JPS6051658B2 - Automatic rate analysis method - Google Patents

Automatic rate analysis method

Info

Publication number
JPS6051658B2
JPS6051658B2 JP2870179A JP2870179A JPS6051658B2 JP S6051658 B2 JPS6051658 B2 JP S6051658B2 JP 2870179 A JP2870179 A JP 2870179A JP 2870179 A JP2870179 A JP 2870179A JP S6051658 B2 JPS6051658 B2 JP S6051658B2
Authority
JP
Japan
Prior art keywords
absorbance
reaction
sample
measurement
serum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2870179A
Other languages
Japanese (ja)
Other versions
JPS55122139A (en
Inventor
寿幸 佐草
靖 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2870179A priority Critical patent/JPS6051658B2/en
Publication of JPS55122139A publication Critical patent/JPS55122139A/en
Publication of JPS6051658B2 publication Critical patent/JPS6051658B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 本発明は血液試料の自動レート分析方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for automated rate analysis of blood samples.

臨床生化学分析の近年の発展は著しいものがあるが、
これは各種自動分析装置の実用化に負うところが大きい
Although there have been remarkable developments in clinical biochemical analysis in recent years,
This is largely due to the practical use of various automatic analyzers.

これら各種自動分析装置の出現は検体の処理数と測定結
果の精密度の向上の両面において、以前の用手法に比較
して著しい効果を発揮している。 しかしながら、今日
のこのような自動分析装置を多用した臨床生化学分析の
現状も、これを測定結果の正確度の面から考慮すると、
反省すべき幾多の問題点を含んでいる。
The advent of these various automatic analyzers has had a remarkable effect on both the number of specimens processed and the accuracy of measurement results compared to previous manual methods. However, considering the current state of clinical biochemistry analysis that makes extensive use of such automated analyzers, from the perspective of accuracy of measurement results,
There are many issues that need to be reflected on.

従来の自動分析装置による生化学分析において、正確度
の点で最も大きい問題は比色分析におけるエンドジーナ
スな誤差である。 最近、このようなエンドジーナスな
誤差を低減する目的から、比色分析に換えて反応速度測
定法(以下、レート法と称する)を採用した自動分析装
置が実用化され、生化学分析の分野における今後の発展
が期待されている。
In biochemical analysis using conventional automatic analyzers, the biggest problem in terms of accuracy is endogenous errors in colorimetric analysis. Recently, for the purpose of reducing such endogenous errors, automatic analyzers that adopt a reaction rate measurement method (hereinafter referred to as the rate method) instead of colorimetric analysis have been put into practical use, and have become popular in the field of biochemical analysis. Future development is expected.

しかしながら、エンドジーナスな誤差が少なく原理的
には正確度の高ιルート法においても、自動分析装置へ
の適用の仕方によつては、従来の比色分析法以上の誤差
を生ずることがある。
However, even in the ι route method, which has few endogenous errors and is theoretically highly accurate, depending on how it is applied to an automatic analyzer, it may produce errors greater than those of conventional colorimetric analysis methods.

レート法をそもそも目的物質の関与する化学反応の速度
を定常状態(副反応がなく、目的の反応が一定速度で進
行している状態をいう)で測定することによつてのみ、
従来の比色法より正確な測定ができるものである。しか
し現在用いられている各種自動分析装置においては、測
定が定常状態で行われたことを確認する手段が全くない
ため、検体によつては従来の比色以上の著しく間違つた
結果を与えることが少なくない。すなわち、レート法が
研究的に試用され始めた初期の段階においては、その測
定法は用手法に近く、反応開始から反応終了まで全反応
過程をアナログ的に観察するため、このようなレート法
の誤差は問題にならなかつた。しかし、各種自動分析装
置が前述のように高い処理速度を要求されるようになり
、反応が定常状態で行われたことを確認せずに、目的物
質の測定が行われるため、前述のような誤差を生じるよ
うになつた。 第1図は、最も一般的に用いられる2液
法によりジホスホピリジンヌクレオチド(還元型)(N
.ADH)の減少に基づくレート測定の場合の反応液の
吸光度変化を模式的に示したものである。
The rate method can only be used by measuring the rate of a chemical reaction involving the target substance in a steady state (a state in which there are no side reactions and the target reaction is proceeding at a constant rate).
This allows for more accurate measurements than conventional colorimetric methods. However, with the various automatic analyzers currently in use, there is no way to confirm that the measurement was performed in a steady state, so depending on the sample, they may give significantly erroneous results than conventional colorimetry. There are quite a few. In other words, in the early stages when the rate method began to be used for research purposes, the measurement method was close to a manual method, and the entire reaction process from the start of the reaction to the end of the reaction was observed in an analog manner. Errors were not a problem. However, as mentioned above, various automatic analyzers are now required to have high processing speeds, and the target substance is measured without confirming that the reaction is occurring in a steady state. It started to cause errors. Figure 1 shows diphosphopyridine nucleotide (reduced form) (N
.. This figure schematically shows the change in absorbance of the reaction solution in the case of rate measurement based on the decrease in ADH.

すなわち、検体血清は最初に第1試薬(通常、目的物質
の反応の基質の一方を除いた他の反応物質と緩衝液より
成る)と混合される(時間T。)。次いでこの混合液が
適当な温度でインキユベーシヨンされる。このインキユ
ベーシヨンの間に各種副反応(エンドジーナスな誤差の
原因)が進行してN,ADHが消費され、吸光度はA。
から減少する。十分なインキユベーシヨン(時間ち〜t
1)により副反応がほとんど終了した時点ちにおいて反
応開始の第2液(目的物質の反応の基質の一方)が添加
されて目的の反応が開始され、反応の進行につれて、N
ADHが消費されて、吸光度はA1から〜そしてA3に
減少して一定値になる。すなわち、目的物質の反応がち
より開始するが、この反応の速度は最初から一定でなく
、ある時間後(図のT2)にほぼ一定となる(反応が定
常状態になり、吸光度の変化は直線になる)。反応開始
よソー定になるまでの時間ち〜!を一般にラグタイムと
称している。NADHの量が十分な間が定常状態し〜T
5であるが、時間の経過とともにNADHが不足して反
応は漸次遅くなりT5〜T6、NADHが完全に消費さ
れると反応は停止し、吸光度は一定値〜になる(!以降
)。レート測定において正しい測定結果を得るためには
、定常状態であるT2からT5の間の一定時間(例えば
T3〜T4)の吸光度変化を測定する必要がある。
That is, the sample serum is first mixed with a first reagent (usually consisting of a buffer and a reactant other than one of the substrates for the reaction of the target substance) (time T). This mixture is then incubated at a suitable temperature. During this incubation, various side reactions (causing endogeneous errors) proceed, N and ADH are consumed, and the absorbance is A.
decreases from Sufficient incubation (time
As soon as the side reactions have almost finished in step 1), the second reaction initiation liquid (one of the substrates for the reaction of the target substance) is added to start the target reaction, and as the reaction progresses, N
As ADH is consumed, the absorbance decreases from A1 to A3 to a constant value. In other words, the reaction of the target substance starts at a certain rate, but the rate of this reaction is not constant from the beginning and becomes almost constant after a certain time (T2 in the figure) (the reaction reaches a steady state and the change in absorbance becomes linear). Become). The reaction has started! How long does it take for the reaction to become stable? is generally called ragtime. A steady state occurs when the amount of NADH is sufficient ~T
5, however, as time passes, NADH becomes insufficient and the reaction gradually slows down, and when NADH is completely consumed at T5 to T6, the reaction stops and the absorbance reaches a constant value ~ (after !). In order to obtain correct measurement results in rate measurement, it is necessary to measure the change in absorbance over a certain period of time (for example, T3 to T4) between T2 and T5, which is a steady state.

用手法によるレート測定てあれば、第1図の吸光度変化
をζ以降の全領域においてアナログ的に観察することに
よつて正しい時間T3〜T4の吸光度変化を求めること
は容易である。しかしながら反応開始後の全領域を観測
するためには、少なくとも数分から1紛程度を要するが
、多数の検体を迅速に処理する必要がある自動.分析装
置においては、観測時間が3囲2程度に限定される。
If the rate is measured manually, it is easy to obtain the correct absorbance change at time T3 to T4 by observing the absorbance change in FIG. 1 in an analog manner in the entire region after ζ. However, in order to observe the entire area after the reaction has started, it takes at least several minutes to complete, but automated methods require rapid processing of a large number of samples. In the analyzer, the observation time is limited to about 3 times and 2 times.

すなわち、レート法を自動分析装置に応用した場合、測
定結果の誤差を最も大きい部分は自動分析装置の観測時
間が短いことに由来するといつても過言でない。換言す
れば、自動分析装置・によるレート法の誤差は、反応開
始から観測開始までの最適なラグタイムζ〜T2が本来
検体中の目的物質の濃度(活量)によつて著しく異なる
にもかかわらず、これを一定時間にせざるを得ない自動
分析装置の性質に由来するものである。これを第2図に
よつて具体的に説明する。すなわち第2図において、ち
は反応開始点(第2試薬添加時間)でA1はその時点に
おける吸光度、T3〜T4が自動分析装置における吸光
度変化の観測時間、〜は前述のようにNADHが不足し
て反応が遅くなり始める限界の吸光度を示し、反応曲線
1,2,3は各々目的の純物質を用いた、低濃度、中濃
度および高濃度の模擬血清検体の反応ノ曲線である。
That is, when the rate method is applied to an automatic analyzer, it is no exaggeration to say that the largest error in the measurement results is due to the short observation time of the automatic analyzer. In other words, the rate method error caused by an automatic analyzer is due to the fact that the optimal lag time ζ ~ T2 from the start of the reaction to the start of observation differs significantly depending on the concentration (activity) of the target substance in the sample. First, this is due to the nature of the automatic analyzer, which has to take a fixed amount of time. This will be explained in detail with reference to FIG. In other words, in Fig. 2, A1 is the reaction starting point (second reagent addition time), A1 is the absorbance at that point, T3 to T4 are the observation times of absorbance changes in the automatic analyzer, and ~ is the lack of NADH as mentioned above. Reaction curves 1, 2, and 3 are reaction curves of simulated serum samples at low, medium, and high concentrations using the pure substance of interest, respectively.

図のように、観測時間をT3〜T4のように設定すると
、1,2のように目的物質の濃度が中程度以下の検体の
場合、T3〜T4の間で反応は直線的(定常状態)にあ
るため、その間の吸光度変化を測定することによつて正
しい目的物質の濃・度を知ることができる。しかしなが
ら、3のように目的物質の濃度の高い検体においては、
T3の時点において既にNADHの不足によつて反応は
停止状態に近づいており、T3〜T4間における吸光度
変化は著しく小さく、高濃度の異常検体であるにも・か
かわらず、一見低濃度の正常検体として測定されること
になる。仮にこのような測定ミスが発生すれば、これは
比色分析法におけるエンドジーナスな誤差の比ではなく
、患者の生命にも関わる重大な問題である。自動分析装
置におけるレート法のこのような欠点の根本的解決法と
しては、前述の用手法の場合のように反応開始後の全領
域にわたつて吸光度変化を観測することが最良の方法で
ある。
As shown in the figure, if the observation time is set from T3 to T4, the reaction will be linear (steady state) between T3 and T4 in the case of samples with a medium or lower concentration of the target substance, such as 1 and 2. Therefore, by measuring the change in absorbance during that time, the correct concentration of the target substance can be determined. However, in a sample with a high concentration of the target substance as in 3.
At T3, the reaction is already close to stopping due to lack of NADH, and the change in absorbance between T3 and T4 is extremely small, indicating that although it is an abnormal sample with a high concentration, it is a normal sample with a seemingly low concentration. It will be measured as . If such a measurement error were to occur, this would not be an endogenous error ratio in the colorimetric analysis method, but would be a serious problem that could affect the patient's life. As a fundamental solution to these drawbacks of the rate method in automatic analyzers, the best method is to observe changes in absorbance over the entire region after the start of the reaction, as in the case of the above-mentioned manual method.

しかしながら、そのためには1検体の処理に数分から1
紛を要することになり、1時間当りl喉体前後の処理速
度に限定されるため、高い処理速度を要求される自動分
析装置には適用することはできない。次善の解決法とし
て従来より行われている方法は、観測時間もT3〜ζ内
の吸光度変化と共に観測終了点ζにおける最終吸光度の
絶対値をチェックする方法である。すなわち、ちにおけ
る被検液の最終吸光度がN,ADHの不足によつて反応
速度が低下し始める理論的限界吸光度A2よりも大きい
場合は、上述のようなミスがなく、逆に小さい場合はそ
の検体が測定不能な異常高濃度検体である旨を出力して
検知するものてある。この場合、オペレーターはその異
常検体を生理食塩水などによつて希釈して再検査するこ
とによつて前述のような重大なミスを防止することが可
能である。しかしながら、実際の検体においては、この
ような最終吸光度のチェックによつても前述のような高
濃度検体に対する測定ミスが完全に防止できないことが
分つた。
However, for this purpose, it takes several minutes to one hour to process one sample.
This method is complicated and the processing speed is limited to about 1 throat body per hour, so it cannot be applied to automatic analyzers that require a high processing speed. A method conventionally used as the next best solution is to check the absolute value of the final absorbance at the observation end point ζ as well as the absorbance change within the observation time T3 to ζ. In other words, if the final absorbance of the test solution is larger than the theoretical limit absorbance A2 at which the reaction rate begins to decrease due to lack of N and ADH, there is no mistake as mentioned above, and conversely, if it is small, then there is no such mistake. There is a device that outputs and detects that the sample is an abnormally high concentration sample that cannot be measured. In this case, the operator can prevent the above-mentioned serious mistake by diluting the abnormal specimen with physiological saline or the like and retesting. However, in actual samples, it has been found that even by checking the final absorbance, it is not possible to completely prevent measurement errors for high-concentration samples as described above.

これは、第2図に示した純物質から合成された模擬検体
と異なり、実際の検体は乳び、溶血、黄痘など種々の妨
害物質を含有するため、前述の反応速度が低下し始める
理論的限界吸光度A2を正確に把握することが困難なこ
とによる。すなわち、第2図のような理想的な検体であ
れば、被検液の340r1WL.における吸光度はNA
DHや基質など試薬中の反応物質のみによるため、最終
吸光度のみよりNADHの残量が充分かどうか、すなわ
ち前述のような高濃度血清か否かを判別することができ
る。これに対して前述のような妨害物質を含む実際の検
体ではこれら妨害物質による吸収が試薬の吸収に加算さ
れるため、被検液のζにおける最終吸光度が前述の理論
的限界吸光度より大きい場合ても、往々にして前述の高
濃度血清に対する測定ミスを引き起こす。例えば、第3
図の吸収スペクトル4,5はそれぞれ理想的な濁りの無
い血清検体の測定液と、強度の乳び血清検体の測定液の
各吸収スペクトルを示す図であるが、検体中の乳び成分
は、340r1Tn.において著しい吸収を有するため
、乳び血清を検体とする場合には、従来のような最終吸
光度の絶対値をチェックする方法は全くと言つてよい程
、効果がないことが分つた。また第4図は、第3図の2
種の血清に目的の純物質を同程度添加した高濃度模擬検
体の反応曲線(340n7T1.)を示すものであるが
、濁らない高濃度血清6の場合は、最終吸光度が理論的
限界吸光度A2以下であり、高濃度異常検体として出力
されるため問題はないが、濁つた高濃度血清の場合、N
ADHが完全に消費された状態(t1以降)においても
測定液の吸光度は前述の理論的限界吸光度より高くなる
ため、高濃度異常検体として出力されす、通常の低濃度
正常検体として著しく誤まつた測定結果を与えることに
なる。本発明の目的は、上記従来法の欠点を改良し、濁
つた高濃度血清に対しても前述のような重大な測定誤差
を与えない、正確度の高い自動レート分析法を提供する
ことにある。上記目的を達成するために、本発明は、先
ず多波長光度計の特性を活用して被検液の可視域スペク
トルから検体中の濁り度合を測定し、この測定値から前
述の理論的限界吸光度を補正して真の限界吸光度を求め
、これと前述の最終吸光度を比較して該検液中の検体の
測定が定速領域て行われたか否かを判定することを特徴
とするものてある。
This is because, unlike the simulated sample synthesized from pure substances shown in Figure 2, the actual sample contains various interfering substances such as chyle, hemolysis, and jaundice, so the above-mentioned reaction rate begins to decrease. This is because it is difficult to accurately grasp the target absorbance limit A2. That is, in the case of an ideal specimen as shown in FIG. 2, the test liquid is 340r1WL. The absorbance at is NA
Since it depends only on the reactants in the reagent such as DH and substrate, it can be determined from the final absorbance alone whether the remaining amount of NADH is sufficient, that is, whether the serum has a high concentration as described above. On the other hand, in actual samples containing interfering substances as mentioned above, the absorption due to these interfering substances is added to the absorption of the reagent, so if the final absorbance at ζ of the test solution is larger than the theoretical limit absorbance mentioned above, However, the above-mentioned measurement error for high-concentration serum often occurs. For example, the third
Absorption spectra 4 and 5 in the figure show the respective absorption spectra of an ideal non-turbid serum sample measurement solution and a strong chyle serum sample measurement solution, but the chyle components in the sample are 340r1Tn. It has been found that the conventional method of checking the absolute value of the final absorbance is almost completely ineffective when chyle serum is used as a specimen. Also, Figure 4 shows 2 in Figure 3.
This shows the reaction curve (340n7T1.) of a high-concentration simulated sample in which the same amount of the target pure substance is added to the seed serum. However, in the case of high-concentration serum 6 that does not become cloudy, the final absorbance is less than the theoretical limit absorbance A2. There is no problem because it is output as a high concentration abnormal sample, but in case of cloudy high concentration serum, N
Even when ADH is completely consumed (after t1), the absorbance of the measurement solution is higher than the above-mentioned theoretical limit absorbance, so it is output as a high concentration abnormal sample, which is significantly mistaken as a normal low concentration normal sample. It will give the measurement results. The purpose of the present invention is to improve the drawbacks of the conventional methods described above and to provide a highly accurate automatic rate analysis method that does not cause the above-mentioned serious measurement errors even for cloudy and highly concentrated serum. . In order to achieve the above object, the present invention first utilizes the characteristics of a multi-wavelength photometer to measure the degree of turbidity in a sample from the visible spectrum of the sample liquid, and from this measurement value, calculates the theoretical limit absorbance as described above. is corrected to obtain the true limit absorbance, and this is compared with the aforementioned final absorbance to determine whether or not the measurement of the analyte in the test solution was performed in a constant speed region. .

すなわち、本発明は従来のように一定の理論的限界吸光
度を求めすに、検体毎に異なる真の限界吸光度を求める
点に最大の特徴がある。本発明における濁り度合の補正
は、血清の濁りによるスペクトルが第3図に示すように
比較的単純な形状であり、しかも可視域の600nrr
!.以上の長波長域における被検液の吸収はほとんど検
体中の濁りによるものであることを利用する。
That is, the greatest feature of the present invention is that, unlike the conventional method of determining a fixed theoretical limit absorbance, the present invention determines a true limit absorbance that differs for each specimen. The degree of turbidity is corrected in the present invention because the spectrum due to turbidity of serum has a relatively simple shape as shown in Fig.
! .. This method utilizes the fact that most of the absorption of the test liquid in the above long wavelength range is due to turbidity in the sample.

すなわち、種々の濁り度合の異なる血清をトランスアミ
ナーゼのレート測定用中性緩衝液で希釈した被検液のス
ペクトルを調べたところ、これら被検液の600と70
0r17T1,の吸光度と340r1mにおける吸光度
の比はある一定値K1に収束することが分つた。
That is, when we examined the spectra of test solutions prepared by diluting serum with various degrees of turbidity with a neutral buffer solution for transaminase rate measurement, we found that the 600 and 70
It was found that the ratio of the absorbance at 0r17T1 and the absorbance at 340r1m converged to a certain constant value K1.

A(ぉ。A (Oh.

)は各被検液の340r17TL.の吸光度、A(60
0−7(1X))は同被検液の600r1mと70(9
)mとの吸光差、K1は定数である。同様に以下の関係
も成立することが分つた。
) is 340r17TL. of each test liquid. Absorbance of A(60
0-7 (1X)) is the same test solution of 600 r1m and 70 (9
) K1 is a constant. Similarly, it was found that the following relationship also holds true.

濁りの粒子の状態や、他の妨害物質の影響によつてスペ
クトルの形状が若干異なるため、K1〜\はある範囲内
に収束した定数となるが、いずれの場合も前述の理論的
限界吸光度値より真の限界吸光度値を求めるような用途
に対しては充分な正確度を有することが実験的に確認さ
れた。収束の状態はK2が最も良好であり、次いでK1
が良好てあり、K3とK4は若干収束性が劣る。従つて
340nrrLでレート測定を行う場合の理論的限界吸
光度をAR、真の限界吸光度をAOとすれば、次式の関
係が成立する。
Since the shape of the spectrum differs slightly depending on the state of the turbid particles and the influence of other interfering substances, K1~\ is a constant that converges within a certain range, but in any case, the above-mentioned theoretical limit absorbance value It has been experimentally confirmed that this method has sufficient accuracy for applications such as determining true limit absorbance values. The state of convergence is best for K2, followed by K1.
is good, and K3 and K4 have slightly poor convergence. Therefore, if the theoretical limit absorbance when performing rate measurement at 340 nrrL is AR and the true limit absorbance is AO, the following relationship holds true.

また340r17TL.と376r17nの2波長法で
レート測定を行う場合は次の関係が適用される。
Also 340r17TL. When rate measurement is performed using the two-wavelength method of 376r17n and 376r17n, the following relationship is applied.

上記から明らかなように、従来の理論的限界吸光度の代
りに式(5)〜式(7)によつて求められた真の限界吸
光度を用いることにより、濁つた高濃度血清に対する測
定ミスを防止することができる。
As is clear from the above, by using the true limit absorbance determined by equations (5) to (7) instead of the conventional theoretical limit absorbance, measurement errors for cloudy, high-concentration serum can be prevented. can do.

次に第1表に正常な血清と乳び血清に対して、既知濃度
の純LDHを添加した数種の模擬検体を従来法と本発明
の両方法によつて測定した結果を示す。試料1〜4は正
常な血清、試料5および6は乳び血清である。すなわち
、試料1〜4のように濁らない血清においては、従来法
も本発明方法も同一の結果を与えるが、試料5〜6のよ
うに濁つた高濃度血清の場合、従来法はこれを低値の正
常血清として出力するのに対して、本発明の方法では正
しく高濃度異常血清(*印)として出力する。
Next, Table 1 shows the results of measurements of several types of simulated samples prepared by adding known concentrations of pure LDH to normal serum and chyle serum, using both the conventional method and the method of the present invention. Samples 1-4 are normal serum and samples 5 and 6 are chyle serum. That is, in the case of non-turbid serum like Samples 1 to 4, both the conventional method and the method of the present invention give the same results, but in the case of cloudy and highly concentrated serum like Samples 5 to 6, the conventional method gives lower results. In contrast, the method of the present invention correctly outputs high-concentration abnormal serum (marked with *), whereas the serum is output as a normal serum with a high concentration.

一般的に、LDH,.GOT..GPTなどの酵素の検
査において、数千単位の異常血清力化ばしば存在し、し
かも近年濁つた検体が増えつつある状態を考慮すれば、
異常検体を確実に検出することができる本発明の効果は
顕著である。なお、本発明において、濁りを測定する波
長は前述の600r1WL1700r1mに限定される
ものでなく、また目的物質の測定波長も340r17T
1.、376n7nに限定されるものではなく、被検試
料性質に応じて他の測定波長を用いることができる。
Generally, LDH, . GOT. .. When testing for enzymes such as GPT, there are often thousands of abnormal serum titers, and considering that the number of cloudy samples has been increasing in recent years,
The effect of the present invention, which can reliably detect abnormal specimens, is remarkable. In the present invention, the wavelength for measuring turbidity is not limited to the aforementioned 600r1WL1700r1m, and the wavelength for measuring the target substance is also 340r17T.
1. , 376n7n, and other measurement wavelengths can be used depending on the properties of the sample to be tested.

以上、本発明によれば、血液試料の濁り度合による測定
誤差がなく、正確度の高い自動レート分析を行うことが
できる。
As described above, according to the present invention, there is no measurement error due to the degree of turbidity of a blood sample, and highly accurate automatic rate analysis can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、血清のレート反応の一般的な反応曲線、第2
図は、低、中、高の3種の濃度の検体の同様な反応曲線
、第3図は、正常な高濃度血清と濁つた高濃度血清の吸
収スペクトル、第4図は、前記2種の試料の反応曲線で
ある。
Figure 1 shows a general reaction curve for the rate response of serum;
The figure shows similar reaction curves for samples with three concentrations: low, medium, and high. Figure 3 shows the absorption spectra of normal high-concentration serum and cloudy high-concentration serum. Figure 4 shows the absorption spectra of the above two types of serum. It is a reaction curve of a sample.

Claims (1)

【特許請求の範囲】[Claims] 1 血液試料に試薬を添加してその反応による吸光光度
の定速域における経時的変化を測定し、その変化量によ
り上記試料中の被検体物質の濃度を求める自動レート分
析方法において、血液試料の濁り度に関連する可視域ス
ペクトルを測定し、この測定値により予め設定された定
速域の理論的限界吸光度を補正して真の限界吸光度を求
め、この吸光度と前記測定の最終吸光度とを比較して試
料の測定が反応の定速域で行われたか否かを判定するこ
とを特徴とする自動レート分析方法。
1. In an automatic rate analysis method in which a reagent is added to a blood sample, the change in absorbance over time in a constant rate region due to the reaction is measured, and the concentration of the analyte in the sample is determined from the amount of change. Measure the visible spectrum related to turbidity, correct the theoretical limit absorbance in the constant speed range set in advance using this measurement value to find the true limit absorbance, and compare this absorbance with the final absorbance of the measurement. 1. An automatic rate analysis method characterized by determining whether or not measurement of a sample was performed in a constant rate region of reaction.
JP2870179A 1979-03-14 1979-03-14 Automatic rate analysis method Expired JPS6051658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2870179A JPS6051658B2 (en) 1979-03-14 1979-03-14 Automatic rate analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2870179A JPS6051658B2 (en) 1979-03-14 1979-03-14 Automatic rate analysis method

Publications (2)

Publication Number Publication Date
JPS55122139A JPS55122139A (en) 1980-09-19
JPS6051658B2 true JPS6051658B2 (en) 1985-11-15

Family

ID=12255759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2870179A Expired JPS6051658B2 (en) 1979-03-14 1979-03-14 Automatic rate analysis method

Country Status (1)

Country Link
JP (1) JPS6051658B2 (en)

Also Published As

Publication number Publication date
JPS55122139A (en) 1980-09-19

Similar Documents

Publication Publication Date Title
Moore et al. A micromodification of the Drabkin hemoglobin assay for measuring plasma hemoglobin in the range of 5 to 2000 mg/dl
Foster et al. A single-reagent manual method for directly determining urea nitrogen in serum
Burnett et al. Recommendations for measurement of and conventions for reporting sodium and potassium by ion-selective electrodes in undiluted serum, plasma or whole blood
Doumas et al. Measurement of direct bilirubin by use of bilirubin oxidase.
Dennis et al. Measuring percent oxygen saturation of hemoglobin, percent carboxyhemoglobin and methemoglobin, and concentrations of total hemoglobin and oxygen in blood of man, dog, and baboon.
Perry et al. Measurement of total bilirubin by use of bilirubin oxidase.
Levinson et al. Measuring hemoglobin in plasma by reaction with tetramethylbenzidine.
CN112285367B (en) Kit for detecting calcium ions and application thereof
US4485176A (en) Turbidimetric method for measuring protein in urine and cerebrospinal fluid
CN112029817B (en) Creatinine detection kit and application method thereof
EP0097472B1 (en) Method of determining calcium in a fluid sample
Stewart Evaluation of a reagent-strip method for glucose in whole blood, as compared with a hexokinase method.
JP3814300B2 (en) Method for analyzing a medical sample containing hemoglobin
Cate et al. Evaluation of an engineering model of the “Ektachem” analyzer for glucose and urea assay
JPS6118693B2 (en)
CN105842437A (en) Kit for detecting D-3-hydroxybutyric acid and preparation method of kit
Miskiewicz et al. Evaluation of a glucose oxidase-peroxidase method adapted to the single-channel autoanalyzer and SMA 12/60
Levinson Kinetic centrifugal analyzer and manual determination of serum urea nitrogen, with use of o-phthaldialdehyde reagent.
US5633169A (en) Measurement of carbon dioxide in blood
US20030068822A1 (en) Hemoglobin assay calibration and control
JPS6051658B2 (en) Automatic rate analysis method
CN112067562A (en) Calibration product for fructosamine detection and detection kit using same
JPS6118982B2 (en)
Liedtke et al. Centrifugal analysis with automated sequential reagent addition: measurement of serum calcium.
CN112129949A (en) Retinol binding protein detection kit, preparation method and use method thereof