JPS6053526B2 - Automatic control device for distribution line switches - Google Patents
Automatic control device for distribution line switchesInfo
- Publication number
- JPS6053526B2 JPS6053526B2 JP53077888A JP7788878A JPS6053526B2 JP S6053526 B2 JPS6053526 B2 JP S6053526B2 JP 53077888 A JP53077888 A JP 53077888A JP 7788878 A JP7788878 A JP 7788878A JP S6053526 B2 JPS6053526 B2 JP S6053526B2
- Authority
- JP
- Japan
- Prior art keywords
- switch
- load
- disconnector
- load switch
- feeder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Emergency Protection Circuit Devices (AREA)
Description
【発明の詳細な説明】
本発明は配電線路開閉器の自動制御装置に係り、特に
二回の試送電て健全区間に順次投入する配電線路開閉器
の自動制御装置に関するものてある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic control device for a distribution line switch, and more particularly to an automatic control device for a distribution line switch that sequentially supplies power to healthy sections through two trial transmissions.
従来この種の装置としては、無電圧引外し式の区分開
閉器に時限継続器およびその付属回路から成る時限式事
故捜査器を併用したものが使用されている。Conventionally, this type of device has been used in which a non-voltage trip type sectional switch is combined with a timed accident investigation device consisting of a timed continuator and its auxiliary circuit.
例えば第1図に示すように変電所55内で電源側から
母線連絡しや断器CB−Mを介して接続される母線BU
Sには、フィーダ化や断器CB−1、CB−2、CB−
3、・・・を介して第1回線フィーダF1、第2回線フ
ィーダF2、第3回線フィーダjF3、・・・をそれぞ
れ接続する。For example, as shown in FIG. 1, a bus line BU connected from the power supply side in the substation 55 via a disconnector CB-M
For S, feeder or disconnector CB-1, CB-2, CB-
The first line feeder F1, the second line feeder F2, the third line feeder jF3, . . . are connected through the lines 3, .
この場合フィーダしや断器CB−1、CB−2、CB−
3、・・・と母線BUSとの間には保護継電器Ry−1
、Ry−2、Ry−3、・・・をそれぞれ設ける。また
各フィーダF1、F2、F3、・・・には無電圧引外し
式の区分開・閉器511、512、513、・・・、5
21、522、523、・・・、および531、532
、533、・・・をそれぞれ設け、これら区分開閉器に
よつて各フィーダ下1、F2、F3・・・を第1区1g
jl、1,′21,′31,・・,第2区間′12,e
22,e31,・・,第3区間El3,e23,e33
,・・,・・・第n区間Lh,′2n,′3n,に区分
している。更に区分開閉器Sll,Sl2,Sl3,・
・,S2l,S22,S23,・・,S3l,S32,
S33,・・・には時限式事故捜査器千11,TSl2
,TSl3,・・,TS2l,TS22,TS23,・
・,TS3l,π12,TS33,・・・をそれぞれ設
け、これら時限式事故捜査器の各々には、関連する区分
開閉器の電源側との間に電圧検出用変圧器TrllL,
Trl2L,Trl3し919Tr21し9Tr22L
9Tr23し9r09Tr31し,Tr32し,Tr3
3L,・・・をそれぞれ設けると共に関連する区分開閉
器の負荷側との間に電圧検出用変圧器TrllR,Tr
l2R,Trl3R,・・,Tr2lR,Tr22R,
Tr23R,・・,Tr3lR,Tr32R,Tr33
R,・・・をそれぞれ設け、これら変圧器の出力電圧の
有無により論理演算を行つて時限式事故捜査器TSll
〜TS33を動作させこれにより区分開閉器Sll〜S
33の投入および引外しを行い得るようにしている。斯
様に構成した従来の装置の時限式事故捜査器の具体的な
動作は次の通りである。In this case, the feeder and disconnectors CB-1, CB-2, CB-
3. Protective relay Ry-1 is installed between ... and the bus BUS.
, Ry-2, Ry-3, . . . are provided, respectively. In addition, each feeder F1, F2, F3, .
21, 522, 523, ..., and 531, 532
, 533, .
jl, 1, '21, '31,..., second section '12, e
22, e31,..., third section El3, e23, e33
, . . . are divided into n-th sections Lh,'2n,'3n, and so on. Furthermore, section switches Sll, Sl2, Sl3, ・
・,S2l,S22,S23,...,S3l,S32,
S33, ... is a time-limited accident investigation device 111, TSl2
,TSl3,...,TS2l,TS22,TS23,...
, TS3l, π12, TS33, .
Trl2L, Trl3 and 919Tr21 and 9Tr22L
9Tr23, 9r09Tr31, Tr32, Tr3
3L, . . . and voltage detection transformers TrllR, Tr are provided between the load side of the related sectional switch.
l2R, Trl3R,..., Tr2lR, Tr22R,
Tr23R,..., Tr3lR, Tr32R, Tr33
R, .
〜TS33 is operated and thereby the section switches Sll〜S
33 can be inserted and removed. The specific operation of the conventional time-limited accident investigation device configured in this manner is as follows.
例えば、今第1図において第1回線フィーダF1の第3
区間El3に地絡事故が発生したものとすると、フィー
ダしや断器CB−1の保護継電器Ry−1が動作してフ
ィーダ几や断器CB−1のみを開放させる。従つて区分
開閉器Sll,Sl2,・・・は無電圧となるため一斉
に開放する。しかしこのフィーダしや断器CB−1は所
定の無電圧時間TR経過後再閉路するものとする。これ
がため第1区間111は無電圧後時間TR経過して送電
されるようになり従つて時限式事故捜査器TSllが動
作し、これによりさらに待時間Tx後、区分開閉器Sl
lを投入して、第2区間El2に送電を行うようにする
。For example, in FIG. 1, the third line of the first line feeder F1
Assuming that a ground fault occurs in the section El3, the protective relay Ry-1 of the feeder and disconnector CB-1 operates to open only the feeder and the disconnector CB-1. Therefore, the section switches Sll, Sl2, . . . are opened all at once because there is no voltage. However, this feeder circuit breaker CB-1 is assumed to reclose after a predetermined voltage-free time TR has elapsed. Therefore, power is transmitted to the first section 111 after a period of time TR has elapsed after no voltage has passed, and the time-limited accident investigation device TSll operates.
1, so that power is transmitted to the second section El2.
これがため上述した所と同様に第2時限捜査器TSl2
が動作し、これによりさらにT埼間後、区分開閉器Sl
2を投入して第3区間に送電を行う。この際第3区間E
l3の事故原因がいまだ除去されていない場合には区分
開閉器Sl2の投入により地絡事故が再び発生する。こ
の地絡事故再発生時間は検出時間Ty以内てあるのでフ
ィーダしや断器CB−1の再しや断後、区分開閉器12
はその投入がロックされるようになる。Therefore, as mentioned above, the second time detector TSL2
operates, and as a result, after T Saima, the section switch Sl
2 and transmits power to the third section. At this time, the third section E
If the cause of the fault at 13 has not yet been eliminated, the ground fault will occur again by closing the sectional switch Sl2. Since the reoccurrence time of this ground fault is within the detection time Ty, after the feeder and disconnector CB-1 are disconnected again, the sectional switch 12
becomes locked.
次いで上述したフィーダしや断器CB−1を再閉路して
フィーダF1の健全区間El2までの送電を開始する。
かように第1図に示すような配電構成を行なう場合には
事故フィーダのみのしや断器をしや断するので他の健全
なフィーダに影響を与えない利点があるが、各フィーダ
毎に高価なしや断器を設けることは配電システムとして
かなり高価となる欠”点がある。Next, the feeder switch CB-1 described above is reclosed to start power transmission to the healthy section El2 of the feeder F1.
When using the power distribution configuration as shown in Figure 1, there is an advantage that only the faulty feeder or disconnector is disconnected, so other healthy feeders are not affected. The drawback is that it is not expensive and the installation of a disconnector is quite expensive as a power distribution system.
また平常時に各フィーダ間に連系負荷開閉器を投入して
多重ループ運転を行うことが運用上は望ましいがその保
護方式が困難なため現実にはあまり実施されていない。In addition, although it is desirable for operation to perform multi-loop operation by inserting interconnected load switches between each feeder during normal times, this protection method is difficult and is not often implemented in reality.
更に最近では、フィーダしや断器を省略し、その代りに
負荷開閉能力を有する開閉器すなわち負荷開閉器を設け
ることが経済的見地から要望されている。本発明は、上
述の点を考慮してなされたもので、常時、多重ループ系
統運用を可能とし、経済的てかつ事故捜査時間を短かく
し得る新規な配電線路の自動制御装置を提供することを
目的とする。Furthermore, recently, it has been desired from an economical point of view to omit the feeder or disconnector and instead provide a switch having load switching capability, that is, a load switch. The present invention has been made in consideration of the above-mentioned points, and aims to provide a new automatic control device for power distribution lines that enables continuous multi-loop system operation, is economical, and can shorten accident investigation time. purpose.
以下第2−4図を参照して本発明の実施例を説明する。Embodiments of the present invention will be described below with reference to FIGS. 2-4.
第2図の配電系統において第1図に示す配電系統の構成
素子と同一部分には同一符号を付して示し発明の詳細な
説明は省略する。従つて第2図に示す構成において第1
図に示す部分とは相違する個所の構成のみを説明する。
第2図に示す配電系統から明らかなように本発明配電線
路開閉器の自動制御装置では変電所SS内において母線
連絡しや断器CB−Mに制御装置CONT−Mを設けて
しや断器CB−Mの投入および引外しを行い得るように
する。またこのしや断器CB−Mには限流素子として抵
抗器Rを並列に、従つて配電系統に対しては直列に接続
する。更に変電所母線BUSには負荷開閉能力を有する
負荷開閉器Sll,S2l,S3l,・・を介して第1
図につき説明した所と同様の第1回線フィーダF1、第
2回線フィーダF2、第3回線フィーダF3・・・をそ
れぞれ接続する。負荷開閉器Sll,Sl2,Sl3・
・・には制御装置CONT−1,C0NT−2,C0N
T−3,・・・をそれぞれ配設し、これら制御装置CO
NT−1,C0NT−2,C0NT−3,・・・には、
その一方の入力側と変電所母線BUSとの間に計器用変
圧器汀−1,PT−2,PT−3,をそれぞれ設けると
共に関連する負荷開閉器Sll,S2l,S3l,・・
の前段と母線BUSとの間に変流器11,12,13,
・・・を設け、これら変流器の出力側を関連する制御装
置CONTの他方の入力側に接続する。また、第2図に
示す配電系統では、各フィーダ間に連系負荷開閉器を設
け、平常時に多重ループ運転を行い得るようにする。こ
の目的のため、例えば第1フィーダF1の第2区間El
2と第2フィーダF2の第1区間E22との間に連系負
荷開閉器C1を設けると共に第2フィーダF2の第3区
間E23と第3フィーダF3の第3区間E23との間に
連系負荷開閉器C2を設ける。これら負荷開閉器C1お
よびC2にも前述した区分開閉器につき説明した所と同
様に時限式事故捜査器TSClおよびTSC2並びに電
圧検出用変圧器Trlし,TrlRおよびTr2し,T
r2Rをそれぞれ配設する。本発明によれば斯様に構成
配置した配電系統において、変流器および計器用変圧器
により検出した地絡または短絡事故による電流および電
圧によつて本発明制御装置CONTを動作させて関連す
るフィーダの負荷開閉器または連系負荷開閉器あるいは
母線連絡しや断器を作動させるものである。Components in the power distribution system shown in FIG. 2 that are the same as those of the power distribution system shown in FIG. Therefore, in the configuration shown in FIG.
Only the parts of the structure that are different from those shown in the figures will be explained.
As is clear from the distribution system shown in Fig. 2, in the automatic control device for the distribution line switch of the present invention, a control device CONT-M is provided at the busbar connection and disconnector CB-M in the substation SS. It is possible to insert and remove the CB-M. Further, a resistor R is connected in parallel to this cable breaker CB-M as a current limiting element, and therefore in series to the power distribution system. Furthermore, the substation bus line BUS is connected to the first load switch via load switches Sll, S2l, S3l, etc., which have load switching capabilities.
A first line feeder F1, a second line feeder F2, a third line feeder F3, . . . which are similar to those explained with reference to the drawings are connected, respectively. Load switch Sll, Sl2, Sl3・
... has control devices CONT-1, C0NT-2, C0N.
T-3,... are installed respectively, and these control devices CO
NT-1, C0NT-2, C0NT-3,...
Potential transformers TS-1, PT-2, PT-3 are provided between one input side and the substation bus BUS, and related load switches Sll, S2l, S3l, . . .
Current transformers 11, 12, 13,
... are provided, and the output sides of these current transformers are connected to the other input side of the associated control device CONT. Furthermore, in the power distribution system shown in FIG. 2, interconnection load switches are provided between each feeder to enable multiple loop operation during normal times. For this purpose, for example, the second section El of the first feeder F1
A grid-connected load switch C1 is provided between the second feeder F2 and the first section E22 of the second feeder F2, and a grid-connected load switch C1 is provided between the third section E23 of the second feeder F2 and the third section E23 of the third feeder F3. A switch C2 is provided. These load switches C1 and C2 are also equipped with time-limited accident investigation devices TSCl and TSC2, voltage detection transformers Trl, TrlR and Tr2, and T
r2R are respectively arranged. According to the present invention, in the distribution system configured and arranged in this way, the control device CONT of the present invention is operated by the current and voltage caused by the ground fault or short circuit detected by the current transformer and the potential transformer, and the related feeder is controlled. This is to operate the load switch, interconnection load switch, busbar connection or disconnector.
次に本発明制御発明の詳細な説明を第3図により行う。
第3図においては一例として第1回線フィーダF1に設
けた制御装置について説明を行うため図中の各符号の添
字−1は第1回線フィーダF1に関連することを意味す
るものとする。制御装置CONT−1は、零相変流器Z
CT−1からの零相電流および接地変圧器PT−1から
の零相電圧を受けて動作し母線連絡しや断器CB−Mに
しや断指令を出すと共にしや断器CB−Mの開放後タイ
マーTM−1による遅延後連系負荷開閉器C1およびC
2に開放指令を出す内部地絡方向検出継電器52−1と
、変流器CT−1からの電流を受けて内部地絡方向検出
継電器52−1と全く同様の動作を行う内部短絡検出器
51−1と、これら両継電器52−1および検出器51
−1による連系負荷開閉器Cl,C2の開放後、第1回
線フィーダF1内に地絡または短絡事故が継続中であれ
は負荷開閉器Sllを開放せしめる時限式事故捜査器B
−1とをもつて構成する。かように構成した本発明制御
装置の動作を第4図を参照しながら説明する。Next, a detailed explanation of the control invention of the present invention will be given with reference to FIG.
In FIG. 3, in order to explain the control device provided in the first line feeder F1 as an example, the suffix -1 of each reference numeral in the figure means that it is related to the first line feeder F1. The control device CONT-1 is a zero-phase current transformer Z
It operates in response to the zero-sequence current from CT-1 and the zero-sequence voltage from the grounding transformer PT-1, and issues a shear rupture command to the busbar connecting circuit breaker CB-M, and opens the circuit breaker CB-M. Grid-connected load switches C1 and C after delay by post-timer TM-1
An internal ground fault direction detection relay 52-1 issues an opening command to the current transformer CT-1, and an internal short circuit detector 51 receives current from the current transformer CT-1 and operates in exactly the same way as the internal ground fault direction detection relay 52-1. -1, both relays 52-1 and detector 51
- After the interconnection load switches Cl and C2 are opened by 1, if a ground fault or short circuit accident continues in the first line feeder F1, the time-limited accident investigation device B opens the load switch Sll.
-1. The operation of the control device of the present invention constructed as described above will be explained with reference to FIG.
従来例の場合と同様に第1回線フィーダF1の第3区間
Fl3に地絡事故が発生したものとして説明する。この
場合連系負荷開閉器Cl,C2は閉成しているものとす
る。第1回線のフィーダF1に地絡電流が流れると零相
変流器℃T−1から零相電流が取り出されると共に接地
変圧器汀−1から零相電圧が取り出され、これにより内
部地絡方向継電器52−1が動作する。連系開閉器Cl
,C2が共に閉成されて運転されていると想定している
ので上述した所と同様にフィーダF2,F3の内部地絡
方向継電器52−2,52−3が動作する。As in the case of the conventional example, explanation will be given assuming that a ground fault has occurred in the third section Fl3 of the first line feeder F1. In this case, it is assumed that the interconnection load switches Cl and C2 are closed. When a ground fault current flows through the feeder F1 of the first circuit, a zero-sequence current is taken out from the zero-sequence current transformer ℃T-1, and a zero-sequence voltage is taken out from the grounding transformer T-1. Relay 52-1 operates. Grid switch Cl
, C2 are both closed and operated, the internal ground fault direction relays 52-2 and 52-3 of feeders F2 and F3 operate in the same manner as described above.
これら継電器52一1,52−2,52−3の動作によ
りしや断器制御装置CONT−Mに引外し指令を出す。
これと同時にタイマーTM−1による持ち時間TMl後
に連系負荷開閉器Cl,C2を開放する指令を出す。連
系負荷開閉器Cl,C2の開放後には、第1回線フィー
ダF1の時限式事故捜査器TS−1のみが動作してTx
″時間後に負荷開閉器Sllに開放指令を出す。これと
同時に時限式事故捜査器L−1は、そのタイマー回路が
起動され、Tx″時間後動作して前記負荷開閉器Sll
に投入指令を出す。The operation of these relays 52-1, 52-2, and 52-3 issues a trip command to the shield breaker control device CONT-M.
At the same time, a command is issued to open the interconnected load switches Cl and C2 after a time period TM1 set by the timer TM-1. After the interconnection load switches Cl and C2 are opened, only the time-limited accident investigation device TS-1 of the first line feeder F1 operates and the Tx
After ``Tx'' time, an opening command is issued to load switch Sll. At the same time, the timer circuit of the time-limited accident investigation device L-1 is activated, and after Tx'' time, the timer circuit is activated to open the load switch Sll.
issue an injection command to
負荷開閉器Sllの投入後、Tx時間経過すると事故捜
査器′VSl2により区分開閉器Sl2に投入指令を出
す。区分開閉器Sl2の投入後さらにTx時間経過する
と事故捜査器′VSl3により区分開閉器Sl3に投入
指令を出す。第3区間にまだ事故原因が残つている場合
には地絡が再発生し、再び継電器52−1の動作により
負荷開閉器Sllがしや断される。この際区分開閉器S
l3は再閉路後Ty時間内で無電圧になつたため以後の
再閉路の際投入をロックされるも・のとする。負荷開閉
器Sllは再しや断後Tx″時間経過の後に前述した所
と同様に再閉路され、さらにその後Tx時間後に区分開
閉器Sl2が再閉路する。しかしこの場合前述したよう
に区分開閉器Sl3は投入がロックされているため開放
状態ノを保持する。かように本発明によれば地絡事故の
場合、故障の発生したフィーダのみが順送投入(捜査)
を行うので他の健全相は停電することはない。When time Tx has elapsed after the load switch Sll is closed, the accident investigation device 'VS12 issues a close command to the sectional switch Sl2. When a further Tx time has elapsed after closing the section switch Sl2, the accident investigation device 'VS13 issues a closing command to the section switch Sl3. If the cause of the accident still remains in the third section, the ground fault will occur again, and the load switch Sll will be disconnected by the operation of the relay 52-1 again. At this time, section switch S
Assume that l3 becomes non-voltage within Ty time after re-closing, and therefore is locked from being turned on at the time of subsequent re-closing. The load switch Sll is reclosed in the same way as described above after Tx'' time has elapsed after the re-opening, and then the section switch Sl2 is reclosed after Tx time.However, in this case, as mentioned above, the section switch Sl2 is reclosed. Sl3 maintains the open state because the feeding is locked.As described above, according to the present invention, in the case of a ground fault, only the feeder where the failure has occurred is sequentially fed (investigated).
Therefore, other healthy phases will not experience a power outage.
なお母線連絡しや断器CB−Mの再閉路指令は負荷開閉
器Sllが二回投入されたことを条件に行うものとする
。It is assumed that the re-closing command for the busbar contactor and disconnector CB-M is issued on the condition that the load switch Sll is closed twice.
次に第1回線フィーダF1の第3区間El3に短絡事故
が発生したものとし、この場合について第4図を参照し
て説明する。Next, it is assumed that a short circuit accident has occurred in the third section El3 of the first circuit feeder F1, and this case will be explained with reference to FIG. 4.
短絡電流は変流器CT−1により取り出され内部短絡方
向継電器51−1を動作させる。The short circuit current is taken out by current transformer CT-1 and operates internal short circuit directional relay 51-1.
これがためしや断器制御装置CONT−Mに引外し指令
を出す。This issues a tripping command to the disconnection control device CONT-M.
これと同時にタイマーTM−1による持ち時間TMl後
に連系負荷開閉器Cl,C2を開放する指令を出す。連
系負荷開閉器Cl,C2に開放指令が出された時点では
しや断器CB一Mは開放されているが、この場合限流素
子である抵抗器Rが配電系統に直列にそう入されている
ため短絡電流は地絡電流以下に抑制され従つて連系負荷
開閉器Cl,C2は開放を行うことができる。連系負荷
開閉器Cl,C2の開放後には、第1回線フィーダF1
の時限式事故捜査器TS−1のみが動作してTx″時間
後に負荷開閉器Sllに開放指令を出す。これと同時に
時限式事故捜査器L−1はそのタイマー回路が起動され
、Tx″時間後動作して、前記負荷開閉器Sllに投入
指令を出す。負荷開閉器Sllの投入後Tx時間経過す
ると事故捜査器TSl2により区分開閉器Sl2に投入
指令を出す。区分開閉器Sl2の投入後さらにTx時間
経過すると事故捜査器TSl3により区分開閉器Sl3
が投入される。第3区間にまだ事故原因が残つている場
合には短絡が再発生し、再び継電器51−1の動作によ
り負荷開閉器Sllがしや断される。At the same time, a command is issued to open the interconnected load switches Cl and C2 after a time period TM1 set by the timer TM-1. When the open command is issued to the interconnected load switches Cl and C2, the wire breakers CB-M are open, but in this case, the resistor R, which is a current-limiting element, is inserted in series with the distribution system. Therefore, the short circuit current is suppressed to below the ground fault current, and the interconnected load switches Cl and C2 can be opened. After opening the interconnection load switches Cl and C2, the first line feeder F1
Only the time-limited accident investigation device TS-1 operates and issues an opening command to the load switch Sll after Tx'' time.At the same time, the timer circuit of the time-limited accident investigation device L-1 is activated and the timer circuit of the time-limited accident investigation device L-1 is activated after Tx'' time. A subsequent operation is performed to issue a closing command to the load switch Sll. When Tx time elapses after the load switch Sll is closed, the accident investigation device TS12 issues a close command to the sectional switch Sl2. When a further Tx time has elapsed after the section switch Sl2 is turned on, the accident investigation device TSl3 turns on the section switch Sl3.
is injected. If the cause of the accident still remains in the third section, the short circuit will occur again, and the load switch Sll will be quickly disconnected by the operation of the relay 51-1 again.
この際区分.開閉器Sl3は再閉路後Ty時間内で無電
圧になつたため以後の再閉路の際投入をロックされるも
のとする。負荷開閉器Sllは再しや断後Tx″時間経
過の後に前述した所と同様に再閉路され、さらにその丁
後Tx時間後に区分開閉器Sl2が再閉路する。In this case, classification. It is assumed that the switch Sl3 becomes non-voltage within the time Ty after re-closing, and therefore is locked from closing during subsequent re-closing. The load switch Sll is reclosed in the same manner as described above after a time Tx'' has elapsed after the re-opening, and furthermore, the section switch Sl2 is reclosed just after a time Tx.
しかしこの場合前述したように区分開閉器Sl3は投入
がロックされているため開放状態を保持する。かように
本発明によれば短絡事故の場合も、故・障の発生したフ
ィーダのみが順送投入(捜査)を行うので他の健全相は
停電することはない。However, in this case, as described above, the sectional switch Sl3 is kept open because the opening is locked. As described above, according to the present invention, even in the case of a short circuit accident, only the feeder in which the failure/failure has occurred performs progressive feeding (investigation), so other healthy phases will not experience a power outage.
なおこの場合も母線連絡しや断器CB−Mの再閉路指令
は負荷開閉器Sllが二回投入されたことを条件に行う
ものとする。第2図に示す本発明の配電系統では母線連
絡しや断器CB−Mに並列に、従つて配電系統に直列に
抵抗Rを挿入したが本発明はこれに限定されるものでは
なく、第5図に示すように限流素子として抵抗Rの代り
にリアクトルLを用いることができることは勿論である
。In this case as well, the re-closing command for the busbar connection and disconnector CB-M shall be issued on the condition that the load switch Sll has been turned on twice. In the power distribution system of the present invention shown in FIG. 2, a resistor R is inserted in parallel with the busbar connection and disconnector CB-M, and therefore in series with the power distribution system, but the present invention is not limited to this. Of course, as shown in FIG. 5, a reactor L can be used instead of the resistor R as the current limiting element.
この場合の動作は第2図につき説明した所と全く同様で
ある。l 以上述べたように、本発明によればフィーダ
しや断器を省略して母線に一番近い区分開閉器と連系開
閉器に負荷電流と地絡電流の和の電流しや断能力を持た
せて、いわゆる負荷開閉器とすることにより、地絡事故
時は勿論短絡事故時にもしや断・器と連系負荷開閉器の
開放後に事故のフィーダのみを捜査させるようにしたの
で平常時には連系負荷開閉器を閉成状態として多重ルー
プ運用により設備利用率の向上と、需要者の電圧改善を
行なうことができ、かつ経済的で停電範囲の局限化を図
り、また停電時間の短かい配電線路の自動制御装置を提
供することがてきる。The operation in this case is exactly the same as that described with reference to FIG. l As described above, according to the present invention, the feeder and disconnector are omitted and the sectional switch and interconnection switch closest to the bus have the current disconnection capacity equal to the sum of the load current and the ground fault current. By using this as a so-called load switch, in the event of a ground fault, or even a short circuit, only the faulty feeder can be investigated after the load switch is disconnected and the load switch is opened. It is possible to improve the facility utilization rate and voltage of customers by operating multiple loops with the load switch closed, and it is economical, localizes the area of power outage, and shortens the power outage time. Automatic control equipment can be provided.
第1図は従来の線路開閉器による配電系統図、第2図は
本発明による配電線路開閉器の自動制御装置を有する配
電系統図、第3図は本発明装置の主要部を示すブロック
図、第4図は本発明装置の動作を説明するタイムチャー
ト、第5図は本発明装置を有する配電系統の変形例を示
す配電系統図である。
SS・・・変電所、CB−M・・・母線連絡しや断器、
BUS・・・変電所母線、Sll,S2l,S3l・・
・負荷開閉器、Cl,C2・・・連系負荷開閉器、Sl
2,Sl3,S22,S23,S32,S33・・区分
開閉器、′VSl2,TSl3,TS22,′VS23
,TS32,TS33・・・時限式事故捜査器、TS−
1・・・時限式事故捜査器、Fl,F2,F3・・・フ
ィーダ、R・・・限流用抵抗器、CONT−1〜CON
T一3,C0NT−M・・・制御装置、L・・・限流用
リアクトル、52−1・・・内部地絡方向検出継電器、
51一1・・・内部短絡検出器、TM−1・・・タイマ
ー、ZCT−1・・・零相変流器、PT−1・・・接地
変圧器、Ell〜E33・・・フィーダ区分、Trll
L,TrllR−Tr33し,Tr33R・・・電圧検
出用変圧器。FIG. 1 is a power distribution system diagram using a conventional line switch, FIG. 2 is a power distribution system diagram having an automatic control device for a distribution line switch according to the present invention, and FIG. 3 is a block diagram showing the main parts of the device of the present invention. FIG. 4 is a time chart explaining the operation of the device of the present invention, and FIG. 5 is a power distribution system diagram showing a modification of the power distribution system having the device of the present invention. SS...Substation, CB-M...Bus bar connection and disconnection,
BUS...Substation busbar, Sll, S2l, S3l...
・Load switch, Cl, C2... Grid-connected load switch, Sl
2, Sl3, S22, S23, S32, S33... Sectional switch, 'VSl2, TSl3, TS22, 'VS23
, TS32, TS33...Timed accident investigation device, TS-
1...Timed accident investigation device, Fl, F2, F3...Feeder, R...Current limiting resistor, CONT-1~CON
T-3, C0NT-M...control device, L...current-limiting reactor, 52-1...internal ground fault direction detection relay,
51-1...Internal short circuit detector, TM-1...Timer, ZCT-1...Zero phase current transformer, PT-1...Grounding transformer, Ell~E33...Feeder division, Trll
L, TrllR-Tr33, Tr33R... voltage detection transformer.
Claims (1)
所母線と、母線連絡しや断器に並列に設置された限流素
子と、負荷開閉能力を有する負荷開閉器と、該負荷開閉
器を介し前記母線に接続され各々が区分開閉器により複
数区間に区分される複数のフィーダと、各フィーダ間に
設置される連系負荷開閉器と、これら区分開閉器を順次
投入制御する時限式事故捜査器と、各フィーダ毎に設け
られ、内部地絡または内部短絡検出の際は、母線連絡し
や断器を引外し、一定時限後に連系負荷開閉器を全て開
放し、しかるのちに事故フィーダのみの負荷開閉器を開
放して再投入を行なわしめる時限式事故捜査装置を有す
る制御部とからなる配電線路開閉器の自動制御装置。 2 前記制御部を、零相変流器からの零相電流および接
地変圧器からの零相電圧を受けて母線連絡しや断器を作
動させその後連系負荷開閉器を作動せしめる内部地絡方
向検出継電器と、変流器からの電流を受けて母線連絡し
や断器を作動させその後連系負荷開閉器を作動せしめる
内部短絡検出器と、これらしや断器および検出器による
連系負荷開閉器の作動後に負荷開閉器を作動せしめる時
限式事故捜査器とを以て構成したことを特徴とする特許
請求の範囲第1項記載の配電線路開閉器の自動制御装置
。 3 母線連絡しや断器に並列に配設された限流素子を抵
抗器としたことを特徴とする特許請求の範囲第1項記載
の配電線路開閉器の自動制御装置。 4 母線連絡しや断器に並列に配設された限流素子をリ
アクトルとした事を特徴とする特許請求の範囲第1項記
載の配電線路開閉器の自動制御装置。[Scope of Claims] 1. A substation bus connected to a power source via a bus link or disconnector, a current limiting element installed in parallel to the bus link or disconnector, and a load switching device having load switching capability. a plurality of feeders connected to the bus bar through the load switch and each divided into a plurality of sections by a section switch, an interconnected load switch installed between each feeder, and a plurality of feeders connected to the bus bar through the load switch, A time-limited accident investigation device is installed for each feeder that controls sequential input, and when an internal ground fault or internal short circuit is detected, the busbar contact or disconnector is tripped, and after a certain period of time, all interconnected load switches are opened. An automatic control device for a distribution line switch, comprising: a control unit having a time-limited accident investigation device that subsequently opens the load switch of only the accident feeder and then closes the load switch again; 2 The internal ground fault direction causes the control unit to receive the zero-sequence current from the zero-sequence current transformer and the zero-sequence voltage from the grounding transformer to operate the bus interconnector and disconnector, and then operate the interconnection load switch. A detection relay, an internal short-circuit detector that receives current from a current transformer, activates a bus link or disconnector, and then activates a grid-connected load switch, and a grid-connected load switch using these switches, disconnectors, and detectors. 2. The automatic control device for a distribution line switch according to claim 1, further comprising a time-limited accident investigation device that operates the load switch after the load switch is activated. 3. The automatic control device for a distribution line switch according to claim 1, characterized in that the current-limiting element arranged in parallel with the busbar link or disconnector is a resistor. 4. The automatic control device for a power distribution line switch according to claim 1, characterized in that a reactor is a current-limiting element arranged in parallel to the busbar link or disconnector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53077888A JPS6053526B2 (en) | 1978-06-26 | 1978-06-26 | Automatic control device for distribution line switches |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53077888A JPS6053526B2 (en) | 1978-06-26 | 1978-06-26 | Automatic control device for distribution line switches |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS555074A JPS555074A (en) | 1980-01-14 |
JPS6053526B2 true JPS6053526B2 (en) | 1985-11-26 |
Family
ID=13646605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53077888A Expired JPS6053526B2 (en) | 1978-06-26 | 1978-06-26 | Automatic control device for distribution line switches |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6053526B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61245075A (en) * | 1985-04-22 | 1986-10-31 | Toyo Commun Equip Co Ltd | Near-by aircraft detecting system |
-
1978
- 1978-06-26 JP JP53077888A patent/JPS6053526B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS555074A (en) | 1980-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3558981A (en) | Ground relay system for multiple substation protection | |
Jonsson | Line Protection and Power System Collapse | |
JPS6053526B2 (en) | Automatic control device for distribution line switches | |
JP3480671B2 (en) | Bus protection system for spot network power receiving equipment | |
JPH06276672A (en) | Method for sensing and isolating groud fault | |
SU1379855A1 (en) | Method of automatic reclosing and sectioning of one-way power supply switch network | |
JP2014192953A (en) | Transmission line protection device, and transmission line protection system | |
JPH04331416A (en) | Ground fault protection system for distribution line | |
JPH02206325A (en) | Distribution line protective device | |
RU2727706C1 (en) | Method of coordination of protection action of supply lines adjacent to insulating coupling of direct current | |
JP2799065B2 (en) | Reclosing method of current differential protection relay | |
JPH0245419B2 (en) | ||
JPH05176448A (en) | Power system protector | |
JP2876781B2 (en) | Ground fault protection device for distribution line | |
JPH1014100A (en) | Ground self-breaking type automatic section switch | |
JPS6242448B2 (en) | ||
CN112467703A (en) | Bus-tie dead zone protection device suitable for 110KV network characteristics | |
JPH0444495B2 (en) | ||
Singh et al. | A Review on Selection of Proper Busbar Arrangement for Typical Substation (Bus-Bar Scheme) | |
JP2550006B2 (en) | Distribution line protection relay device | |
JPS6134833Y2 (en) | ||
JPH0520976B2 (en) | ||
JPS591050B2 (en) | Automatic control device for distribution line switches | |
Weller et al. | Centralised automation of the East of England network | |
JPH0135578B2 (en) |