JPS6051446A - Magnet motor - Google Patents

Magnet motor

Info

Publication number
JPS6051446A
JPS6051446A JP15497383A JP15497383A JPS6051446A JP S6051446 A JPS6051446 A JP S6051446A JP 15497383 A JP15497383 A JP 15497383A JP 15497383 A JP15497383 A JP 15497383A JP S6051446 A JPS6051446 A JP S6051446A
Authority
JP
Japan
Prior art keywords
motor
magnetic
rotor
umbrella
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15497383A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Fujioka
藤岡 善捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15497383A priority Critical patent/JPS6051446A/en
Publication of JPS6051446A publication Critical patent/JPS6051446A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/40DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the arrangement of the magnet circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dc Machiner (AREA)

Abstract

PURPOSE:To obtain a magnet motor which can provide larger torque by several multiples of 10% as compared with a conventional motor by approaching the ends of beveled members of an armature to each other as near as possible. CONSTITUTION:A rotor 3 is provided with 3 plate-shaped armatures 32-34 extended in the inner wall of a cylinder at an angle of 120 deg. from the axis of a cylinder 31. One armature is wound with a winding 35 in the same direction, and the both ends of the winding are connected to a commutator. S-pole and N-pole permanent magnets 1, 2 are mounted oppositely at the prescribed interval in a direction perpendicular to the section of the rotor 3 with the rotor 3 at the intermediate. Thus, the motor sold in the market is revised to extend the ends of beveled members as long as possible to approach to each other is raised in the torque by approx. 30% as compared with the motor before the modification.

Description

【発明の詳細な説明】 本発明は、マグネットモーターに関するものである。[Detailed description of the invention] The present invention relates to a magnet motor.

従来のマグネットモーターは、第1図に示すように12
0°づつ異なる方向にのびた3本の電機子AI + A
21 A3に巻線Bを巻いた回転子をS極、N極の二つ
の界磁石1.2間に設置し、巻線に電流を通して回転子
を回転させるものである。
The conventional magnet motor has 12
Three armatures AI + A extending in different directions by 0°
21 A rotor with winding B wound around A3 is installed between two field magnets 1.2 of S and N poles, and current is passed through the winding to rotate the rotor.

す々わち板状部材B1+ 821 B3の先端に、それ
ら板状部材の交わる線を軸とした円筒の筒壁にあたる傘
部CI+C2+ c3を設けてあり、各傘部は、等距離
の間隔を保ってそれぞれ板状部材先端で独立している。
In other words, at the tips of the plate-like members B1+ 821 and B3, umbrella parts CI+C2+c3 are provided, which correspond to the cylindrical wall of the cylinder whose axis is the line where these plate-like members intersect, and each umbrella part maintains an equidistant interval. They are each independent at the tip of the plate-like member.

これらの三つの板状部材には同一方向巻きの巻線dをコ
イル状に巻きそれぞれのコイルエンドと整流子片を介し
て(図示せず)△結線モーター、Y結線モーターと構成
することは公知の通りである。
It is well known that windings d wound in the same direction are wound in coils around these three plate-shaped members and connected through the respective coil ends and commutator pieces (not shown) to form a Δ-connection motor and a Y-connection motor. It is as follows.

そして整流子は電源に接続しておシ、電機子の電極の正
、負を入れかえる働きをする。
The commutator is connected to the power source and functions to switch the positive and negative electrodes of the armature.

そしてS極、N極の永久磁石1,2を、前記のごとく構
成した回転子の断面に直交する向きに、回転子を中間に
おいて一定の間隔をとって相対向して設置する。
Then, permanent magnets 1 and 2 having S and N poles are placed facing each other at a constant interval in the middle of the rotor in a direction perpendicular to the cross section of the rotor configured as described above.

このようにして構成したモーターの整流子に電流を通し
て回転子を回転させる。
A current is passed through the commutator of the motor configured in this manner to rotate the rotor.

本発明はそのようなモーターに関してなされたもので、
きわめて簡単な構造の改良によって従来のモーターより
数刻も大きなトルクを得ることのできるマグネットモー
ターkJ!供すること全目的とする。
The present invention has been made regarding such a motor,
The magnetic motor kJ is able to obtain torque several times larger than conventional motors through extremely simple structural improvements! The entire purpose is to serve

次に本発明の天7i!i例を第2図に基いて説明するが
、まず本発明のモーターの構成を説明する。
Next, the Ten7i of the present invention! Example i will be explained based on FIG. 2, but first the configuration of the motor of the present invention will be explained.

本発明のモーターはS極、N極2つの永久磁石1.2と
回転子3で構成する。
The motor of the present invention is composed of a permanent magnet 1.2 with two S and N poles and a rotor 3.

〈イ〉 回転子3は中空筒体でその筒体31の軸部から
それぞれ120°の角度で、筒体内壁に尚接するまでの
ばした3枚の板状の電機子32〜34を設ける。
<A> The rotor 3 is a hollow cylinder, and three plate-shaped armatures 32 to 34 are provided at an angle of 120 degrees from the shaft of the cylinder 31 until they touch the inner wall of the cylinder.

つまり、前記した従来のモーターの傘部の先端全延長し
、各傘部がわずかの空隙全もって対向することになる。
In other words, the tips of the umbrella parts of the conventional motor described above are fully extended, and each umbrella part faces each other with a small gap between them.

1枚の電機子には、巻線35が同一方向にまかれ、更に
巻線の両先端全整流子に接続するが、以上は従来のモー
ターと同様である。
A winding 35 is wound in the same direction on one armature, and both ends of the winding are connected to all commutators, but the above is the same as in a conventional motor.

〈口〉 磁石 S極、N極の永久磁石1..2i、回転子3の断面に直
交する向きに、回転子全中間において一定の間隔をとっ
て相対向して設置する。
<Mouth> Permanent magnet with S pole and N pole 1. .. 2i, they are installed facing each other at a constant interval in the entire middle of the rotor in a direction perpendicular to the cross section of the rotor 3.

この点も従来のモーターと同様である。This point is also similar to conventional motors.

ぐ・〉 発生トルク 以上の構成のモータを用いて発生するトルクを比較した
We compared the torque generated using a motor with a configuration that exceeds the generated torque.

その結果市販のモーターを改良して各傘部の端を、相互
にできるぞけ延長して接近させたモーターは、改良前の
モーターに比較して約3割程度もトルクが上列すること
がわかった。
As a result, a commercially available motor was modified to extend the ends of each umbrella part as close as possible to each other, resulting in a motor with about 30% more torque than the motor before the improvement. Understood.

次に本発明のモーターにおいてトルクが増大した原理を
考えてみる。
Next, let us consider the principle by which the torque is increased in the motor of the present invention.

従来のモーターは板状部材に巻線をコイル状に巻いた構
成をなし、従って鉄心をもつソレノイドの状態になると
考えられる。この場合供電時においては棒磁石となり先
端に、即ち傘部の外周側に磁極が現れる。
A conventional motor has a structure in which a winding wire is wound in a coil around a plate-shaped member, and therefore it is considered to be in the state of a solenoid with an iron core. In this case, when power is supplied, it becomes a bar magnet and a magnetic pole appears at the tip, that is, on the outer circumferential side of the umbrella.

モーターの回転理論は磁界内にある導電体は磁力線と導
電体電流の両者直角方向に力を受けるというフレミング
の法則によるものである。
The theory of rotation of a motor is based on Fleming's law, which states that a conductor in a magnetic field is subjected to a force perpendicular to both the magnetic field lines and the conductor current.

ところが本発明は導磁率の大きい環状部材にょ3− って態々導電体部に入る磁力線を遮断する構成を々して
いる。
However, the present invention has a configuration in which the annular member with high magnetic permeability blocks the lines of magnetic force that enter the conductive portion.

従ってフレミングの法則では説明はできない。Therefore, Fleming's law cannot explain it.

そこで本発明ではその回転の理由として一つの仮説を設
け、これによる力も加わるものと考える。
Therefore, in the present invention, one hypothesis is established as the reason for the rotation, and it is assumed that the force due to this is also applied.

即ちその仮説とは傘部の外周面に現れた磁極と永久磁石
間に生じる吸引及び反撥の力によってモーターは回転す
ると考えるものである。
That is, the hypothesis is that the motor is rotated by the attraction and repulsion forces generated between the magnetic poles appearing on the outer peripheral surface of the umbrella and the permanent magnets.

この点から考えて本発明は傘部相互間を接近させ、その
結果磁力線の数を増加させ磁極の゛強化させようとする
ものである。
Considering this point, the present invention attempts to bring the umbrella parts closer to each other, thereby increasing the number of magnetic lines of force and strengthening the magnetic poles.

すなわち磁極の強さは導電体の巻回数と電流の大きさに
関係し、板状部材はコイル内を通る磁力線の数を増大さ
せている。
That is, the strength of the magnetic pole is related to the number of turns of the conductor and the magnitude of the current, and the plate-like member increases the number of lines of magnetic force passing through the coil.

そして磁力線の数が増すと磁極の強さが増すことから本
発明は強化された傘部材の磁極と磁石の磁界の相互作用
によってトルク増をはかろうとするものである。
Since the strength of the magnetic poles increases as the number of magnetic lines of force increases, the present invention attempts to increase torque through the interaction between the strengthened magnetic poles of the umbrella member and the magnetic field of the magnet.

次に本発明のモーターの回転に際し−での特徴を4− 従来例と比較しながら図面と共に説明する。Next, when rotating the motor of the present invention, the characteristics in - are 4- This will be explained with reference to the drawings while comparing it with a conventional example.

〈イ〉 第3図は従来のモーターで3つの傘部C1゜C
2,C3はそれぞn独立し給電によって磁化さj。
<A> Figure 3 shows a conventional motor with three umbrella parts C1°C.
2 and C3 are each n independently magnetized by power supply.

ている。ing.

その磁化状態はデルタ−結線のモーターにおいては2個
のN極と1個のS極又は2個のS極と1個のN極に磁化
さ几る。
In a delta-connected motor, the magnetization state is two north poles and one south pole, or two south poles and one north pole.

図は2個のN極と1個のS極の磁化状態を示すものであ
り、図に示す矢印方向2つの磁気回路を形成している。
The figure shows the magnetization state of two N poles and one S pole, forming two magnetic circuits in the direction of the arrows shown in the figure.

そして1つの回路C2,C3よりなる回路では鉄心をも
つソレノイPの特性をもつものと考えら几る。即ち変形
の磁石を形成しN、Sの極性はC3,C2の先端に現わ
nるものと考えらnる。
A circuit consisting of one circuit C2 and C3 is considered to have the characteristics of a solenoid P with an iron core. That is, it is thought that a deformed magnet is formed, and the polarities of N and S appear at the tips of C3 and C2.

〈口〉 これに対して本発明では第4図にしめず如く傘
部03+02と01.C2によって第3図と同じく2つ
の磁気回路を形つくっている。しかし特に嵌入部材Tに
よって形成する2つの磁気回路は僅かの磁気スリットを
もつ。ここでいう磁気スリットとは、単なる間隙という
意味ではなく、磁気的に遮断されているという意味であ
る。
<Mouth> On the other hand, in the present invention, as shown in FIG. 4, the umbrella parts 03+02 and 01. C2 forms two magnetic circuits as in Fig. 3. However, in particular the two magnetic circuits formed by the inserts T have only a few magnetic slits. The term "magnetic slit" as used herein does not mean a mere gap, but means that it is magnetically blocked.

そして基本的には環状のl・ロイド(toroid)と
呼ばn、る形状をなす。この場合鉄心内の磁束密度は第
3図と比較して更に増加する。即ち磁力線の数は増大し
、トロイドが特殊な変形の鉄心を持つため、傘部O1,
C2+ 03の先端では第3図と比較して更に強い磁化
が得らn2る。
Basically, it forms an annular shape called a toroid. In this case, the magnetic flux density within the core increases further compared to FIG. That is, the number of magnetic lines of force increases, and since the toroid has a specially deformed iron core, the umbrella part O1,
At the tip of C2+ 03, even stronger magnetization is obtained compared to FIG. 3 n2.

ぐ・〉 次に傘部間の空間Sが狭い方が同じ値の電流で
大きい回転力を得ら1.る根拠を計算式で説明する。(
例:疎化出版 大学課程 物理学精説 改訂版 下巻第
142〜144頁)「長い鉄心を環状に曲げた場合でか
つ、その先端が完全に閉じていす、間隙1〕を有すると
き(第7図)。
Next, if the space S between the umbrella parts is narrower, a larger rotational force can be obtained with the same current value.1. The basis for this will be explained using a calculation formula. (
Example: Houka Publishing University Course Physics Essay Revised Edition Vol. 2, pp. 142-144) "When a long iron core is bent into an annular shape and the tip is completely closed and has a gap 1" (No. 7 figure).

[空隙の幅1〕が小さく磁気漏洩が無視できるとし、鉄
心内の磁束密度をBとすると、立×J+1刈v−nT μ /?0 n I= ”’ (1+ttr 1 )tS μ:鉄心の透磁率(=μr・ILO) t゛鉄心長さ φ、磁束 このように空隙が僅かであっても、先端が完全に閉じた
場合(b=o)に比して、空隙のため起磁力nTは(1
+μr T)倍に増大する。
Assuming that [air gap width 1] is small and magnetic leakage can be ignored, and the magnetic flux density in the iron core is B, then vertical × J + 1 molar v−nT μ /? 0 n I= ”' (1+ttr 1 ) tS μ: Magnetic permeability of the iron core (= μr・ILO) t゛ Core length φ, magnetic flux Even if the air gap is small like this, if the tip is completely closed ( b=o), the magnetomotive force nT due to the air gap is (1
+μr T) increases twice.

たとえば、1/1000の空隙があっても、必要な起磁
力は2倍となり、そ几だけ多量の起磁力を消費する。
For example, even if there is a gap of 1/1000, the required magnetomotive force will be doubled, and a large amount of magnetomotive force will be consumed.

従って相対的に小さい電流で大きい起磁力を得るために
はbはOであ几ばよい。
Therefore, b should be O in order to obtain a large magnetomotive force with a relatively small current.

しかしb−0ではS、N極が生じない。However, in b-0, S and N poles do not occur.

そのため極を生じさせ、かつ大きい起磁力を得るために
は加工可能な範囲で最少であってかつ0でない値を取る
ことを要する。
Therefore, in order to generate a pole and obtain a large magnetomotive force, it is necessary to take a value that is the minimum within the processable range and is not zero.

従来の独立しまた傘部どうし全連続するにあたってはさ
まざまな方法が考えらnるであろう。
Various methods can be considered for making the conventional independent and continuous umbrella parts.

(a) ケイ素鋼等の磁気特性の優れた材質の環状部材
Rを回転子にはめこみ接着した後、傘部と傘部の中間の
傘部間空間Sの位置においてその断面方向に磁気的に分
割する。
(a) An annular member R made of a material with excellent magnetic properties such as silicon steel is fitted into the rotor and bonded, and then magnetically divided in the cross-sectional direction at the position of the inter-cap space S between the cap parts. do.

(第5図) (1))各傘部の両端を延長し、各々の傘部先端を接近
させ、その間を導磁率の大きい材質の嵌入部材Tでつな
ぐ。(第6図) (c)各傘部と傘部の中間の傘部間空間を磁気特性の優
几たたとえばケイ素鋼などの材質による嵌合部材で磁気
的に接続し、この嵌合部材の中間に、又は嵌合部材と1
方の傘部の間に磁気スリットヲ設ける。
(Fig. 5) (1)) Extend both ends of each umbrella, bring the tips of each umbrella closer together, and connect them with a fitting member T made of a material with high magnetic permeability. (Fig. 6) (c) The inter-umbrella space between each umbrella portion is magnetically connected with a fitting member made of a material with excellent magnetic properties, such as silicon steel, and the fitting member is In the middle or with the fitting member 1
A magnetic slit is provided between the two umbrella parts.

(d) つまり各傘部材にまず線を巻いておき、次に傘
部の各端を延長する方法、あるいは巻き線径に傘部間を
導磁率の大きい嵌合部材で連結し、最後にスリットを設
ける方法、あるいは巻き線径に傘部の外周に硅素鋼など
によるリングをはめ込んでリングと傘部とを接着し、最
後にリングを切断してスリットを形成する方法などで製
造する。
(d) In other words, you can first wind a wire around each umbrella member and then extend each end of the umbrella, or connect the umbrellas with a fitting member with high magnetic permeability depending on the diameter of the winding wire, and then slit the wire at the end. Alternatively, a ring made of silicon steel or the like is fitted around the outer periphery of the cap part around the diameter of the winding wire, the ring and the cap part are glued together, and finally the ring is cut to form a slit.

ぐ少 その他の実施例 以−ヒは三極モータについて述べたが8%、N極の永久
磁石をN、S、N、Sとした4個の永久磁石をもってト
ルク増をはかるモーターにおいても本発明の思想を応用
することができる、本発明のモーターは以上説明したよ
うになるので次のような効果を期待する事ができる。
Other Examples Although a three-pole motor has been described above, the present invention can also be applied to a motor that increases torque by using four permanent magnets, with the N pole being N, S, N, and S. Since the motor of the present invention to which the idea of the above can be applied is as explained above, the following effects can be expected.

〈イ〉 電極子の傘状部材のそn、ぞ几の先端を加工可
能な程度まで接近させているため、各電極子間の磁力線
の流几に支障がなく、磁力線の総数は減少せず、電機子
極の磁力が強化さn、る。よって導電体に通す電流の強
さや、電機子に巻線f″!、く回数等を増加することも
なく、またコストの高い優秀磁石を使用しなくても従来
のモーターよりトルクの大きいモーターを得る事が実験
的に確認さnた。
<B> Since the ends of the umbrella-shaped members of the electrodes and the grooves are brought close enough to be processed, there is no problem with the flow of the lines of magnetic force between each electrode, and the total number of lines of magnetic force does not decrease. , the magnetic force of the armature poles is strengthened. Therefore, there is no need to increase the strength of the current passed through the conductor or the number of windings on the armature, and it is possible to create a motor with higher torque than conventional motors without using expensive high quality magnets. It has been experimentally confirmed that this can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:従来のマグネットモーターの正面図、第2図:
本発明のマグネットモーターの正面図、10− 第3図゛従来のマグネットモーターにおける磁力線の説
明図、 第4図:本発明のマグネットモーターにおける磁力線の
説明図、 第5〜6図:その他の実施例の説明図、第7図:長い鉄
心を曲げた状態の説明図、1.2:磁石、3:回転子、
31:筒体、32〜34:電機子、35:巻線、C1〜
C3:傘部B、〜B3:板状部材、t:磁力線、S:傘
部間空間R;環状部材、T:嵌入部材 特許出願人 藤 岡 善 捷 11− 第1図 ] 2 第2図 31 235 第4図
Figure 1: Front view of conventional magnet motor, Figure 2:
Front view of the magnet motor of the present invention, 10- Figure 3: An explanatory diagram of lines of magnetic force in a conventional magnet motor, Figure 4: An explanatory diagram of lines of magnetic force in a magnet motor of the present invention, Figures 5 and 6: Other embodiments 7: Explanatory diagram of the long iron core in a bent state, 1.2: Magnet, 3: Rotor,
31: Cylindrical body, 32-34: Armature, 35: Winding, C1-
C3: Umbrella portion B, ~ B3: Plate member, t: Line of magnetic force, S: Space between umbrella portions R; Annular member, T: Inset member Patent applicant Yoshi Fujioka 11- Fig. 1] 2 Fig. 2 31 235 Figure 4

Claims (1)

【特許請求の範囲】 それぞれ等分割の角度をもって同じ長さだけのびた、複
数の成層鉄板に巻線を行って電機子を形成し、 各々の電機子の自由端には傘部を形成し、各傘部の先端
を延長して、相互に接近させて構成した、 マグネットモーター 。
[Claims] An armature is formed by winding wires around a plurality of laminated iron plates extending the same length with equal dividing angles, and an umbrella portion is formed at the free end of each armature, and each A magnetic motor with the tips of the umbrella parts extended and brought closer to each other.
JP15497383A 1983-08-26 1983-08-26 Magnet motor Pending JPS6051446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15497383A JPS6051446A (en) 1983-08-26 1983-08-26 Magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15497383A JPS6051446A (en) 1983-08-26 1983-08-26 Magnet motor

Publications (1)

Publication Number Publication Date
JPS6051446A true JPS6051446A (en) 1985-03-22

Family

ID=15595925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15497383A Pending JPS6051446A (en) 1983-08-26 1983-08-26 Magnet motor

Country Status (1)

Country Link
JP (1) JPS6051446A (en)

Similar Documents

Publication Publication Date Title
WO2005008862A1 (en) Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor
KR20090004451A (en) Motor
JP2017531997A (en) Multiphase motor having alternating permanent magnets and salient poles
JP2021182865A (en) Electric motor
US20210226483A1 (en) Electric motor
JPS61180019A (en) Magnetic bearing
JP4029679B2 (en) Bond magnet for motor and motor
WO2020088085A1 (en) Motor rotor and permanent magnet motor
WO2020088086A1 (en) Rotor and permanent magnet motor
JPS6051446A (en) Magnet motor
JPH07222385A (en) Reverse salient cylindrical magnet synchronous motor
CN208955768U (en) Rotor and magneto
KR102622640B1 (en) Magnetic device of double spoke type rotor
JP2001145313A (en) Permanent magnet motor and its manufacturing method
CN112994288B (en) Permanent magnet motor rotor magnetic circuit topological structure
KR100972444B1 (en) Rotor of brushless motor
RU2119709C1 (en) Electric motor with closed magnetizing circuit including butt-end members of its frame
JP2011004576A (en) Generator
JPH07118895B2 (en) Rotating electric machine
JPH0720361B2 (en) Rotating electric machine
KR100479166B1 (en) A fabrication method of Galvanic meter using 4 pole magnets
JPS5855746B2 (en) Chiyokuriyukaitendenkinokoshi
JP2020178502A (en) Single pole induction type rotary electric machine
KR20230028165A (en) magnetic rotating device
JP2001169514A (en) Magnetization method of permanent magnet rotor