JPS6053293B2 - Optical connector manufacturing method and optical connector - Google Patents

Optical connector manufacturing method and optical connector

Info

Publication number
JPS6053293B2
JPS6053293B2 JP1526480A JP1526480A JPS6053293B2 JP S6053293 B2 JPS6053293 B2 JP S6053293B2 JP 1526480 A JP1526480 A JP 1526480A JP 1526480 A JP1526480 A JP 1526480A JP S6053293 B2 JPS6053293 B2 JP S6053293B2
Authority
JP
Japan
Prior art keywords
sleeve
optical connector
core
optical
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1526480A
Other languages
Japanese (ja)
Other versions
JPS56111824A (en
Inventor
信男 佐藤
富雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1526480A priority Critical patent/JPS6053293B2/en
Publication of JPS56111824A publication Critical patent/JPS56111824A/en
Publication of JPS6053293B2 publication Critical patent/JPS6053293B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3865Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using moulding techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 本発明に光装置等に使用される光ファイバケーブルを
光通信伝送媒体として用いる時に相互接続させる光コネ
クタにおいて、対向する中子同志を嵌合するスリーブ内
面を熱収縮チューブと一体に樹脂モールドして光コネク
タを構成する光コネクタの製造方法に関するものである
Detailed Description of the Invention In the present invention, in an optical connector for interconnecting optical fiber cables used in optical devices, etc. when used as an optical communication transmission medium, the inner surface of the sleeve that fits opposing cores is made of heat-shrinkable tube. The present invention relates to a method of manufacturing an optical connector, which is integrally molded with resin to form an optical connector.

従来より光通信システムにおける各装置内の光回路素子
間を接続するために、光ファイバケーブルが一般に広く
使用されるようになつている。この光フアイバケ ーブ
ルは中心部のコアとその外周部のクラッドから構成され
、その外側には保護用のプラスチックジャケット、即ち
、ナイロンコートの外皮で構成されている。このような
、光ファイバケーブルにおいては、その両端に光コネク
タ部材を接続し、該光コネクタ部材により装置内の各種
光回路素子間の接続が行われている。従来、この光コネ
クタはその部材用の中子、スリーブを含めて、光学的な
結合損失の増大を防ぐため、高精度が要求されており、
それらは鋼製のステンレス等を精密機械加工した金属部
品で組立てることにより構成され量産性に劣り高価とな
つている。したがつて、量産性、又は、低価格の観点よ
り樹脂モールド化が要求されている。ところで、その光
コネクタ部材に用いるコネクタ用中子と、スリーブとを
樹脂モールドで作製した場合、第1図に示すように光フ
ァイバのクラッド1よりナイロンコートの外皮2を皮む
きしてから、そのナイロンコートの外皮2にステンレス
等の保護管3を挿入する。そして図・の如く光ファイバ
と保護管とを一体にし、樹脂モールドで中子4を形成す
る。一方、スリーブ5を樹脂モールドで形成する。しか
しながら、この中子4とスリーブ5では光コネクタとし
ての着脱時の摩耗及び寸法精度等は問題で光学的な低接
続損失の光コネクタ作製は困難であつた。即ち、スリー
ブ5は光ファイバ端末を固定した中子4と、対向する中
子4’同志を精度よく嵌合するための同筒である。この
スリーブ5を樹脂モールド成形するために、成形収縮及
び成形条件等で寸法精度は大きく変化する。又、中子4
,4゛、スリーブ5共に樹脂モールド材であるため、着
脱時の摩耗、摩耗粉で寸法変化を起して光コネクタとし
ての光学的な接続損失等の問題が生じる。従つて、本発
明の目的は上記問題を解消せしめるもので、着脱可能な
樹脂モールドよりなる光コネクタの製造方法において、
寸法精度の向上及び着脱時の摩耗性改良等のをするため
、新規な光コネクタ部材用スリーブの成形には、摩耗係
数の小さい弗素樹脂(TFE,FEP,ETFE)の熱
収縮チューブをインサートして樹脂モールドし、そのス
リーブ内面を弗素樹脂で形成し耐摩耗性を持たせた柔軟
性構造にしたものである。
2. Description of the Related Art Conventionally, optical fiber cables have generally been widely used to connect optical circuit elements within each device in an optical communication system. This optical fiber cable is composed of a central core and a cladding on the outer periphery, and a protective plastic jacket, that is, a nylon coat outer skin. In such an optical fiber cable, optical connector members are connected to both ends thereof, and the optical connector members connect various optical circuit elements in the device. Conventionally, this optical connector, including its core and sleeve, has required high precision to prevent an increase in optical coupling loss.
They are constructed by assembling precision-machined metal parts made of stainless steel, etc., and are not mass-producible and are expensive. Therefore, resin molding is required from the viewpoint of mass production or low cost. By the way, when the connector core and sleeve used in the optical connector member are made by resin molding, as shown in FIG. A protective tube 3 made of stainless steel or the like is inserted into the nylon coated outer skin 2. Then, as shown in the figure, the optical fiber and the protective tube are integrated, and a core 4 is formed using a resin mold. On the other hand, the sleeve 5 is formed by resin molding. However, the core 4 and the sleeve 5 have problems such as wear and dimensional accuracy during attachment and detachment as an optical connector, and it has been difficult to produce an optical connector with low optical connection loss. That is, the sleeve 5 is a cylinder for precisely fitting the core 4 to which the optical fiber terminal is fixed and the opposing cores 4' together. Since the sleeve 5 is molded with resin, the dimensional accuracy varies greatly depending on molding shrinkage, molding conditions, etc. Also, core 4
, 4, and the sleeve 5 are made of resin molded material, and therefore dimensional changes occur due to wear and abrasion powder during attachment and detachment, resulting in problems such as optical connection loss as an optical connector. Therefore, an object of the present invention is to solve the above problems, and to provide a method for manufacturing an optical connector made of a removable resin mold.
In order to improve dimensional accuracy and abrasion resistance during attachment/detachment, heat-shrinkable tubes made of fluororesin (TFE, FEP, ETFE) with a low coefficient of wear are inserted into the molding of new optical connector sleeves. It is resin molded and the inner surface of the sleeve is made of fluororesin to create a flexible structure with wear resistance.

以下本発明による光コネクタの製造方法の一実施例とし
て第2図のスリーブをモールド成形する断面図と、第3
図に示したスリーブの断正面図と第4図の、それを適用
した光コネクタの接続構成断面図を用いて説明する。
Below, as an example of the method for manufacturing an optical connector according to the present invention, a cross-sectional view of the sleeve shown in FIG.
This will be explained using a sectional front view of the sleeve shown in the figure and a sectional view of the connection structure of an optical connector to which the sleeve is applied, as shown in FIG.

図に示すように本発明の光コネクタ用樹脂モールドスリ
ーブは、従来の第1図と異なる点は、第2図に示すよう
にスリーブに要求される内径のモールド中子と嵌合でき
る同一径で、且つスリーブ6の内周に弗素樹脂よりなる
熱収縮チューブ7をインサートしてモールド成形し、第
3図に示すようにそのスリーブ6内面を弗素樹脂による
耐摩耗性を持つ柔軟性構造に形成することである。即ち
、第2図に示す芯金型(中子外径に相当する)8内キャ
ビティにTFE熱収縮チューブ(ペンニットKK製)7
を挿入して、そのチューブ7を330℃の加熱により収
縮固一定した後、その芯金型8を下型9に挿入し、該下
型9に上型10を嵌合させる。次いで、上型10上部よ
り成形材料11のポリカーボネツト樹脂(三菱化孝CS
2O3Ol)12が射出成形されて、第3図に示すスリ
ーブ6が形成される。加熱によソー熱収縮チューブを芯
金型に収縮固定するのは、芯金型8の径は、スリーブ6
内で付合せる中子4,4″の径より、わずかに大きな径
になつている。従つて、中子4,4″をスリーブ6内で
付合せた場合ファイバ同志が軸ずれしないように熱収縮
チーユーブ7を芯金型8に収縮固定する必要があるから
である。なお芯金型8に収縮固定しないで成形した場合
、収縮チューブ7のずれや、収縮チューブ7内に成形材
料11の樹脂12が入り、内面が弗素樹脂で形成された
スリーブが出来ない。このように形成されたスリーブを
適用した光コネクタにおいては、第4図に示すように先
ず、光ファイバ2,2″の先端の外皮2,2″を皮むき
してクラッド1を出し、そのファイバ2、又、2′とク
ラッド1をエポキシ樹脂モールドでそれぞれの中子4,
4″を成形する。そして右方の中子4をスリーブ6の内
面の弗素樹脂7に挿入すると、その内面7の柔軟性構造
もしくは弗素樹脂の潤滑ノ効果により寸法精度よく確実
に嵌合される。弗素樹脂製のチューブ7も、一般的な熱
収縮チューブと同様、加熱収縮により固くなる性質は同
じである。しかし弗素樹脂は、もともと非常に軟かい材
料であるため、加熱収縮しても大きな固さの変化−はな
く、加熱収縮後も潤滑効果が大である。そのスリーブ6
をコネクタハウジング13で装着固定する。更に、左方
の中子4″を右方と同様にスリーブ6に嵌合させ、コネ
クタハウジング13″で装着固定することによつて、光
コネクタの接続構成ができる。次いで、光コネクタの着
脱には、その装着したコネクタハウジング13″を取り
外して中子4″を抜くことにより抜去でき、しかる後、
嵌入装着することによつて、着脱を行うことができる。
従つて、このような本発明の光コネクタの製造方法にお
いては、スリーブの内面をTF′E熱収縮チューブ7で
加熱してより収縮固定して弗素樹脂を形成してから、ポ
リカーボネツト樹脂で射出成形を行つてスリーブ6を形
成し、又、光ファイバ2,2″をエポキシ樹脂で成形し
て中子4,4″を形成することにより、その中子4,4
″をスリーブ6の中7で着脱を繰返して行つても摩耗に
よる寸法変化及び光学的な接続損失の変動が防げるので
、光コネクタとしての確実な装着脱を行うことができる
。以上実施例により説明したように、本発明による光コ
ネクタの製造方法によれば、そのスリーブの内面を弗素
樹脂で構成されるようにして樹脂モールドすることによ
り、中子の着脱時の摩耗が防げ、且つ、寸法精度のよい
光学的接続損失の小さい量産性が可能となる光コネクタ
の製造ができる等の利点がある。
As shown in the figure, the resin molded sleeve for optical connectors of the present invention is different from the conventional one shown in FIG. 1 in that it has the same diameter as shown in FIG. , and a heat-shrinkable tube 7 made of fluororesin is inserted into the inner periphery of the sleeve 6 and molded, and the inner surface of the sleeve 6 is formed into a flexible structure with abrasion resistance made of fluororesin as shown in FIG. That's true. That is, a TFE heat shrink tube (manufactured by Pennit KK) 7 is placed in the inner cavity of the core mold (corresponding to the outer diameter of the core) 8 shown in FIG.
After the tube 7 is contracted and fixed by heating at 330° C., the core mold 8 is inserted into the lower mold 9, and the upper mold 10 is fitted into the lower mold 9. Next, a molding material 11 of polycarbonate resin (Mitsubishi Kako CS) is poured from the top of the upper mold 10.
2O3Ol) 12 is injection molded to form the sleeve 6 shown in FIG. The diameter of the core mold 8 is the diameter of the sleeve 6 to shrink and fix the saw heat shrinkable tube to the core mold by heating.
The diameter is slightly larger than that of the cores 4, 4" that are mated within the sleeve 6. Therefore, when the cores 4, 4" are mated within the sleeve 6, heat is applied to prevent the fibers from misaligning. This is because it is necessary to shrink and fix the shrinkable tube 7 to the core mold 8. If molding is performed without shrinking and fixing to the core mold 8, the shrink tube 7 may shift or the resin 12 of the molding material 11 may enter the shrink tube 7, making it impossible to produce a sleeve whose inner surface is made of fluororesin. In an optical connector to which a sleeve formed in this manner is applied, first, as shown in FIG. 2. Also, mold 2' and cladding 1 with epoxy resin to each core 4,
4". Then, when the right core 4 is inserted into the fluororesin 7 on the inner surface of the sleeve 6, the flexible structure of the inner surface 7 or the lubricating effect of the fluororesin ensures a secure fit with high dimensional accuracy. The tube 7 made of fluororesin also has the same properties as general heat-shrinkable tubes: it hardens when heated.However, since fluororesin is originally a very soft material, it has the same property of becoming hard even when heated. There is no change in hardness, and the lubrication effect is great even after heat shrinkage.The sleeve 6
are installed and fixed with the connector housing 13. Furthermore, the left core 4'' is fitted into the sleeve 6 in the same way as the right core, and the connector housing 13'' is attached and fixed, thereby forming an optical connector connection structure. Next, the optical connector can be attached or detached by removing the attached connector housing 13'' and pulling out the core 4'', and then,
It can be attached and detached by fitting it in.
Therefore, in the method for manufacturing an optical connector of the present invention, the inner surface of the sleeve is heated with the TF'E heat shrink tube 7 to further shrink and fix it to form a fluororesin, and then it is injected with polycarbonate resin. By molding to form the sleeve 6, and by molding the optical fibers 2, 2'' with epoxy resin to form the cores 4, 4'', the cores 4, 4.
Since dimensional changes due to wear and variations in optical connection loss can be prevented even if the connector is repeatedly attached and detached using the inside 7 of the sleeve 6, the optical connector can be attached and detached reliably. As described above, according to the method for manufacturing an optical connector according to the present invention, the inner surface of the sleeve is made of fluororesin and molded with resin, thereby preventing wear during attachment and detachment of the core, and improving dimensional accuracy. This method has advantages such as being able to manufacture optical connectors that have good optical connection loss and can be mass-produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光コネクタ部材のスリーブに中子を結合
した断正面図、第2図は本発明の光コネクタの製造方法
の一実施例のスリーブをモールド成形する断正面図で、
第3図はそのスリーブを形成する断正面図で、第4図は
そのスリーブを適用した光コネクタの接続構成する断正
面図を示している。 図において、1・・・・・・クラッド、2・・・・・・
光ファイバの外皮、3・・・・・・金属管、4,4″・
・・・・・中子、7・・・・・TFE熱収縮チューブ、
8・・・・・芯金型、9・・・・・・下型、10・・・
・・・上型、11・・・・・・成形材料、13,13″
・・・・コネクタハウジング、を示す。
FIG. 1 is a sectional front view of a core coupled to a sleeve of a conventional optical connector member, and FIG. 2 is a sectional front view of molding a sleeve in an embodiment of the optical connector manufacturing method of the present invention.
FIG. 3 is a sectional front view showing the formation of the sleeve, and FIG. 4 is a sectional front view showing the connection configuration of an optical connector to which the sleeve is applied. In the figure, 1... cladding, 2...
Optical fiber sheath, 3...Metal tube, 4,4''.
... Core, 7 ... TFE heat shrink tube,
8...Core mold, 9...Lower mold, 10...
...Upper mold, 11...Molding material, 13,13''
...Indicates the connector housing.

Claims (1)

【特許請求の範囲】 1 光ファイバを固定した中子と、対向する該中子同志
を嵌合するスリーブを樹脂モールドする光コネクタの製
造方法において、芯金型内キャビティに弗素樹脂により
なる熱収縮チューブを挿入し、加熱により該熱収縮チュ
ーブを該芯金型に収縮固定する工程と、該芯金型を下型
に挿入し、該下型に上型を嵌合させる工程と、該上型よ
り樹脂を射出成形して内面が該弗素樹脂で構成されたス
リーブを形成する工程とを有することを特徴とする光コ
ネクタの製造方法。 2 光ファイバを固定した中子と、対向する該中子同志
を嵌合するスリーブと、該スリーブと該スリーブに嵌合
された対向する中子同子を固定するコネクタハウジング
とから成る光コネクタに於て該スリーブは、対向する該
中子同志を嵌合する内面に弗素樹脂層を有する複合樹脂
形成体からなることを特徴とする光コネクタ。
[Scope of Claims] 1. In a method for manufacturing an optical connector in which a core to which an optical fiber is fixed and a sleeve that fits the opposed cores are molded with resin, a heat-shrinkable material made of a fluororesin is provided in a cavity in a core mold. A step of inserting a tube and shrinking and fixing the heat-shrinkable tube to the core mold by heating, a step of inserting the core mold into a lower mold and fitting an upper mold to the lower mold, and a step of fitting the upper mold to the lower mold. 1. A method of manufacturing an optical connector, comprising the step of injection molding a resin to form a sleeve whose inner surface is made of the fluororesin. 2. An optical connector consisting of a core to which an optical fiber is fixed, a sleeve that fits the opposing cores together, and a connector housing that fixes the sleeve and the opposing cores that are fitted into the sleeve. The optical connector is characterized in that the sleeve is made of a composite resin body having a fluororesin layer on the inner surface into which the opposing cores are fitted.
JP1526480A 1980-02-08 1980-02-08 Optical connector manufacturing method and optical connector Expired JPS6053293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1526480A JPS6053293B2 (en) 1980-02-08 1980-02-08 Optical connector manufacturing method and optical connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1526480A JPS6053293B2 (en) 1980-02-08 1980-02-08 Optical connector manufacturing method and optical connector

Publications (2)

Publication Number Publication Date
JPS56111824A JPS56111824A (en) 1981-09-03
JPS6053293B2 true JPS6053293B2 (en) 1985-11-25

Family

ID=11883991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1526480A Expired JPS6053293B2 (en) 1980-02-08 1980-02-08 Optical connector manufacturing method and optical connector

Country Status (1)

Country Link
JP (1) JPS6053293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173507A (en) * 1984-01-30 1985-09-06 Nippon Telegr & Teleph Corp <Ntt> Method for molding core of plastic optical connector

Also Published As

Publication number Publication date
JPS56111824A (en) 1981-09-03

Similar Documents

Publication Publication Date Title
CA1198269A (en) Joining method to obtain elongated coated optical fiber
EP0174013B1 (en) Optical connector and method of manufacturing a pair of ferrules therefor
JPS61502496A (en) Optical fiber connector and products made from this connector
US4303304A (en) Universal optical waveguide alignment ferrule
JPS619612A (en) Method and apparatus for forming mold of fiber optic connector ferrule
EP0626601A1 (en) Overmolded alignment ferrule
AU2015207954C1 (en) Cable breakout assembly
CA1271622A (en) Method for joining plastic cores with spaced surface grooves and joints so-obtained
US5428702A (en) Optical waveguide connector
US5013495A (en) Method of producing optical fiber connectors
US5091987A (en) Fiber optic hermetic connector
CA1211967A (en) Fabrication of optical connectors
GB2242035A (en) Restricting expansion of fibre optic sheath
US4264129A (en) Fiber bundle termination
US4907852A (en) Optical fiber connector and method for producing the same
US4367011A (en) Optical fiber connector and means and method for centering optical fibers
JPS6053293B2 (en) Optical connector manufacturing method and optical connector
GB2049220A (en) Optical fiber terminator and means and method for centering optical fiber
CA2065237A1 (en) Optical connector
JPH0736047B2 (en) Optical multi-core plastic connector manufacturing method
JPH08338925A (en) Optical connector
JPS6150284B2 (en)
JPH0361162B2 (en)
JP3720093B2 (en) Manufacturing method of multi-fiber optical connector
JPS5856844B2 (en) Method for manufacturing optical fiber support by molding