JPS6051686B2 - Tetsusar type lens for behind aperture - Google Patents

Tetsusar type lens for behind aperture

Info

Publication number
JPS6051686B2
JPS6051686B2 JP52044558A JP4455877A JPS6051686B2 JP S6051686 B2 JPS6051686 B2 JP S6051686B2 JP 52044558 A JP52044558 A JP 52044558A JP 4455877 A JP4455877 A JP 4455877A JP S6051686 B2 JPS6051686 B2 JP S6051686B2
Authority
JP
Japan
Prior art keywords
lens
group
curvature
tetsusar
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52044558A
Other languages
Japanese (ja)
Other versions
JPS53130021A (en
Inventor
敏子 下倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP52044558A priority Critical patent/JPS6051686B2/en
Publication of JPS53130021A publication Critical patent/JPS53130021A/en
Publication of JPS6051686B2 publication Critical patent/JPS6051686B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】 本発明は、小型カメラ等に使用し、画角が約600程度
、明るさFNo、2.8にして、諸収差が良好に補正さ
れたビハインド絞り用の変型テツサー型レンズに改良に
関するものである。
Detailed Description of the Invention The present invention is a modified Tetsusar type for behind aperture that is used in small cameras, etc., has an angle of view of about 600, a brightness FNo. of 2.8, and has various aberrations well corrected. This relates to improvements to lenses.

周知のように、小型カメラに使用するビハインド絞りレ
ンズとしては、FN0.2.8〜3、ゝ画角が約600
程度の従来型のテツサー型レンズ、および第フ3群レン
ズの配置を正、負と変えた変型テツサー型レンズが提供
されているが、絞りをレンズの後方に配置して周辺光量
を保ちながら、可成大きい画角の光束の収差を補正する
必要があるため、コマフレアーの除去が不十分であつた
り、像面彎曲・が大きかつたり、あるいは周辺の特にサ
ジタル像の曲がりが非常に大きいなどの欠点は避け得な
い現状にあつた。
As is well known, the behind aperture lens used for small cameras has an FN of 0.2.8 to 3 and an angle of view of approximately 600 mm.
There are conventional Tetsusar type lenses of about 100 degrees, and modified Tetsusar type lenses in which the position of the third group lens is changed to positive or negative. Since it is necessary to correct the aberration of the light beam at a fairly large angle of view, coma flare may not be removed sufficiently, the field curvature is large, or the peripheral image, especially the sagittal image, is extremely curved. The shortcomings of the current situation are unavoidable.

本発明は、上述の如き欠点に鑑み、特に像面彎曲の減少
を計りながら、コンパクトで諸収差が良好に補正される
レンズ系を提供せんとするもので、これが考え方の主と
するところは、第1群レンズ、第2群レンズ、および第
3群レンズのそれぞれの空気間隔を全長に対して可能な
限り小さくなし、ペツヴアル和を小さくすることによつ
て像面彎曲を除去しようとするものである。
In view of the above-mentioned drawbacks, the present invention aims to provide a compact lens system in which various aberrations are well corrected while particularly reducing field curvature. The objective is to eliminate field curvature by making the air distance between the first, second, and third group lenses as small as possible relative to the overall length, and reducing the Petzval sum. be.

そして、上記の如き考え方に沿い、かつ上記の如き目的
に適つたレンズ系は、第1図に示す如く、物界側から順
にみて、メニスカス正レンズレよりなる第1群レンズ両
凹端レンズ!よりなる第2群レンズ、および両凸レンズ
のLとメニスカス負レンズL4との接合によりなる第3
群レンズの3群4枚のレンズにた構成され口径比F2.
&画角600におよぶ変型テツサー型レンズであつて但
し、fは全系の焦点距離、Σdはレンズの軸上の厚み、
および空気間隔の合計、4は第1群レンズと第2群レン
ズとの、山は第2群レンズと第3群レンズとの空気間隔
、R3は第2群レンズの物界に向いた面の曲率半径、R
5は第3群レンズの物界に向いた面の曲率半径、R6は
第3群レンズにおけるレンズL3とL4の接合面の曲率
半径であり、F.(!:川は、第3群レンズのL3とL
4におけるd線の屈曲率である。
A lens system that follows the above concept and is suitable for the above purpose is, as shown in Fig. 1, a biconcave lens with a first group consisting of a positive meniscus lens element when viewed from the object world side! and a third group consisting of a double convex lens L and a meniscus negative lens L4.
It is composed of 4 lenses in 3 groups and has an aperture ratio of F2.
& It is a modified Tetsusar type lens with an angle of view of 600°, where f is the focal length of the entire system, Σd is the axial thickness of the lens,
and the total air distance, 4 is the air distance between the first group lens and the second group lens, the mountain is the air distance between the second group lens and the third group lens, and R3 is the surface of the second group lens facing the object world. radius of curvature, R
5 is the radius of curvature of the surface of the third group lens facing the object world, R6 is the radius of curvature of the cemented surface of lenses L3 and L4 in the third group lens, and F. (!: The river is L3 and L of the 3rd group lens.
It is the curvature index of the d-line at 4.

なる諸条件を備えたことを特徴とするビハインド絞り用
テツサー型レンズにして、以下本発明の技術的背景、な
らびに前記諸条件のもつ意義について詳述することとす
る。
Hereinafter, the technical background of the present invention and the significance of the above-mentioned conditions will be explained in detail regarding a Tesser-type lens for behind aperture, which is characterized by having the following conditions.

従来より、画角を600も必要とするビハインド絞り用
レンズにおいては、周辺光量を不足させないために、普
通の絞り位置を有する場合より、レンズ全長をできるだ
け短く抑えることが周知であるが、本発明においても、
このことは欠くことのできない前提条件として設定した
のがなる式である。
Conventionally, it has been well known that for behind-the-scenes aperture lenses that require an angle of view of 600 degrees, the overall length of the lens is kept as short as possible compared to a case with a normal aperture position in order to prevent insufficient peripheral light, but the present invention Even in
This equation is established as an indispensable precondition.

そして、前述の如く、空気間隔をレンズの全長に対して
可能な限り小さく押え、ペツヴアル和の減少を計り、さ
らに周辺光量の中心光束に対する光路の曲がりによつて
生ずる光量不足の防止を計ろうとしたのが(2)の式で
ある。
As mentioned above, we attempted to reduce the Petzval sum by keeping the air spacing as small as possible relative to the entire length of the lens, and also to prevent insufficient light intensity caused by the bending of the optical path of the peripheral light intensity relative to the central ray beam. This is equation (2).

すなわち、(1)式はFNO.2.8として諸収差を補
正する上で必要なレンズ全長を規制するものであり、下
限を越えれば、FNO.2.8としての球面収差の補正
が不可能になり、上限を越えれば、ビハインド絞り用と
しての光量不足が避けられなくなる。
That is, equation (1) is FNO. 2.8 regulates the total lens length required to correct various aberrations, and if the lower limit is exceeded, FNO. It becomes impossible to correct spherical aberration as 2.8, and if the upper limit is exceeded, an insufficient amount of light for the behind aperture becomes inevitable.

(2)式の 4!U の下限は空気間隔をつめる上での工作上の限界値であり
、上限は前記ペツヴアル和の減少を計り、光量不足を押
える目的を得る上での限界値である。
(2) Formula 4! The lower limit of U is a mechanical limit value for narrowing the air gap, and the upper limit is a limit value for measuring the reduction of the Petzval sum and suppressing insufficient light quantity.

そして、上述の目的をより助長し、かつその有効化を計
るために、の各条件を設けたのである。
In order to further promote the above-mentioned purpose and to make it effective, the following conditions were established.

これは、レンズL1とL2の空気間隔を小さくするため
には、R3が緩くなることは望ましく、さらにこのこと
は大きな画角のこの面上における外周光線のコマフレア
ーの発生を抑え、かつサジタル像の正への倒れの防止に
役立つている。
This means that in order to reduce the air gap between lenses L1 and L2, it is desirable that R3 be made loose, and furthermore, this will suppress the occurrence of coma flare of the outer peripheral rays on this surface with a large angle of view, and will also reduce the sagittal image. It helps prevent falling over.

すなわち、(3)式の下限は上述の目的を得るための限
界値であり、上限は負への球面収差、および像面彎曲等
を規制するものである。
That is, the lower limit of equation (3) is a limit value for achieving the above-mentioned purpose, and the upper limit is for regulating negative spherical aberration, field curvature, and the like.

また、レンズLとしの空気間隔を小さくするためには、
R5がきつくなることは都合の良いことであり、さらに
はこれより、R7が緩くなることにより、R7で発生す
る球面収差を小となし、このことによつて前記R3によ
り補正不足となる球面収差の正への補正に寄与するもの
となる。さらに、(4)式の上限は上述の目的を得るた
めの限界値であり、下限はR5が極端にきつくなること
によつて生ずる大きな画角の、この面上における外周光
束の負に働くコマ収差の発生を抑えるためのものである
。さらに、像面彎曲を小さくする目的をより助長するた
めに(5)式の条件を設け、これが有効化を計るために
(6)式の条件を設けたのである。すなわち、(5)式
の下限は上記の目的を得るための限界値であり、上限は
全系における色収差補正条件より生ずる限界値である。
N3,n4が、このような条件下にあつては、R6は(
6)式の範囲にあることが望ましく、下限を越えると球
面収差の負への倒れが大きくなり過ぎ、外の部分では補
正不可能となり、上限は逆で正に働く高次球面収差の補
正が不可能となる。その他、上述せる条件のうち(3)
,(4),(6)の各式はレンズバックを短くすること
に役立つており、レンズ全長を比較的短くなし得ること
となつた。
Also, in order to reduce the air gap between the lens L and
It is convenient for R5 to become tighter, and furthermore, by making R7 looser, the spherical aberration generated by R7 is reduced, thereby reducing the spherical aberration that is insufficiently corrected by R3. This contributes to the positive correction of . Furthermore, the upper limit of equation (4) is the limit value for achieving the above objective, and the lower limit is the negative coma of the outer peripheral luminous flux on this surface due to the large angle of view caused by extremely tight R5. This is to suppress the occurrence of aberrations. Furthermore, in order to further promote the purpose of reducing the curvature of field, the condition of equation (5) was provided, and in order to make this effective, the condition of equation (6) was provided. That is, the lower limit of equation (5) is a limit value for achieving the above objective, and the upper limit is a limit value resulting from the chromatic aberration correction conditions for the entire system.
When N3 and n4 are under such conditions, R6 is (
6) It is desirable that the range is within the range of the formula; if the lower limit is exceeded, the spherical aberration will become too negative and cannot be corrected in the outer part, and the upper limit is the opposite and the correction of higher-order spherical aberrations that act positively is possible. It becomes impossible. Among other conditions mentioned above, (3)
, (4), and (6) are useful for shortening the lens back, and the total length of the lens can be made relatively short.

次に、本発明に基づいた具体的実施例を数種記載するに
、但し、上記ザイデル収差係数は物体距離を無限遠、絞
りをレンズ第7面の後方0.024の位置に設置したと
きの係数で、表中Sは球面収差、Cはコマ収差、Aは非
点収差、Pはペツヴアルの項、Dは歪曲収差を表わす係
数で、Σは各々の収差係数の和を示すものである。
Next, several specific embodiments based on the present invention will be described. However, the above Seidel aberration coefficients are calculated when the object distance is set to infinity and the aperture is set at a position of 0.024 behind the seventh surface of the lens. In the table, S is a coefficient representing spherical aberration, C is comatic aberration, A is astigmatism, P is a Petzval term, D is a coefficient representing distortion, and Σ represents the sum of each aberration coefficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づくビハインド絞り用テツサ型レン
ズの基本的構成図で、第2図は各収差曲線図である。 Ll,L2,L3,L4:レンズ、Rl,R2,・・,
R7:曲率半径、Dl,d3,d5,d6:レンズの軸
上の厚み、D2,d4:レンズの軸上の空気間隔。
FIG. 1 is a basic configuration diagram of a Tessa type lens for behind aperture according to the present invention, and FIG. 2 is a diagram of each aberration curve. Ll, L2, L3, L4: Lens, Rl, R2,...
R7: radius of curvature, Dl, d3, d5, d6: thickness on the axis of the lens, D2, d4: air distance on the axis of the lens.

Claims (1)

【特許請求の範囲】 1 物界側から順にみて、メニスカス正レンズL_1よ
りなる第1群レンズ、両凹単レンズL_2よりなる第2
群レンズおよび両凸レンズL_3とメニスカス負レンズ
L_4との接合よりなる第3群レンズの3群4枚のレン
ズにて構成され口径比F2.8、画角60゜におよび変
型テツサー型レンズであつて、(1)0.34f<Σd
<0.38f (2)0.05f<d_2+d_4<0.07f0.1
4<(d_2+d_4/Σd)<0.20(3)1.4
f<|R_3|<3.0f(但しR_3<0)(4)0
.5f<R_5<0.73f(5)0.16<n_3−
n_4<0.25(6)0.3f<|R_6|<0.3
7f(但しR_6<0)「但し、fは全系の焦点距離、
Σdはレンズの軸上の厚み、および空気間隔の合計、d
_2は第1群レンズと第2群レンズとの、d_4は第2
群レンズと第3群レンズとの空気間隔、R_3は第2群
レンズの物界に向いた面の曲率半径、R_5は第3群レ
ンズの物界に向いた面の曲率半径、R_6は第3群レン
ズにおけるレンズL_3とL_4の接合面の曲率半径で
あり、n_3とn_4は第3群レンズのレンズL_3と
L_4におけるd線の屈曲率である。 」なる条件を備えていることを特徴とするビハインド絞
り用テツサー型レンズ。
[Claims] 1. Viewed in order from the object world side, the first lens group consists of a positive meniscus lens L_1, and the second group consists of a biconcave single lens L_2.
It is composed of 4 lenses in 3 groups of the 3rd group lens, which is made up of a cemented double-convex lens L_3 and a meniscus negative lens L_4, and has an aperture ratio of F2.8, an angle of view of 60°, and is a modified Tetsusar type lens. , (1) 0.34f<Σd
<0.38f (2) 0.05f<d_2+d_4<0.07f0.1
4<(d_2+d_4/Σd)<0.20(3)1.4
f<|R_3|<3.0f (however, R_3<0) (4) 0
.. 5f<R_5<0.73f(5)0.16<n_3-
n_4<0.25(6)0.3f<|R_6|<0.3
7f (However, R_6<0) "However, f is the focal length of the entire system,
Σd is the sum of the axial thickness of the lens and the air spacing, d
_2 is the first group lens and second group lens, d_4 is the second group lens.
The air distance between the group lens and the third group lens, R_3 is the radius of curvature of the surface of the second group lens facing the object world, R_5 is the radius of curvature of the surface of the third group lens facing the object world, and R_6 is the radius of curvature of the surface of the third group lens facing the object world. This is the radius of curvature of the cemented surface of the lenses L_3 and L_4 in the lens group, and n_3 and n_4 are the d-line curvature of the lenses L_3 and L_4 of the third lens group. A Tetsusar type lens for behind aperture, which is characterized by meeting the following conditions.
JP52044558A 1977-04-20 1977-04-20 Tetsusar type lens for behind aperture Expired JPS6051686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52044558A JPS6051686B2 (en) 1977-04-20 1977-04-20 Tetsusar type lens for behind aperture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52044558A JPS6051686B2 (en) 1977-04-20 1977-04-20 Tetsusar type lens for behind aperture

Publications (2)

Publication Number Publication Date
JPS53130021A JPS53130021A (en) 1978-11-13
JPS6051686B2 true JPS6051686B2 (en) 1985-11-15

Family

ID=12694818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52044558A Expired JPS6051686B2 (en) 1977-04-20 1977-04-20 Tetsusar type lens for behind aperture

Country Status (1)

Country Link
JP (1) JPS6051686B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2165328A (en) * 1938-04-16 1939-07-11 Eastman Kodak Co Lens
US2446402A (en) * 1946-09-21 1948-08-03 Eastman Kodak Co Camera lens
JPS508526A (en) * 1973-05-19 1975-01-29

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2165328A (en) * 1938-04-16 1939-07-11 Eastman Kodak Co Lens
US2446402A (en) * 1946-09-21 1948-08-03 Eastman Kodak Co Camera lens
JPS508526A (en) * 1973-05-19 1975-01-29

Also Published As

Publication number Publication date
JPS53130021A (en) 1978-11-13

Similar Documents

Publication Publication Date Title
JP3062735B2 (en) Super wide angle lens system using aspherical lens
JPS60263916A (en) Retrofocus type varifocal objective lens for endoscope
JPH0648327B2 (en) Endoscope objective lens
KR0177980B1 (en) A large aperture photolens
JPH0542644B2 (en)
JPS6119008B2 (en)
JP2740662B2 (en) Objective lens for endoscope
JPH06308384A (en) Large-diameter wide-angle photographic lens
JP3964533B2 (en) Medium telephoto lens
JPS627525B2 (en)
JPS6153695B2 (en)
US4257678A (en) Wide angle photographic lens
JPH09211320A (en) Small-sized wide-angle lens
JPS6042452B2 (en) zoom lens
JPH1048514A (en) Objective lens of endoscope
JP2706946B2 (en) Front aperture projection lens
JPS6044644B2 (en) telescope lens
JPH0251115A (en) Retrofocus type wide-angle lens
JPH04250408A (en) Small-sized super wide-angle lens
JPS6358324B2 (en)
JPH0431088B2 (en)
JP3038974B2 (en) Small wide-angle lens
JPS6048014B2 (en) wide field eyepiece
JPS6032850B2 (en) Retrofocus type wide-angle lens
JPS6051686B2 (en) Tetsusar type lens for behind aperture