JPS6052614A - Production of electrically conductive polyethylene fiber - Google Patents

Production of electrically conductive polyethylene fiber

Info

Publication number
JPS6052614A
JPS6052614A JP15741983A JP15741983A JPS6052614A JP S6052614 A JPS6052614 A JP S6052614A JP 15741983 A JP15741983 A JP 15741983A JP 15741983 A JP15741983 A JP 15741983A JP S6052614 A JPS6052614 A JP S6052614A
Authority
JP
Japan
Prior art keywords
fibers
density polyethylene
polyethylene resin
low
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15741983A
Other languages
Japanese (ja)
Inventor
Kunihiro Sawada
沢田 州宏
Harufumi Imura
井村 晴文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIRE KK
Original Assignee
TAIRE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIRE KK filed Critical TAIRE KK
Priority to JP15741983A priority Critical patent/JPS6052614A/en
Publication of JPS6052614A publication Critical patent/JPS6052614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled fibers having a low resistivity (tens of OMEGA.cm) and improved mechanical strength, by incorporating a linear low-density polyethylene resin having a specific melt index with a specific amount of electrically conductive fine powder, and drawing the resultant fibers at a low draw ratio. CONSTITUTION:A linear low-density polyethylene resin having 0.3-5.0 melt index and 0.91-0.95g/cm<3> density is incorporated with electrically conductive fine powder, e.g. carbon black, and the resultant mixture is then melted under heating, extrusion molded, cooled in water, etc., solidified and then drawn at 2- 5 times draw ratio to give the aimed fibers.

Description

【発明の詳細な説明】 (技術分野) この発明は導電性ポリエチレン繊維の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for producing conductive polyethylene fibers.

(従来技術) 従来、導電性ポリエチレン繊維の製造方法としては、例
えば高密度ポリエチレン樹脂の粉末又はペレットにカー
ボンブラック等の導電性粉末を所定量混入し、これを押
出機等で溶融してノズルから押出した後に冷却凝固させ
、さらにこれを所定の延伸倍率で延伸して巻取る方法が
ある。
(Prior art) Conventionally, as a method for manufacturing conductive polyethylene fibers, for example, a predetermined amount of conductive powder such as carbon black is mixed into powder or pellets of high-density polyethylene resin, and the mixture is melted using an extruder or the like and then passed through a nozzle. There is a method in which after extrusion, the material is cooled and solidified, then further stretched at a predetermined stretching ratio and wound up.

ところが、この製造方法で使用されている高密度ポリエ
チレン樹脂は、第1図に示すように直鎖状の分子構造を
もっているため、前記延伸工程において均一延伸状態を
得るための最低延伸倍率を6倍以上の高い値に設定する
必要がある。このように高い延伸倍率で繊維を延伸した
場合には、繊維内における導電性粉末の連繋が断たれ、
導電性の低下を招いて105〜ICΩ・cmの抵抗率を
示すものしか得られない。
However, since the high-density polyethylene resin used in this manufacturing method has a linear molecular structure as shown in Figure 1, the minimum stretching ratio to obtain a uniform stretching state in the stretching process is 6 times. It is necessary to set it to a higher value. When the fibers are stretched at such a high stretching ratio, the conductive powder within the fibers is disconnected,
This leads to a decrease in conductivity and only a resistivity of 10 5 to IC Ω·cm can be obtained.

これを避けるために延伸倍率を低く設定すると、繊維自
体の機械的強度が著しく低下して繊維として用をなさな
くなることもある。又、導電性の低下を補うために前記
高密度ポリエチレン樹脂に対する導電性粉末の混入量を
多くすることも考えられるが、この混入量を多くした場
合にも樹脂の結合度が弱くなって、繊維の機械的強度が
著しく低下する。
If the stretching ratio is set low in order to avoid this, the mechanical strength of the fiber itself may drop significantly and the fiber may become useless as a fiber. Also, in order to compensate for the decrease in conductivity, it may be possible to increase the amount of conductive powder mixed into the high-density polyethylene resin, but even if this amount is increased, the degree of bonding of the resin will become weaker and the fibers will become weaker. The mechanical strength of the material is significantly reduced.

さらに、高密度ポリエチレン樹脂に代えて低密度ポリエ
チレン樹脂を使用することも考えられるが、この低密度
ポリエチレン樹脂は第2図に示すように長鎖分岐の多い
分子構造となっているため、延伸が不可能であってla
維とするには不適切である。
Furthermore, it is also possible to use low-density polyethylene resin instead of high-density polyethylene resin, but this low-density polyethylene resin has a molecular structure with many long chain branches as shown in Figure 2, so it is difficult to stretch. It's impossible and la
It is inappropriate for maintenance.

(発明の名称) この発明は前記の点に鑑みてなされたものであって、そ
の目的は数十Ω・cm程度の低抵抗率を持ち、しかも繊
維としての十分な機械的強度を有する導電性ポリエチレ
ンm維を得るための製造方法を提供することにある。
(Name of the Invention) This invention has been made in view of the above points, and its purpose is to create an electrically conductive material that has a low resistivity of about several tens of Ωcm and has sufficient mechanical strength as a fiber. An object of the present invention is to provide a manufacturing method for obtaining polyethylene m-fiber.

(発明の構成) この発明は前記目的を達成するために、メルトインデッ
クス0.3〜5.0 、密度0.91〜0.85g /
 cm゛の直線型低密度ポリエチレン樹脂に10〜35
重量%の導電性粉末を混入して、延伸倍率2〜5倍で延
伸するようにしたものである。
(Structure of the Invention) In order to achieve the above objects, the present invention has a melt index of 0.3 to 5.0 and a density of 0.91 to 0.85 g/
10-35 cm for linear low-density polyethylene resin
It is made by mixing % by weight of conductive powder and stretching at a stretching ratio of 2 to 5 times.

(実施例) 以下、この発明の一実施例を図面に従って説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

さて、この実施例では、前述した従来方法における高密
度ポリエチレン樹脂に代えて、直線型低密度ポリエチレ
ン樹脂が使用される。この直線型低密度ポリエチレン樹
脂は、第3図に示すように直鎖状で多数の短い枝部を有
する分子構造となっている。そのため、この樹脂の最低
延伸倍率は前記高密度ポリエチレン樹脂の6倍以上に比
較し非常に低くて2〜5倍であり、この延伸倍率で延伸
すれば十分な機械的強度を有する繊維を得ることができ
るものである。
Now, in this embodiment, a linear low-density polyethylene resin is used in place of the high-density polyethylene resin in the conventional method described above. This linear low-density polyethylene resin has a molecular structure that is linear and has many short branches, as shown in FIG. Therefore, the minimum stretching ratio of this resin is 2 to 5 times, which is very low compared to 6 times or more for the above-mentioned high-density polyethylene resin, and if it is stretched at this stretching ratio, fibers with sufficient mechanical strength can be obtained. It is something that can be done.

そして、この直線型低密度ポリエチレン樹脂において、
特にメルトインデックスが0.3〜5.0、密度が0.
91〜o、95g/crn”の範囲内にある樹脂が使用
される。このメルトインデックス値は、同範囲より小さ
くなると糸切れが発生しやすくなって紡糸困難となり、
又同範囲より大きくなると粘性が高くなりすぎて紡糸困
難となるため、この範囲内で適宜設定する必要がある。
And in this linear low density polyethylene resin,
In particular, the melt index is 0.3 to 5.0 and the density is 0.
A resin within the range of 91 to 95 g/crn" is used. If the melt index value is smaller than the same range, thread breakage is likely to occur and spinning becomes difficult.
Moreover, if it exceeds the same range, the viscosity becomes too high and spinning becomes difficult, so it is necessary to set it appropriately within this range.

そこで、この直線型低密度ポリエチレン樹脂を使用した
導電性ポリエチレン#Il維の製造方法の一例を第4図
に従って説明する。
An example of a method for producing conductive polyethylene #Il fibers using this linear low-density polyethylene resin will be described with reference to FIG. 4.

さて、この実施例では、まず混練工程(1)において前
記樹脂の粉末又はペレットに対し10〜35重量%のカ
ーボンブラック粉末を混入してそれらが混練され、ペレ
ット化工程(2)においてペレット化される。ここで、
前記カーボンブラック粉末の混入比率は、あまり小さく
すると導電性が悪くなり、大きくしすぎると繊維強度の
低下を招くので、前、記範囲内で設定するのが望ましい
In this example, first, in the kneading step (1), 10 to 35% by weight of carbon black powder is mixed into the resin powder or pellets, and the mixture is kneaded, and in the pelletizing step (2), the resin is pelletized. Ru. here,
If the mixing ratio of the carbon black powder is too small, the conductivity will deteriorate, and if it is too large, the fiber strength will decrease, so it is desirable to set it within the above range.

このようにしてできたペレットを加熱工程(3)におい
て加熱溶融し、押出工程(4)においてノズルから押出
成形した後、冷却工程(5)で水中等において冷却して
凝固させる。その後、この凝固したw!U維を延伸工程
(8)にて延伸倍率2〜5倍で加熱延伸し、次のアユ−
リング工程(7)において清水で加熱収縮させて歪等を
除去し、これを巻取工程(8)にて巻取って繊度500
〜3000 dの繊維を作る。
The pellets thus produced are heated and melted in a heating step (3), extruded from a nozzle in an extrusion step (4), and then cooled and solidified in water or the like in a cooling step (5). After that, this solidified lol! In the drawing step (8), the U fiber is heated and drawn at a draw ratio of 2 to 5 times, and then
In the ring process (7), it is heat-shrinked with clean water to remove distortion, etc., and then wound in the winding process (8) to a fineness of 500.
Make fibers of ~3000 d.

このように本実施例では、最低延伸倍率の低い直線型低
密度ポリエチレン樹脂を使用して、この樹脂とカーボン
ブラック粉末とを混練し、これを加熱、押出及び冷却し
た後、前記最低延伸倍率付近の低い延伸倍率2〜5倍で
延伸しているので、数十Ω・cM程度の低抵抗率を持ち
、しかもm維としての十分な機械的強度を有する導電性
ポリエチレン繊維を製造することができる。 ちなみに
、メルトインデックスが0.64、密度が0.917g
/ c m’の直線型低密度ポリエチレン樹脂に28重
量%の平均粒度0.3ミクロンのカーボンブラック粉末
を混入し、延伸倍率4倍で延伸したところ、繊度207
1d、強度1.12g / d、抵抗145にΩ/10
cmの導電性ポリエチレン繊維を得ることができた。
As described above, in this example, a linear low density polyethylene resin with a low minimum draw ratio is used, this resin and carbon black powder are kneaded, and after heating, extrusion and cooling, Since it is drawn at a low draw ratio of 2 to 5 times, it is possible to produce conductive polyethylene fibers that have a low resistivity of about several tens of Ω/cm and also have sufficient mechanical strength as m-fibers. . By the way, the melt index is 0.64 and the density is 0.917g.
/ cm' linear low-density polyethylene resin mixed with 28% by weight of carbon black powder with an average particle size of 0.3 microns and stretched at a stretching ratio of 4 times, the fineness was 207.
1d, strength 1.12g/d, resistance 145Ω/10
cm of conductive polyethylene fibers could be obtained.

そして、このように作られた繊維は、例えば第5図に示
すようにカーペット、毛布等の発熱体となるように、織
物(10)の普通繊維からなる経糸(+1)に緯糸(1
2)として織込まれて使用される。そして、この発熱体
において、両端に設けられた一対の導電線(13)間に
50V前後の電圧を加えたところ20W程度の電熱を得
ることができた。
The fibers made in this way are then used as a heating element for carpets, blankets, etc., as shown in FIG.
2) is incorporated and used. In this heating element, when a voltage of about 50V was applied between a pair of conductive wires (13) provided at both ends, electric heat of about 20W could be obtained.

(発明の効果) 以上詳述したようにこの発明は、メルトインデックス0
.3〜5.0 、密度0.91〜0.95g / c 
m’の直線型低密度ポリエチレン樹脂に10〜35重量
%の導電性粉末を混入して、延伸倍率2〜5倍で延伸す
るようにしたので、数十Ω・cm程度の低抵抗率を持ち
、しかも繊維としての十分な機械的強度を有する導電性
ポリエチレンm維を得ることができるという優れた効果
を奏する。
(Effect of the invention) As detailed above, the present invention has a melt index of 0.
.. 3-5.0, density 0.91-0.95g/c
10 to 35% by weight of conductive powder is mixed into the linear low-density polyethylene resin of M' and stretched at a stretching ratio of 2 to 5 times, so it has a low resistivity of about several tens of Ωcm. Moreover, it has the excellent effect of being able to obtain conductive polyethylene m fibers having sufficient mechanical strength as fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図を士高密度ポリエチレン樹脂の分子構造を示す略
図、第2図は低密度ポリエチレン樹脂の分子構造を示す
略図、第3図はこの発明に使用する直線型低密度ポリエ
チレン樹脂の分子構造を示す略図、第4図はこの発明の
一実施例を示す製造工程のフローチャート、第5図は導
電性ポリエチレン繊維の使用例を示す略図である。 1 ・・・混練工程、 4 ・・・押出工程、 6 ・・・延伸工程、 8 ・・・巻取工程。 特許出願人 タ イ 17 株式会社
Figure 1 is a schematic diagram showing the molecular structure of high-density polyethylene resin, Figure 2 is a diagram showing the molecular structure of low-density polyethylene resin, and Figure 3 is a diagram showing the molecular structure of linear low-density polyethylene resin used in this invention. 4 is a flowchart of a manufacturing process showing an embodiment of the present invention, and FIG. 5 is a schematic diagram showing an example of the use of conductive polyethylene fibers. 1: Kneading process, 4: Extrusion process, 6: Stretching process, 8: Winding process. Patent applicant Thailand 17 Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] メルトインデックス0.3〜5.0、密度0.91〜0
゜95g/crn’の直線型低密度ポリエチレン樹脂に
10〜35重量%の導電性粉末を混入して、延伸倍率2
〜5倍で延伸することを特徴とする導電性ポリエチレン
繊維の製造方法。
Melt index 0.3-5.0, density 0.91-0
゜95g/crn' of linear low density polyethylene resin was mixed with 10 to 35% by weight of conductive powder, and the stretching ratio was 2.
A method for producing conductive polyethylene fiber, characterized by stretching the fiber by a factor of ~5.
JP15741983A 1983-08-29 1983-08-29 Production of electrically conductive polyethylene fiber Pending JPS6052614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15741983A JPS6052614A (en) 1983-08-29 1983-08-29 Production of electrically conductive polyethylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15741983A JPS6052614A (en) 1983-08-29 1983-08-29 Production of electrically conductive polyethylene fiber

Publications (1)

Publication Number Publication Date
JPS6052614A true JPS6052614A (en) 1985-03-25

Family

ID=15649218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15741983A Pending JPS6052614A (en) 1983-08-29 1983-08-29 Production of electrically conductive polyethylene fiber

Country Status (1)

Country Link
JP (1) JPS6052614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250216A (en) * 1986-04-21 1987-10-31 Mitsubishi Rayon Co Ltd Production of electrically conductive yarn

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950216A (en) * 1973-07-20 1974-05-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950216A (en) * 1973-07-20 1974-05-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250216A (en) * 1986-04-21 1987-10-31 Mitsubishi Rayon Co Ltd Production of electrically conductive yarn

Similar Documents

Publication Publication Date Title
CN100455621C (en) Conductive mother paticle, conductive polymer filament, its production and use
US5106538A (en) Conductive polymer composition
Gordeyev et al. A promising conductive material: highly oriented polypropylene filled with short vapour-grown carbon fibres
US5262234A (en) Polyetrafluoroethylene fiber containing conductive filler
US20060247352A1 (en) EMI shielding material
EP0013872B1 (en) A process for the production of particulate polyolefinic moulding materials containing conductive carbon black, and their use in the production of mouldings
CN108859347A (en) A kind of two anisotropy electro shape memory macromolecule microlayer composites
JPS601891B2 (en) Method of manufacturing foamed plastic
JPH03289004A (en) Conductive resin composite
JPS6052614A (en) Production of electrically conductive polyethylene fiber
KR101906337B1 (en) Manufacturing method for polymer nanofiber composites fabric having improved electrical conductivity
CN101942137A (en) Method for preparing conductivity-enhanced polymer/carbon nano tube composite material by vibration injection molding device
KR850002488A (en) High strength, high modulus fiber or film and method of manufacturing the same
CN101819837B (en) Over-current and over-temperature protection element with positive temperature coefficient and preparation method thereof
JPH01283127A (en) Polyether ether ketone film and its manufacture
JPS59128704A (en) Method of producing conductive filler containing molding material
CN115232336B (en) Heating film material and preparation method thereof
CN111793265A (en) Graphene self-temperature-limiting heating wire and preparation method thereof
CN113278218A (en) Conductive composite material with isolation structure and preparation method thereof
JPH0896931A (en) Manufacture of ptc heater wire
KR101369035B1 (en) Conductive conjugated fiber with modified cross-section and fiber product using the same
JP2015074674A (en) Glass fiber-reinforced member and thermoplastic resin molded article
KR101985625B1 (en) Exothermic compound for hesting and method manufacturing the same
CN103035330A (en) Foaming filler yarn applied to optical cable and preparation process of the same
CN110317469B (en) Positive temperature coefficient thermoplastic thermistor composite material and preparation method thereof