JPS60515A - Positioning device - Google Patents

Positioning device

Info

Publication number
JPS60515A
JPS60515A JP10835084A JP10835084A JPS60515A JP S60515 A JPS60515 A JP S60515A JP 10835084 A JP10835084 A JP 10835084A JP 10835084 A JP10835084 A JP 10835084A JP S60515 A JPS60515 A JP S60515A
Authority
JP
Japan
Prior art keywords
signal
circuit
speed
output
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10835084A
Other languages
Japanese (ja)
Inventor
Motoo Uno
宇野 元雄
Hirotake Yamagata
山形 博健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10835084A priority Critical patent/JPS60515A/en
Publication of JPS60515A publication Critical patent/JPS60515A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41029Adjust gain as function of position error and position

Abstract

PURPOSE:To prevent self-oscillating vibrations and perform highly stable positioning, by providing a circuit which detects a deviation from a target value of output displacement and another circuit which delays the output signal of the circuit for a fixed time and reducing a speed loop gain by means of an operation complete signal. CONSTITUTION:A digital target value 21 is connected to an up-down counter 7 which is operated by a positional pulse signal 27 and the deviation signal of the output of the counter 7 is inputted into a motor 2 through a DA converter 8, log amplifier 9, and power amplifier 1. Under this condition, a speed feedback signal 29 is supplied to the input side of the power amplifier 1 and the positional pulse signal 27 is also supplied to the input side through a speed pulse generating circuit 6 and gain reducing circuit 11. The circuit 11 is operated by means of an operation complete signal 25 which is the output signal of a delay circuit 13 of a time Td which is actuated by signals 23 and 24 outputted through a deviation detecting circuit 12. By reducing a speed loop gain by means of the signal 25, self-oscillating vibrations caused by a speed pulse can be prevented from occurring.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は位置決め装置、特に、速度に比例した周波数の
パルス列信号により速度フィードバックを行う位置決め
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a positioning device, and particularly to a positioning device that performs velocity feedback using a pulse train signal having a frequency proportional to velocity.

〔発明の背景〕[Background of the invention]

モータを用いる位置決めサーボ機構においては、速度信
号をフィードバックすることにより系の応答を向上する
ことができる。従来、この手段として、第1図に示すよ
うに、タコジェネレータ(速度発電Ja)3を用い、モ
ータ2の速度に比例した信号をモータ駆動回路の前段増
幅器1にフィードバックする手段が多く用いられてきた
。しかし、この手段によると、タコジェネレータ3のほ
かに位置(,7号をフィードバックする手段4 (たと
えばシンクロ、レゾルバあるいはポテンショメータなど
)を別途用いる必要があり、機(苗が複1111.にな
るという欠点があった。
In a positioning servomechanism using a motor, the response of the system can be improved by feeding back a speed signal. Conventionally, as a means for this purpose, as shown in FIG. 1, a means has been often used that uses a tachogenerator (speed generator Ja) 3 and feeds back a signal proportional to the speed of the motor 2 to the preamplifier 1 of the motor drive circuit. Ta. However, according to this method, in addition to the tachogenerator 3, it is necessary to separately use a means 4 (for example, a synchro, resolver, or potentiometer) for feeding back the position, and the disadvantage is that the number of seedlings becomes multiple. was there.

一方、近年回路のディジタル化にともない、第2図に示
すように1位置検出器としてインクレメンタル形エンコ
ーダ5を用い、これより発生するパルス列をアシプダウ
ンヵウンタフにより目標値から減算し、その結果をDA
変換器8に加えることにより、位置フィードバンクルー
プを形成し、パルス列のパルスのたち上りたち下りを利
用してパルス発生回路6により速度に比例した周波数の
速度パルス列を発生し、これを速度フィートノ(ツク信
号として利用するサーホ機構が用いられるようになった
On the other hand, in recent years, with the digitization of circuits, an incremental encoder 5 is used as a one-position detector as shown in Fig. 2, and the pulse train generated by this is subtracted from the target value by an up-down counter. DA
By adding it to the converter 8, a position feed bank loop is formed, and by using the rising and falling pulses of the pulse train, the pulse generating circuit 6 generates a speed pulse train with a frequency proportional to the speed, which is then converted into a speed pulse train ( The search mechanism, which is used as a check signal, came into use.

後者の手段においては、速度に比例した周波数の速度パ
ルス列信号をアンプ1およびモータ2系のローパスフィ
ルタ特性により等価的に速度しこ比例した速度信号とし
て用いており、モータ速度が大きい状態ではアナログ信
しと同等の効果を示す。
In the latter method, a speed pulse train signal with a frequency proportional to the speed is used as a speed signal equivalently proportional to the speed by the low-pass filter characteristics of the amplifier 1 and motor 2 systems, and when the motor speed is high, the analog signal is used. Shows the same effect as that.

しかし、アンプおよびモータ系は高次おくALの伝達関
数特性を有し、高周波数での位相遅れが大きく、多くの
系では摩擦力として非線形のクーロン摩擦が作用し、か
つ負荷として機41Vl要素により発生ずる弾性を有す
るオフセラ1−力が作用することから位置決め目標値伺
近ではりレーサーボ系となり、速度パルスに起因する自
励振動を発生する欠点を有する。
However, amplifier and motor systems have high-order AL transfer function characteristics, have a large phase delay at high frequencies, and in many systems, nonlinear Coulomb friction acts as a frictional force, and the machine 41Vl element acts as a load. Since the offset force having elasticity acts on the system, it becomes a welder robot system when approaching the positioning target value, and has the disadvantage of generating self-excited vibrations due to velocity pulses.

〔発明の目的〕[Purpose of the invention]

本発明は、このような欠点を除去するためになさJした
もので、自励振動を防止し、位置決め1′17度が良り
fて安定性の高い位置決め装置を提供することを[1的
どする。
The present invention was made in order to eliminate such drawbacks, and has the following object: to provide a highly stable positioning device that prevents self-excited vibration and has a good positioning angle of 1'17 degrees. What should I do?

〔発明の概要〕[Summary of the invention]

かかる目的を達成するため本発明は、出力変位の目標値
からの偏差を検出する回路およびその出力信号を一定時
間遅延する回路を設け、出力変位が目標位置付近に整定
停止したことを示す動作終了信号により進度ループゲイ
ンを低減し、自励振動を防止することを特徴とするもの
である。
In order to achieve such an object, the present invention provides a circuit for detecting the deviation of the output displacement from the target value and a circuit for delaying the output signal for a certain period of time, and detects the end of the operation to indicate that the output displacement has settled and stopped near the target position. This is characterized in that the progress loop gain is reduced by the signal to prevent self-excited vibration.

〔発明の実施例〕[Embodiments of the invention]

一般に、弾性負荷、クーロンJcf、に+ミ、エンコー
ダ、速度パルス発生回路を有するモータによる位置決め
ザーボ系の目標値伺近の制御系モデルは第3図(a)の
ブロック線図で表わせる。ここで、引♂性負荷は101
、クーロン摩擦は+02、エンコーダは103、速度パ
ルス発生回路は10/Iのブロックに対応する。エンコ
ーダは階段状関数であるが目標値イ4近の微小変位にお
いてはリレー要素どみなせる。今、ターロン摩擦をpH
5t、視すると系は第31、J(1,)に示すような非
線形のリレー製糸と3,1工形の高次おぐれ系より構成
さAしるオートjマスな系として記述関数法による安定
判別が可能となる。この系において1、〒性方程式は 1+N (E) G (j W) =0と表わせる。た
だし N (IΣ):リレー要素の記述関数 G(j\v):系の伝達関数 ナイキストの安定判別法にしたがえは、第3図(C)に
おいて、リレー要素の振幅軌跡−1,/N(E)は負の
実ΦII目5J応し、周波数軌跡G(jw)との交点A
で自励振動が存在し得る。
In general, a control system model for determining the target value of a positioning servo system using a motor having an elastic load, Coulomb Jcf, +mi, encoder, and speed pulse generation circuit can be represented by the block diagram in FIG. 3(a). Here, the tensile load is 101
, Coulomb friction corresponds to block +02, encoder corresponds to block 103, and speed pulse generation circuit corresponds to block 10/I. Although the encoder is a step-like function, it can be regarded as a relay element at minute displacements near the target value A4. Now pH the turron rub
5t, the system is composed of non-linear relay spinning as shown in 31st J(1,) and a higher-order system of 3,1 process shapes, and is described by the function method as an autoj-mass system shown by A. Stability determination becomes possible. In this system, the gender equation can be expressed as 1+N (E) G (j W) =0. However, N (IΣ): Descriptive function of the relay element G (j\v): Transfer function of the system According to the Nyquist stability criterion, in Fig. 3 (C), the amplitude locus of the relay element -1, /N ( E) corresponds to the negative real ΦIIth 5J and is the intersection point A with the frequency locus G(jw)
Self-excited vibrations can exist at

しかし、実際の系においてはクーロン摩擦が存在するの
で振幅軌跡との交点における周波数軌跡のゲインすなわ
ちループゲインか第3図(C)の破線のように充分小さ
げAしば、エネルギーは摩擦番;吸収さJし、振動は持
続しない。(B点)。ここで、ループゲインはアンプお
よびモータ系のゲイン、位置フィードバックゲインなら
びに速度フィー14ハツクゲインにより決定され、調節
可能なのは位置および速度フィー1−バッタゲインであ
る。しかし、前者は位1d決め精度および減速特性、後
者は応答1、〒性より最適値がまり、系によってはルー
プゲインが大きくなり、前述の理由により位置決め後自
励振動を発生し、騒音源となるばかりか装置寿命を縮め
る原因となる。このような場合、安定性を満足するルー
プゲインとすると位置決め精度および応答性が悪化する
However, in an actual system, Coulomb friction exists, so if the gain of the frequency locus at the intersection with the amplitude locus, that is, the loop gain, is sufficiently small as shown by the broken line in Figure 3 (C), the energy will be equal to the friction; It is absorbed and the vibration does not last. (Point B). Here, the loop gain is determined by the gain of the amplifier and motor system, the position feedback gain, and the speed gain, and what is adjustable is the position and speed gain - the grasshopper gain. However, the former is the positioning accuracy and deceleration characteristic, and the latter is the response 1. The optimum value is determined by the 〒 property, and depending on the system, the loop gain becomes large, and for the above-mentioned reasons, self-excited vibration is generated after positioning, which can be a source of noise. Not only that, but it also shortens the life of the device. In such a case, if the loop gain is set to satisfy stability, positioning accuracy and responsiveness will deteriorate.

本発明は、」二連の位置決め精度、応答性および安定性
を満足させるため、動作状態においてはループゲインを
大きくして応答性を高め、停止状態においてはループゲ
インを小さくし安定性を高める点に特徴がある。ループ
ゲインの低減方法は、位置決め精度を決定する位置フィ
ードバックゲインを変えることなく、速度フィードバッ
クゲインを低減する。また、ゲイン切り換えは、位置決
め動作時応答性を低下させぬよう出力変位が仕様位置決
め精度以内の範囲に位置し、はぼ1(定停止した後行う
ため、1」標値からの偏差が一定値以内となることを検
出する回路、その検出信号を一定時間遅延し動作終了信
号を発する回路および動作終了信号により速度フィード
バックゲインを低減する回路より構成する。
In order to satisfy dual positioning accuracy, responsiveness, and stability, the present invention increases the loop gain in the operating state to improve responsiveness, and decreases the loop gain in the stopped state to improve stability. There are characteristics. The loop gain reduction method reduces the velocity feedback gain without changing the position feedback gain that determines positioning accuracy. In addition, gain switching is performed so that the output displacement is within the specified positioning accuracy so as not to reduce responsiveness during positioning operation, and the deviation from the target value is a constant value of 1 (since it is performed after a constant stop). The circuit consists of a circuit that detects that the speed is within the range of 1 to 2, a circuit that delays the detection signal for a certain period of time and issues an operation end signal, and a circuit that reduces the speed feedback gain using the operation end signal.

第4図(、)は本発明による位置決め装置の一実施例の
構成を示すものである。
FIG. 4(,) shows the configuration of an embodiment of the positioning device according to the present invention.

図において、ディジタル目標値21は、位置パルス信号
27により動作するアップダウンカウンタ7に接続され
、このカウンタ7の出力信号である偏差信号はD/Δコ
ンバータ8およびログアンプ9、パワーアンプ1を通し
モータ2に人力さAしる。ここで、位置パルス信号27
は、第11図(1」)に示ずようにモータ2の軸に接続
さ]したエンコーダ5の二相パルス信号26を論理回路
10を)、uして得らJしる信号である。また、速度フ
ィードバック信号29は位置パルス信号27を速度パル
ス発生回路6およびゲイン低減回路11を通して行ら汎
る。ここで、ゲイン低減回路11ば偏差信号22より偏
差が60以内であることを検出する偏差検出回路]2を
通して出力さJしる信号23J3よびリセノl” (+
’3号2・1により動作する時間丁dの遅厄回W + 
3の出力信号である動イ1痛゛、r子信号25により動
作する。
In the figure, a digital target value 21 is connected to an up/down counter 7 operated by a position pulse signal 27, and a deviation signal, which is an output signal of this counter 7, is passed through a D/Δ converter 8, a log amplifier 9, and a power amplifier 1. Manual power is applied to motor 2. Here, the position pulse signal 27
is a signal obtained by applying the two-phase pulse signal 26 of the encoder 5 connected to the shaft of the motor 2 to the logic circuit 10 as shown in FIG. 11(1). Further, the velocity feedback signal 29 is generated by transmitting the position pulse signal 27 through the velocity pulse generation circuit 6 and the gain reduction circuit 11. Here, the gain reduction circuit 11 outputs a signal 23J3 and a signal 23J3 outputted through the deviation detection circuit 2 which detects that the deviation is within 60 from the deviation signal 22.
Time d's slow misfortune W +
It is operated by the output signals 3, 1, 2, and 25.

上記に示した本発明の実施例によJしは、出力偏差がΔ
O以内どなると信号23が出力さJし、時間′]”d後
に動作終了信号25か出力さ、IL、速度フィードバッ
ク侶号21〕は低;緘される。また、位置決めf&、外
乱により偏差が八〇より大きくなると、リセノ1−信号
24により動作ふr了侶号25はオフになり、速度フィ
ーIへパノクイバじ29は低減さJlずにフィー1〜ハ
ツクされ応答性はそこなわない。
According to the embodiment of the present invention shown above, the output deviation is Δ
When the signal 23 is output within 0, the operation end signal 25 is output after a time ']'d, and the IL, speed feedback signal 21] is low; When it becomes larger than 80, the operating signal 25 is turned off by the response signal 24, and the speed fee I is increased without being reduced, but the response rate is not impaired.

上記実施(σりにおいてゲイン低減回路1jは速度パル
ス発生回路6の出力パルス28の振(・h(を低、戚す
るものであったが、これをパルス幅を短縮する回路とす
ることによりぢ価な効果を賀ることができる。
In the above implementation (σ), the gain reduction circuit 1j was designed to reduce the amplitude (・h) of the output pulse 28 of the speed pulse generation circuit 6, but by making it a circuit that shortens the pulse width, You can enjoy valuable effects.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によりは、応答性、位置決め
精度が良好で安定性の高い位置決めか’tjい招る。
As described above, the present invention provides highly stable positioning with good responsiveness and positioning accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の位置決め装置の構成図、第
3図(、)および(b)は位置決めザーボ系の1」標値
(J近の制御系モデルおよびそのQ5’性を示す図、第
4図(、)および(b)はノ1〈発明による位置決め装
置の一実施例の構成図およびその動作説明図である。 j・・・パワアンプ、2・・・モータ、3・・・タコジ
ェネレータ、4・・・位置1災出3):、5・・・エン
コーダ、6・・・速度パルス信号発生回路、7・・・カ
ウンタ、8・・・D/Aコンバータ、9・・・ログアン
プ、10・・・論理回路、II・・・速皮フィードバッ
ク信号低;賊回路、12・・・偏差比較器、13・・遅
延回路、21・・・1」標値、22・・・偏差信号、2
3・・・偏差比11つ器出力信じ、24・・・遅延回路
リセソ1へ信号、25・・・動作終了信号、26・・二
相パルス信号、27・・・位置パルス信じ、28・・・
速度パルス信号、29・・・速度フィードバック伯号、
101・・・弾性負荷要素、102・・・クーロンI!
i!I捺要素、103・・・リレー要素、]、 011
・・・パルス発生要ズそ。 第1図 S 第2図 第3図 (θ、) <b) (C)
Figures 1 and 2 are block diagrams of a conventional positioning device, and Figures 3 (,) and (b) are diagrams showing a control system model of the positioning servo system near the 1'' target value (J) and its Q5' characteristic. , FIGS. 4(a) and 4(b) are a configuration diagram of an embodiment of the positioning device according to the invention and an explanatory diagram of its operation. j...Power amplifier, 2...Motor, 3... Tacho generator, 4...Position 1 disaster 3):, 5...Encoder, 6...Speed pulse signal generation circuit, 7...Counter, 8...D/A converter, 9... Log amplifier, 10...Logic circuit, II...Fast skin feedback signal low; Thief circuit, 12...Deviation comparator, 13...Delay circuit, 21...1" Target value, 22... Deviation signal, 2
3...Believing the output of the 11 deviation ratios, 24...Signal to delay circuit resetter 1, 25...Operation end signal, 26...Two-phase pulse signal, 27...Believing position pulse, 28...・
Speed pulse signal, 29...speed feedback number,
101...Elastic load element, 102...Coulomb I!
i! I-printing element, 103...Relay element, ], 011
...Pulse generation is necessary. Figure 1 S Figure 2 Figure 3 (θ,) <b) (C)

Claims (1)

【特許請求の範囲】 1、 速度に比例した周波数のパルス列信号により速度
フィードバックを行なうサーボ機tlWからなる位置決
め装置において、出力変位が目標値に対し所定の範囲内
に位置することを検出する検出手段と、該検出手段の検
出信号を一定時間遅延する遅延手段と、該遅延手段の出
力により速度フィードバックゲインを低減するゲイン低
減手段とを備えたことを特徴とする位置決め装置。 2、上記ゲイン低減手段が、上記パルス列信号の振幅を
低減する手段であることを特徴とする特許請求の範囲第
1項記載の位置決め装置。 3、上記ゲイン低減手段が、上記パルス列信号のパルス
幅を短縮する手段であることを特徴とする特許請求の範
囲第1項記載の位置決め装置。
[Claims] 1. In a positioning device consisting of a servo machine tlW that performs speed feedback using a pulse train signal with a frequency proportional to speed, a detection means for detecting that the output displacement is within a predetermined range with respect to a target value. A positioning device comprising: a delay means for delaying a detection signal of the detection means for a certain period of time; and a gain reduction means for reducing a velocity feedback gain by an output of the delay means. 2. The positioning device according to claim 1, wherein the gain reduction means is a means for reducing the amplitude of the pulse train signal. 3. The positioning device according to claim 1, wherein the gain reduction means is means for shortening the pulse width of the pulse train signal.
JP10835084A 1984-05-30 1984-05-30 Positioning device Pending JPS60515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10835084A JPS60515A (en) 1984-05-30 1984-05-30 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10835084A JPS60515A (en) 1984-05-30 1984-05-30 Positioning device

Publications (1)

Publication Number Publication Date
JPS60515A true JPS60515A (en) 1985-01-05

Family

ID=14482477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10835084A Pending JPS60515A (en) 1984-05-30 1984-05-30 Positioning device

Country Status (1)

Country Link
JP (1) JPS60515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214202A (en) * 1985-07-10 1987-01-22 Omron Tateisi Electronics Co Position control device
JPS62126401A (en) * 1985-11-27 1987-06-08 Omron Tateisi Electronics Co Position control device
US4856080A (en) * 1986-11-18 1989-08-08 Nokia-Mobira Oy Circuitry for the diversity unit in an FM receiver for a telephone system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126486A (en) * 1975-04-25 1976-11-04 Fujitsu Ltd Positioning control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126486A (en) * 1975-04-25 1976-11-04 Fujitsu Ltd Positioning control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214202A (en) * 1985-07-10 1987-01-22 Omron Tateisi Electronics Co Position control device
JPS62126401A (en) * 1985-11-27 1987-06-08 Omron Tateisi Electronics Co Position control device
US4856080A (en) * 1986-11-18 1989-08-08 Nokia-Mobira Oy Circuitry for the diversity unit in an FM receiver for a telephone system

Similar Documents

Publication Publication Date Title
US6861816B2 (en) Positional control of a controlled object during movement initiation
Van der Linden et al. H/sub∞/control of an experimental inverted pendulum with dry friction
JPS6020214A (en) Servo device of robot
JP2638594B2 (en) Digital servo system
JPH0623680A (en) Speed mode hand controller accompanied by reactive force
JPS60515A (en) Positioning device
WO1988003282A1 (en) Negative feedback control system
JPH03278108A (en) Follow-up control system between two servo-system
JPS6029292A (en) Control system of arm for robot
JPS6052296A (en) Method of correcting force sensor output
JPH01251210A (en) Positioning controller
KR950013012A (en) Speed control device of electric motor
JPS58211881A (en) Industrial robot
KR910010266A (en) Robot torque control method
JPS596781A (en) Variable voltage control device for motor
JPH01136582A (en) Speed controller
JPS59206902A (en) Electric servo device
JPS60255082A (en) Controller of motor
JPS60155030A (en) Vibration suppressing device
JPH056223A (en) Positioning device
JPS6152195A (en) Torque generator
JPS63191211A (en) Controller for movable object
JPS62245311A (en) Servomotor control device
JP2969675B2 (en) Positioning control device
JPS63298502A (en) Waveform improving device for servo system