JPS6052532B2 - Method for manufacturing capacitor oil - Google Patents

Method for manufacturing capacitor oil

Info

Publication number
JPS6052532B2
JPS6052532B2 JP50061479A JP6147975A JPS6052532B2 JP S6052532 B2 JPS6052532 B2 JP S6052532B2 JP 50061479 A JP50061479 A JP 50061479A JP 6147975 A JP6147975 A JP 6147975A JP S6052532 B2 JPS6052532 B2 JP S6052532B2
Authority
JP
Japan
Prior art keywords
oil
condenser
fraction
present
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50061479A
Other languages
Japanese (ja)
Other versions
JPS51137702A (en
Inventor
直 大森
篤雄 藤宗
伸昭 川畑
宗市 野村
順之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP50061479A priority Critical patent/JPS6052532B2/en
Publication of JPS51137702A publication Critical patent/JPS51137702A/en
Publication of JPS6052532B2 publication Critical patent/JPS6052532B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は、炭化水素油の改質反応の際副生する重質油
留分を原料油とするコンデンサー油の製造方法に関し、
さらに詳しくは、かかる原料油を処理することにより得
られる、高コロナ発生電圧を有しかつ比分散(25℃)
2圓以上、絶縁破壊電圧80KV/2.5m以上、誘電
率(580℃)2.5以上水素ガス吸引性(8KV)5
0℃、50〜150分間吸収量)−15−oilの以下
の特性を有する新規コンデンサー油を得るコンデンサー
油の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing condenser oil using a heavy oil fraction produced as a by-product during a reforming reaction of hydrocarbon oil as a raw material.
More specifically, it has a high corona generation voltage and specific dispersion (25°C) obtained by processing such raw material oil.
2 circles or more, dielectric breakdown voltage 80KV/2.5m or more, dielectric constant (580℃) 2.5 or more, hydrogen gas absorption (8KV) 5
The present invention relates to a method for producing a condenser oil to obtain a new condenser oil having the following properties: (absorption amount) -15-oil at 0°C for 50 to 150 minutes.

従来コンデンサー油として、ポリ塩化ビフェニル、シ
リコーン油および鉱油を基油とするもの等が多く使用さ
れてきた。
Conventionally, many condenser oils have been used, such as those based on polychlorinated biphenyls, silicone oils, and mineral oils.

なかでもポリ塩化ビフェニルは、コンデンサー油として
良好な電気特性を有しており、広く用いられてきたが、
人体に対する毒性が著しく大きいため公害上の問題を生
じ、現在では使用されていない。またシリコーン油は、
高価であるために特殊な用途にのみ使用されている。現
在では鉱油を基油としたコンデンサー油が最も広範に使
用されている。鉱油系コンデンサー油は一般に、ナフテ
ン系原油を蒸留し、コンデンサー油として好適な留分を
採取し、溶剤精製、硫酸洗浄、水素化処理および白土処
理等の方法を組み合わせて、多環芳香族分、硫黄分およ
び窒素分等を除去して製造される。しかし、こうして得
られた鉱油系コンデンサー油は、比分散が小さく、絶縁
破壊電圧が低く、誘電率が小さく、コロナ発生電圧が低
く、更に水素ガス吸収性が低い等の欠点を有している。
現在、電力需要の急激な増大によるコンデンサー使用
条件の過酷化および装置の小型軽量化が更に求められて
いる状況では、鉱油系コンデンサー油は上記の欠点を有
するため、その使用が制限されざるを得ず、すぐれた特
性を有するコンデンサー油の出現が求められていた。
Among them, polychlorinated biphenyls have good electrical properties and have been widely used as capacitor oils.
It is no longer used because it is extremely toxic to the human body and causes pollution problems. Also, silicone oil
Because it is expensive, it is used only for special purposes. Currently, condenser oils based on mineral oils are most widely used. Mineral oil-based condenser oil is generally produced by distilling naphthenic crude oil, collecting a fraction suitable as condenser oil, and combining methods such as solvent refining, sulfuric acid washing, hydrogenation treatment, and clay treatment to obtain polycyclic aromatic components, Manufactured by removing sulfur, nitrogen, etc. However, the mineral oil-based capacitor oil thus obtained has drawbacks such as a small specific dispersion, a low dielectric breakdown voltage, a low dielectric constant, a low corona generation voltage, and a low hydrogen gas absorption property.
At present, the use of mineral oil-based condenser oils has to be restricted due to the above-mentioned drawbacks, as the usage conditions for condensers have become harsher due to the rapid increase in power demand and there is a need for equipment to be smaller and lighter. First, there was a need for a condenser oil with excellent properties.

本発明者らは以上の点を改良すべく努力した結果、従来
のコンデンサー油に比べて絶縁破壊電圧が高く、コロナ
発生電圧が高く、比分散が大きく、誘電率が大きく、水
素ガス吸収性が高く、低温流動性にすぐれ、酸化安定性
も良好でかつ毒性のほとんどないコンデンサー油を開発
するに至り、本発明を完成した。
The inventors of the present invention have made efforts to improve the above points, and as a result, compared to conventional capacitor oils, the dielectric breakdown voltage is higher, the corona generation voltage is higher, the specific dispersion is larger, the dielectric constant is larger, and the hydrogen gas absorption property is higher. The present invention was completed by developing a condenser oil that has high fluidity at low temperatures, good oxidation stability, and almost no toxicity.

本発明のコンデンサー油の製造方法は、沸点40〜20
0℃の温度範囲に含まれる炭化水素油を水素加圧下、改
質触媒の存在下で改質反応を行なわせて、高オクタン価
ガソリン、ベンゼン、トルエン、あるいはキシレン等の
芳香族炭化水素を製造する際に副生物として得られる重
質油留分のうち沸点230〜450℃(常圧換算)の温
度範囲に含まれるものを8鍾量%以上含む特定留分を原
料油とするものである。
The method for producing condenser oil of the present invention has a boiling point of 40 to 20
Hydrocarbon oil in the temperature range of 0°C is subjected to a reforming reaction under hydrogen pressure and in the presence of a reforming catalyst to produce aromatic hydrocarbons such as high octane gasoline, benzene, toluene, or xylene. Among the heavy oil fractions obtained as by-products, a specific fraction containing 8% or more by weight of those having a boiling point in the temperature range of 230 to 450°C (converted to normal pressure) is used as the raw material oil.

この重質油留分は、色相が悪く、不安定であり、コンデ
ンサー油としては電気特性、耐熱性、酸化安定性等の点
で不十分である。本発明はこの重質油留分のうち、特定
の留分を特定の条件で水素化精製処理をすることにより
、すぐれた電気特性を有するコンデンサー油が得られる
ことを初めて見出したものである。従来まで、重質油留
分の利用は、そのほとんどが、そのまま改質ガソリンの
一部として利用されるか、一部自家燃料または溶剤とし
て利用されていたにすぎない。
This heavy oil fraction has a poor hue and is unstable, and is insufficient as a capacitor oil in terms of electrical properties, heat resistance, oxidation stability, etc. The present invention is the first to discover that a capacitor oil with excellent electrical properties can be obtained by hydrorefining a specific fraction of these heavy oil fractions under specific conditions. Until now, most of the heavy oil fractions have been used as is as part of reformed gasoline, or only partially used as self-fuel or solvent.

最近になつて、この重質油留分の利用についての研究が
行なわれるようになり、低級オレフインでアルキル化し
て、ブラッシングオール、溶剤および塑性加工油等に使
用した例が見られる。また電気絶縁油として用いられて
いるひまし油に、低級オレフインでアルキル化した重質
油留分を添加し改良をはかつた例が報告されて.いるが
(特開昭49−38200)、実用化には到らないもの
である。本発明の目的は、炭化水素油を水素加圧下で改
質触媒により改質反応を行なう際に副生物として生成す
る重質油留分のうち、沸点(常圧換算)230〜45C
f′Cの温度範囲に含まれるものを8…11%以上含む
特定留分を、特定の条件下で水素化精製することにより
得られる、絶縁破壊電圧が高く、コロナ発生電圧が高く
、比分散が大きく、水素ガス吸収性が高く、かつ誘電率
の大きいコンデンサー油を提供することである。
Recently, research has been conducted on the use of this heavy oil fraction, and there are examples of its use in brushing alls, solvents, plastic working oils, etc. after alkylation with lower olefins. In addition, an example was reported in which castor oil, which is used as an electrical insulating oil, was improved by adding a heavy oil fraction alkylated with a lower olefin. However, it has not been put into practical use (Japanese Patent Laid-Open No. 49-38200). The purpose of the present invention is to obtain a heavy oil fraction with a boiling point (normal pressure equivalent) of 230 to 45C, which is produced as a by-product when a hydrocarbon oil is subjected to a reforming reaction using a reforming catalyst under hydrogen pressure.
A specific fraction containing 8...11% or more of substances in the temperature range of f'C is obtained by hydrorefining under specific conditions, and has a high dielectric breakdown voltage, a high corona generation voltage, and a high specific dispersion. It is an object of the present invention to provide a capacitor oil which has a large dielectric constant, a high hydrogen gas absorption property, and a large dielectric constant.

本発明でいう改質反応の際用いられる炭化水素油とは、
沸点40〜20(代)、好ましくは60〜18(代)の
もので、例えば直留ナフサや分解ガソリンが好ましく使
用される。
The hydrocarbon oil used in the reforming reaction in the present invention is
Those having a boiling point of 40 to 20 (range), preferably 60 to 18 (range), such as straight-run naphtha or cracked gasoline, are preferably used.

本発明でいう改質触媒は、通常この種の改質反応に使用
されている触媒であれば良い。
The reforming catalyst referred to in the present invention may be any catalyst that is normally used in this type of reforming reaction.

特に貴金属系触媒が好ましく使用される。本発明におい
て・好ましく用いられる貴金属系触媒は、白金族元素単
独あるいは2種以上の混合物を固体担体に担持したもの
である。また、白金族元素単独あるいは2種以上の混合
物とGe,Sn,Re,Fe,Pb,およびハロゲンか
ら選ばれた元素の1種または2種以上とを組み合わせて
固体担体に担持したものも、本発明において好ましく使
用される。また上記固体担体としては、アルミナ、シリ
カ、ゼオライトおよびシリカ−アルミナ等が好適である
。本発明における改質反応は次の条件下で行なわれる。
すなわち、反応圧力は1〜50k9/CltG好ましく
は5〜40kg/AiGl反応温度は400〜600℃
好ましくは470〜530℃、水素循環量は原料1k1
に対し水素100〜1,500Nd好ましくは300〜
1,000Nw11油の供給速度(LHSV)は0.5
〜511r1好ましくは1〜311r1である。本発明
は、以上の改質反応の際に副生する重質油留分のうち、
沸点(常圧換算)230〜450℃、好ましくは250
〜400℃の温度範囲に含まれるものを8鍾量%以上、
好ましくは9唾量%以上を含む留分を更に特定の条件下
て水素化精製処理することにより、電気特性のすぐれた
コンデンサー油を得るものである。
In particular, noble metal catalysts are preferably used. The noble metal catalyst preferably used in the present invention is one in which a platinum group element alone or a mixture of two or more is supported on a solid carrier. In addition, the present invention also includes a platinum group element or a mixture of two or more elements supported on a solid carrier in combination with one or more elements selected from Ge, Sn, Re, Fe, Pb, and halogen. Preferably used in the invention. Further, as the solid carrier, alumina, silica, zeolite, silica-alumina, etc. are suitable. The modification reaction in the present invention is carried out under the following conditions.
That is, the reaction pressure is 1 to 50k9/CltG, preferably 5 to 40kg/AiGl, and the reaction temperature is 400 to 600°C.
Preferably 470-530℃, hydrogen circulation amount is 1k1 of raw material
100 to 1,500 Nd of hydrogen, preferably 300 to
The supply speed (LHSV) of 1,000Nw11 oil is 0.5
~511r1 preferably 1~311r1. The present invention is directed to the heavy oil fraction produced as a by-product during the above-mentioned reforming reaction.
Boiling point (converted to normal pressure) 230 to 450°C, preferably 250°C
8% or more of substances in the temperature range of ~400℃,
Preferably, the fraction containing 9% or more by weight is further hydrorefined under specific conditions to obtain a capacitor oil with excellent electrical properties.

重質油留分は、そのままで本発明でいう重質改質油の条
件を満たせば蒸留する必要はないが、蒸留によつて上記
の条件を満たす留分を採取することは好ましく行なわれ
る。この重質油留分は炭素数10以上の炭化水素で、そ
のほとんどが多環芳香族炭化水素よりなる。本発明の水
素化精製において用いられる触媒は、ボーキサイト、活
性炭、ケイソウ土、ゼオライト、シリカ、アルミナまた
はシリカ−アルミナ等の無機固体を担体として、周期律
表第1B族、第族または族金属を酸化物、硫化物、これ
らの複合物あるいは混合物の形で担持したものである。
The heavy oil fraction does not need to be distilled as long as it satisfies the conditions for heavy reformed oil as defined in the present invention, but it is preferable to collect a fraction that satisfies the above conditions by distillation. This heavy oil fraction is a hydrocarbon having a carbon number of 10 or more, and most of it is a polycyclic aromatic hydrocarbon. The catalyst used in the hydrorefining of the present invention uses an inorganic solid such as bauxite, activated carbon, diatomaceous earth, zeolite, silica, alumina or silica-alumina as a carrier to oxidize Group 1B, Group or Group metals of the periodic table. It is supported in the form of a compound, a sulfide, a compound or a mixture of these.

第1B族、第族および第族金属としては、コバルト、ニ
ツケル、モリブデン、およびタングステンが好ましい。
Preferred Group 1B, Group 1 and Group 1 metals are cobalt, nickel, molybdenum, and tungsten.

本発明においては酸化二ツケル、酸化コバルト、酸化モ
リブデンおよび酸化タングステンを2種以上組み合わせ
、アルミナ担体に担持したものを予備硫化して得られる
触媒が特に好ましく用いられる。水素化精製処理におけ
る反応温度は通常230〜400C好ましくは260〜
360℃である。230℃以下では精製度が低く、40
0℃以上になると分解、脱水素等の副反応が起こり、色
相および電気特性等に悪影響を及ぼす。
In the present invention, a catalyst obtained by pre-sulfurizing a combination of two or more types of nickel oxide, cobalt oxide, molybdenum oxide, and tungsten oxide supported on an alumina carrier is particularly preferably used. The reaction temperature in the hydrorefining treatment is usually 230-400C, preferably 260-400C.
The temperature is 360°C. Below 230°C, the degree of purification is low and 40°C
When the temperature exceeds 0°C, side reactions such as decomposition and dehydrogenation occur, which adversely affects hue, electrical properties, etc.

反応圧力は通常20〜150k9/C7l!G好ましく
は25〜80k9/CIiGである。また水素は供給重
質改質油1ktに対し100〜10,000Nイ好まし
くは200〜1,000Nd,.LHSVは0.5〜5
hr−1好ましくは1〜4F1r1が用いられる。本発
明における水素化精度は、供給油中の芳香族化合物につ
いてあまり核水素化を起こさせないような条件で実施し
なければならない。そのため、前記のように、触媒や反
応条件を適当に選択することが必要である。また、水素
化精製油は必要に応じて引き続き白土処理を行なうこと
ができる。以上記載したように、特定の重質油留分を水
素化精製処理することによつて屈折率(20℃)1.5
6〜1.65.絶縁破壊電圧80KV/2.5T!0n
以上、水素ガス吸収性(澄、50℃、50〜15紛間吸
収量)一150wrIn0I以下、比分散(25℃)2
00以上、特に220〜240の高芳香族炭化水素が得
られ、電気特性のすぐれたコンデンサー油として使用さ
れる。
The reaction pressure is usually 20-150k9/C7l! G is preferably 25 to 80k9/CIiG. Further, hydrogen is applied at a pressure of 100 to 10,000 Nd, preferably 200 to 1,000 Nd, per 1 kt of supplied heavy reformed oil. LHSV is 0.5-5
hr-1 preferably 1 to 4F1r1 is used. Hydrogenation precision in the present invention must be carried out under conditions that do not cause too much nuclear hydrogenation of aromatic compounds in the supplied oil. Therefore, as mentioned above, it is necessary to appropriately select the catalyst and reaction conditions. Further, the hydrotreated oil can be subsequently subjected to clay treatment if necessary. As described above, by hydrorefining a specific heavy oil fraction, the refractive index (20°C) is 1.5.
6-1.65. Dielectric breakdown voltage 80KV/2.5T! 0n
Above, hydrogen gas absorption (clear, 50℃, 50-15 powder absorption amount) - 150wrIn0I or less, specific dispersion (25℃) 2
A highly aromatic hydrocarbon having a molecular weight of 0.00 or more, particularly 220 to 240, is obtained and is used as a capacitor oil with excellent electrical properties.

本発明の方法によつて製造されたコンデンサー油は、以
下に述べる実施例に記載されているように、鉱油系のコ
ンデンサー油に比べて絶縁破壊電圧が高く、コロナ発生
電圧も高いため高電圧の使用が可能となり、また誘電率
が著しく大きいため装置を小型軽量化し得る。更に、引
火点が高く、流動点が著しく低いため低温流動性が良好
であり、蒸発減量が少なく、粘度が小さく、作業性が良
く、冷却効果にすぐれ、JIS酸化安定性が著しく高い
等の注目すべきすぐれた特性を有している。また、水素
ガス吸収性も鉱油系コンデンサー油に比べて著しく大き
く、コロナの発生防止、高温使用および安全性の面で大
きな利点である。また、ポリ塩化ビフエニルに比べ人体
に対する毒性はほとんどなく公害上からもすぐれている
。本発明により得られるコンデンサー油はその使用にあ
たつて酸化防止剤やその他の添加剤を添加することもで
き、更にこれまでコンデンサー油として使用されている
油剤例えば鉱油、シリコーン油、炭化水素油(ポリブデ
ン、アルキルベンゼン、ジアリルアルカン等)、フロン
化合物等や、ナフサ分解重油の水素化精製油と混合して
使用することもできる。本発明により得られるコンデン
サー油を使用する油浸コンデンサーは、いかなる構造、
製造法のものでも良く、更にコンデンサー内の電極材料
としては、主としてにが使用されるが他にSn,Pb,
Ag等が使用できる。
As described in the examples below, the capacitor oil produced by the method of the present invention has a higher dielectric breakdown voltage and a higher corona generation voltage than mineral oil-based capacitor oils, so it can be used at high voltages. In addition, since the dielectric constant is extremely high, the device can be made smaller and lighter. Furthermore, it has a high flash point and extremely low pour point, so it has good low-temperature fluidity, little evaporation loss, low viscosity, good workability, excellent cooling effect, and extremely high JIS oxidation stability. It has excellent properties. In addition, its hydrogen gas absorption is significantly greater than that of mineral oil-based condenser oils, which is a major advantage in terms of prevention of corona generation, high-temperature use, and safety. Furthermore, compared to polychlorinated biphenyl, it has almost no toxicity to the human body and is superior in terms of pollution. The capacitor oil obtained according to the present invention may contain antioxidants and other additives when used. Furthermore, oils that have been used as capacitor oils such as mineral oil, silicone oil, hydrocarbon oil ( Polybutene, alkylbenzene, diallyl alkane, etc.), fluorocarbon compounds, etc., and hydrogenated refined oil of naphtha cracked heavy oil can also be used in combination. An oil-immersed condenser using the condenser oil obtained according to the present invention can have any structure,
It may be manufactured using any manufacturing method, and Ni is mainly used as the electrode material in the capacitor, but other materials such as Sn, Pb,
Ag etc. can be used.

またこれらの電極は一方の極あるいは両極とも固体誘電
体の表面に真空蒸着やエレクトロンビームなどの方法に
より形成される金属被膜を電極として使用することもで
きる。更に固体誘電体としてはクラフト紙や合成樹脂フ
イルム(ポリエチレン、ポリプロピレン、ポリスチレン
、ポリカーボネートなど)などが使用されるが、これら
の固体誘電体への本発明のコンデンサー油の含浸性を向
上させるために例えばクラフト紙と合成樹脂フイルムの
両者を併用したり、表面を粗面加工した合成樹脂フイル
ムあるいは表面に繊維状物を付着させた合成樹脂フイル
ムなどを使用することも可能である。以下に実施例をあ
げ、本発明の内容を更に具体的に述べるが、これらは本
発明を実施するための説明用のものであつて、本発明は
これらに制限されるものではない。
Further, for one or both of these electrodes, a metal coating formed on the surface of a solid dielectric by a method such as vacuum evaporation or electron beam can also be used as the electrode. Further, as the solid dielectric material, kraft paper or synthetic resin film (polyethylene, polypropylene, polystyrene, polycarbonate, etc.) is used, and in order to improve the impregnation of the capacitor oil of the present invention into these solid dielectric materials, for example, It is also possible to use both kraft paper and synthetic resin film, or to use a synthetic resin film with a roughened surface or a synthetic resin film with fibrous substances attached to the surface. The content of the present invention will be described in more detail with reference to Examples below, but these are for illustration purposes only and the present invention is not limited thereto.

実施例 1 中東系ナフサを白金−レニウム−塩素−アルミナ触媒(
PtO.3wt%、ReO.3wt%、ClO.6Wt
%)の充てんされた多段の反応塔より接触改質装置に導
入し、反応温度480〜520℃、反応圧力15kg/
CflGl水素循環量は供給ナフサ1ktに対し300
Nd3、油の供給速度(LHSV)2hr−1で反応さ
せた。
Example 1 Middle Eastern naphtha was treated with platinum-rhenium-chlorine-alumina catalyst (
PtO. 3wt%, ReO. 3 wt%, ClO. 6Wt
%) was introduced into the catalytic reformer from a multi-stage reaction tower filled with
CflGl hydrogen circulation amount is 300% per 1kt of naphtha supplied.
The reaction was carried out at a Nd3 and oil supply rate (LHSV) of 2 hr−1.

得られた重質油留分を蒸留して沸点(常圧換算)270
〜36(1)C留分を捕集した。この油の性状は屈折率
Nd2Ol.6238、粘度(30℃)8.789、C
%93.3sH%6.7、分留性状は20%留出温度3
07C150%留出温度317C190%留出温度33
9℃であつた。次いでこの留分を予備硫化したニツケル
(NiOとして3.0wt%)−モリブデン(MOO3
として14Wt%)−アルミナ触媒を充てんした流通式
反応管に導入し、反応圧力50k9/CfiGl反応温
度320C1液空間速度(LHSV)31r−1および
原料油1ktに対し水素500Nイの条件で水素化精製
を行なつた。
The obtained heavy oil fraction is distilled to a boiling point (converted to normal pressure) of 270
The ~36(1)C fraction was collected. This oil has a refractive index of Nd2Ol. 6238, viscosity (30°C) 8.789, C
%93.3sH%6.7, fractional properties are 20% distillation temperature 3
07C150% distillation temperature 317C190% distillation temperature 33
It was 9℃. Next, this fraction was presulfurized into nickel (3.0 wt% as NiO)-molybdenum (MOO3
(14 Wt%)-alumina catalyst was introduced into a flow-through reaction tube filled with alumina catalyst, and hydrorefined under the conditions of reaction pressure 50k9/CfiGl reaction temperature 320C1 liquid hourly space velocity (LHSV) 31r-1 and hydrogen 500N per 1kt of feedstock oil. I did this.

得られた精製油を活性白土で20k9一白土/kl一油
の条件で60℃で3紛処理した。この油の性状は屈折率
1.589へ粘度(3C)C)7.840s(75℃)
2.376、流動点−50℃以下、引火点140C,.
n−d−M環分析法では%CA6l.8、%CN27.
Oおよび%Cpll.2であつた。また分留性状は20
%留出温度が2屹℃、50%留出温度が301℃および
90%留出温度が323℃であつた。次にこの精製油の
コンデンサー油としての一般特性および電気特性を鉱油
系コンデンサー油と比較して表1に示した。
The obtained refined oil was treated with activated clay in three powders at 60°C under the conditions of 20k9 clay/kl oil. The properties of this oil are refractive index 1.589 and viscosity (3C)C) 7.840s (75℃)
2.376, pour point -50℃ or less, flash point 140C,.
According to the ndM ring analysis method, %CA6l. 8.%CN27.
O and %Cpll. It was 2. Also, the fractional property is 20
The % distillation temperature was 2°C, the 50% distillation temperature was 301°C, and the 90% distillation temperature was 323°C. Next, the general properties and electrical properties of this refined oil as a capacitor oil are shown in Table 1 in comparison with mineral oil-based capacitor oils.

実施例 2 実施例1で得られた沸点(常圧換算)270〜360℃
の重質油留分を、予備硫化したニツケル(NiOとして
5.1Wt%)一タングステン(WO3として20.2
Wt%)−アルミナ触媒を充てんした流通式反応管に導
入し水素化精製した。
Example 2 Boiling point (normal pressure equivalent) obtained in Example 1: 270-360°C
The heavy oil fraction of
Wt%)-alumina catalyst was introduced into a flow-through reaction tube and subjected to hydrorefining.

精製条件は反応圧力35k9/C7lfGl反応温度3
40℃、液空間速度(LHSV)2F1r1、水素循環
量500Nイ/Kt一原料であつた。得られた油を20
k9一白土/Kt一油の条件で6C)Cで3紛白土処理
を行なつた。この精製油のコンデンサー油としての性状
を表1に示した。実施例 3イラン系の重質ナフサを白
金一塩素−アルミナ触媒(PtO.37wt%、ClO
.84wt%)の充てんされた3段の反応搭よりなる改
質反応装置に導入し、反応圧力35k9/CiiGl反
応温度490〜515℃、液空間速度0.9F1r−1
、水素循環量は原料1ktに対し1,000Ndで反応
させた。
Purification conditions are reaction pressure 35k9/C7lfGl reaction temperature 3
The temperature was 40°C, liquid hourly space velocity (LHSV) 2F1r1, hydrogen circulation amount 500N/Kt, and one raw material. 20% of the obtained oil
A three-powder clay treatment was carried out with 6C)C under the conditions of K9 one clay/Kt one oil. Table 1 shows the properties of this refined oil as a condenser oil. Example 3 Iranian heavy naphtha was treated with platinum monochlorine-alumina catalyst (PtO.37wt%, ClO
.. The reaction pressure was 35k9/CiiGl, the reaction temperature was 490-515°C, and the liquid hourly space velocity was 0.9F1r-1.
The hydrogen circulation amount was 1,000 Nd per 1 kt of raw material.

得られた重質油留分を減圧蒸留し沸点(常圧換算)25
0〜360C留分を捕集した。この留分の性状は屈折率
1.595で分留性状は20%、50%、および90%
留出温度がそれぞれ267、286および347Cであ
つた。次いでこの留分を予備硫化したコバルトーモリ7
゛デンーアルミナ触媒(COOとして3.2Wt%、M
OO3として5.6Wt%)を充てんした流通式反応装
置に導入し水素化精製した。
The obtained heavy oil fraction was distilled under reduced pressure to a boiling point (converted to normal pressure) of 25
The 0-360C fraction was collected. The properties of this fraction are that the refractive index is 1.595 and the fractional properties are 20%, 50%, and 90%.
The distillation temperatures were 267, 286 and 347C, respectively. This fraction was then pre-sulfurized into Cobalt Tomori 7.
Den-alumina catalyst (3.2 Wt% as COO, M
The mixture was introduced into a flow reactor filled with 5.6 wt% (as OO3) and subjected to hydrorefining.

精製条件は反応圧力70kg/CllGl反応温度30
0℃、液空間速度1.0F1r−1、水素循環量1,0
00Nイ/Kt一油である。得られた油を減圧蒸留し沸
点(常圧換算)252〜3477Cの留分を捕集した。
この留分は常法に従い20kg一白土/kl一油の条件
て60℃て3紛白土処理を行ないコンデンサー油として
性状を測定した。その結果を表1に示した。比較例 1 実施例1で得られた沸点(常圧換算)270〜360℃
の重質油留分を水素化精製することなしに、引き続き2
0!Cg一白土/Kt一油の条件で60℃で3紛活性白
土処理を行なつた。
Purification conditions are reaction pressure 70 kg/CllGl reaction temperature 30
0℃, liquid space velocity 1.0F1r-1, hydrogen circulation amount 1.0
00N/Kt is one oil. The obtained oil was distilled under reduced pressure and a fraction with a boiling point (converted to normal pressure) of 252 to 3477C was collected.
This fraction was subjected to three clay treatments at 60° C. under the conditions of 20 kg of clay/kl of oil in accordance with a conventional method, and its properties were measured as a condenser oil. The results are shown in Table 1. Comparative Example 1 Boiling point obtained in Example 1 (converted to normal pressure) 270-360°C
2 heavy oil fractions without hydrorefining.
0! Three-powder activated clay treatment was carried out at 60° C. under the conditions of one Cg clay/one Kt oil.

この油の一般性状および電気特性を測定し表1に示した
。この油は水素化精製処理を行なつていないため精製度
が低く特に電気特性が悪いためコンデンサー油としては
適当ではなかつた。この油の詳細な性状は、表1に示す
とおりである。比較例 2 市販の鉱油系コンデンサー油の性状を測定し表1に示し
た。
The general properties and electrical properties of this oil were measured and shown in Table 1. This oil was not suitable as a condenser oil because it had not been subjected to hydrorefining treatment and had a low degree of refinement and particularly poor electrical properties. The detailed properties of this oil are shown in Table 1. Comparative Example 2 The properties of a commercially available mineral oil-based condenser oil were measured and are shown in Table 1.

表1から明らかなように、本発明のコンデンサー油は、
比較例1で得られた油および比較例2の市販の鉱油系コ
ンデンサー油ど比較し、著しくすぐれた特性を有するこ
とがわかる。
As is clear from Table 1, the condenser oil of the present invention is
A comparison between the oil obtained in Comparative Example 1 and the commercially available mineral oil-based condenser oil in Comparative Example 2 reveals that the oil has significantly superior properties.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素油を改質触媒の存在下で改質反応を行なわ
せる際に副生物として生成する重質油留分のうち、沸点
(常圧換算)230〜450℃の温度範囲に含まれるも
のを80重量%以上含む留分を、圧力1〜50kg/c
m^2・G、温度400〜600℃、水素循環量100
〜1500Nm^3/kl油、LHSV0.5〜5hr
^4の条件下に水素化精製処理して、比分散(25℃)
200以上、絶縁破壊電圧80kV/2.5mm以上、
誘電率[(a)80℃]2.5以上および水素ガス吸収
性(8kV、50℃、50〜150分間吸収量)150
mmoil以下の特性を有するコンデンサー油を得るコ
ンデンサー油の製造方法。
1 Among the heavy oil fractions produced as by-products when a hydrocarbon oil is subjected to a reforming reaction in the presence of a reforming catalyst, those whose boiling point (in terms of normal pressure) is within the temperature range of 230 to 450 °C The distillate containing 80% by weight or more of
m^2・G, temperature 400-600℃, hydrogen circulation amount 100
~1500Nm^3/kl oil, LHSV0.5~5hr
Hydrorefining treatment under the conditions of ^4 and specific dispersion (25℃)
200 or more, dielectric breakdown voltage 80kV/2.5mm or more,
Dielectric constant [(a) 80°C] 2.5 or more and hydrogen gas absorption (8 kV, 50°C, absorption amount for 50 to 150 minutes) 150
A method for producing a condenser oil to obtain a condenser oil having characteristics equal to or less than that of mmoil.
JP50061479A 1975-05-24 1975-05-24 Method for manufacturing capacitor oil Expired JPS6052532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50061479A JPS6052532B2 (en) 1975-05-24 1975-05-24 Method for manufacturing capacitor oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50061479A JPS6052532B2 (en) 1975-05-24 1975-05-24 Method for manufacturing capacitor oil

Publications (2)

Publication Number Publication Date
JPS51137702A JPS51137702A (en) 1976-11-27
JPS6052532B2 true JPS6052532B2 (en) 1985-11-20

Family

ID=13172236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50061479A Expired JPS6052532B2 (en) 1975-05-24 1975-05-24 Method for manufacturing capacitor oil

Country Status (1)

Country Link
JP (1) JPS6052532B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353136U (en) * 1986-09-24 1988-04-09
JP2572625B2 (en) * 1988-03-30 1997-01-16 ぺんてる株式会社 Tablet input device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113198A (en) * 1975-03-03 1976-10-06 Exxon Research Engineering Co Electric insulating oil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113198A (en) * 1975-03-03 1976-10-06 Exxon Research Engineering Co Electric insulating oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353136U (en) * 1986-09-24 1988-04-09
JP2572625B2 (en) * 1988-03-30 1997-01-16 ぺんてる株式会社 Tablet input device

Also Published As

Publication number Publication date
JPS51137702A (en) 1976-11-27

Similar Documents

Publication Publication Date Title
US3732154A (en) Catalytic hydrofinishing of lube oil product of solvent extraction of petroleum distillate
US3392112A (en) Two stage process for sulfur and aromatic removal
US4033854A (en) Electrical insulating oils
JP3011782B2 (en) Method for producing transformer oil composition from hydrocracking feedstock
US3759817A (en) Blend comprising hydrorefined oil and unhydrorefined oil
US4170543A (en) Electrical insulating oil
KR100396143B1 (en) Process for hydrodesulfurization of catalytic cracked gasoline
CA1046088A (en) Synthesis of low viscosity low pour point hydrocarbon lubricating oils
US3985638A (en) High quality blended jet fuel composition
JPS5837642B2 (en) electrical insulation oil
US3925220A (en) Process of comprising solvent extraction of a blended oil
US3904507A (en) Process comprising solvent extraction of a blended oil
US3594307A (en) Production of high quality jet fuels by two-stage hydrogenation
US3044955A (en) Electrical insulating oils
US4584129A (en) Electric insulating oils
US3714021A (en) Thermally stable insulating oil
JPS6052532B2 (en) Method for manufacturing capacitor oil
US3932267A (en) Process for producing uninhibited transformer oil
JPS5812961B2 (en) electrical insulation oil
US3880747A (en) Catalytic hydrofinishing of lube oil product of solvent extraction of petroleum distillate
US3012963A (en) Hydrogenation of lubricating oils to remove sulfur and saturate aromatics
US3839188A (en) Hydrorefined transformer oil and process of manufacture
CA1261615A (en) Electrical insulating oil
US4008148A (en) Method for the preparation of insulating oil
US3804743A (en) Process for producing blended petroleum oil