equipped with the turbojet engine
Martin Effects of tripropellant engines on earth-to-orbit vehicles
CN117329025B (en) Turbine exhaust stamping and pushing combined cycle engine and aerospace vehicle
RU2000258C1 (en) Air-space aircraft
JP2882023B2 (en) Air liquefaction engine
US3488950A (en) Tripropellant rocket
Balepin et al. Deep-cooled turbojet augmented with oxygen (cryojet) for a SSTO launch vehicle
JPS6071585A (en) Rocket propellant