JPS6051379B2 - Manufacturing method of magnetic adsorbent - Google Patents

Manufacturing method of magnetic adsorbent

Info

Publication number
JPS6051379B2
JPS6051379B2 JP11751678A JP11751678A JPS6051379B2 JP S6051379 B2 JPS6051379 B2 JP S6051379B2 JP 11751678 A JP11751678 A JP 11751678A JP 11751678 A JP11751678 A JP 11751678A JP S6051379 B2 JPS6051379 B2 JP S6051379B2
Authority
JP
Japan
Prior art keywords
adsorbent
magnetic
uranium
adsorption
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11751678A
Other languages
Japanese (ja)
Other versions
JPS5544342A (en
Inventor
寿生 山下
一紀 藤田
千秋 前小屋
史登 中島
義弘 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11751678A priority Critical patent/JPS6051379B2/en
Publication of JPS5544342A publication Critical patent/JPS5544342A/en
Publication of JPS6051379B2 publication Critical patent/JPS6051379B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は磁性吸着剤の製造方法に関し、特に海水中か
らウランを採取する場合に優れた吸着性能を有し、しか
も回収容易な磁性吸着剤の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a magnetic adsorbent, and particularly to a method for producing a magnetic adsorbent that has excellent adsorption performance when collecting uranium from seawater and is easy to recover.

海水中からウランを採取する方法としては、吸着法が
最も実現性が高いとされている。
Adsorption is said to be the most feasible method for extracting uranium from seawater.

吸着法は海水と吸着剤を接触させてウランを採取する方
法で、これには固定床方式及びスラリー方式がある。ス
ラリー方式は固定床方式に比べて多くの利点をもつ。す
なわち、この方式によれば、吸着剤の粒径が小さく吸着
速度が速いために、(a)吸着剤及び(又は)脱着剤の
使用量を少なくし、(b)装置を小型化し、(c)海水
処理量を大きくすることができ、又、(d)固定床方式
の場合のように、海水中の浮遊物が吸着床で目詰りして
圧損を大きくする心配が全くない。 しかしながら、こ
のスラリー方式の最大の欠点は、海水からウランを吸着
した吸着剤を回収する場合その回収率が低いことである
The adsorption method is a method for extracting uranium by bringing seawater into contact with an adsorbent, and there are two methods: a fixed bed method and a slurry method. Slurry systems have many advantages over fixed bed systems. That is, according to this method, since the particle size of the adsorbent is small and the adsorption speed is high, (a) the amount of adsorbent and/or desorbent used can be reduced, (b) the device can be made smaller, and (c) ) The amount of seawater to be treated can be increased, and (d) there is no need to worry about the floating matter in the seawater clogging the adsorption bed and increasing the pressure drop, unlike in the case of the fixed bed method. However, the biggest drawback of this slurry method is that the recovery rate of the adsorbent adsorbing uranium from seawater is low.

スラリー方式による吸着剤の回収は、海水ウラン採取の
ような大規模なプラットにおいては、通常沈降分離法に
より行なわれる。この場合、吸着剤の回収率は約70%
といわれ残りの30%は海水中に流出してしまい、ウラ
ン回収率が著しく低下するばかりでなく海洋汚染をもた
らすことになる。 本発明の目的は、このような欠点を
解消し、吸着性能に優れしかも回収が容易な磁性吸着剤
の製造方法を提供することである。
Recovery of adsorbent using the slurry method is usually carried out by sedimentation separation method in large-scale platforms such as seawater uranium extraction. In this case, the recovery rate of the adsorbent is approximately 70%
The remaining 30% is said to flow into seawater, which not only significantly reduces the recovery rate of uranium but also causes marine pollution. An object of the present invention is to eliminate such drawbacks and provide a method for producing a magnetic adsorbent that has excellent adsorption performance and is easy to recover.

本発明は上記の目的を達成するため次の構成をとるも
のである。
The present invention has the following configuration to achieve the above object.

すなわち、本発明の磁性吸着剤の製造方法は、硫酸チタ
ン、第一鉄塩及び尿素からなる混合溶液を約85〜10
0℃の範囲内の温度でかつ約5.5〜9.3の範囲内の
最終pHで反応させることを特徴とするものである。本
発明者等は、前記観点に立ち海水中のウランを吸着した
吸着剤を効果的に回収する手段につき種々検討を重ねた
結果、吸着剤に磁性をもたせ磁気分離により海水と吸着
剤を効果的に分離でき、その場合、硫酸チタンを用いて
調製した含水酸化チタンー酸化鉄吸着剤がウラン吸着量
が大で磁気分離性能(磁化率)が優れていることを見出
して本発明に到達したものである。
That is, in the method for producing a magnetic adsorbent of the present invention, a mixed solution of titanium sulfate, ferrous salt, and urea is heated to about 85 to 10
The reaction is characterized by being carried out at a temperature within the range of 0° C. and a final pH within the range of about 5.5 to 9.3. From the above viewpoint, the inventors of the present invention have conducted various studies on ways to effectively recover the adsorbent that has adsorbed uranium in seawater. In this case, the present invention was achieved by discovering that a hydrous titanium oxide-iron oxide adsorbent prepared using titanium sulfate can adsorb a large amount of uranium and has excellent magnetic separation performance (magnetic susceptibility). be.

含水酸化チタン(TiO2・NH2O)の微粉末は最も
ウラン吸着量が大きいとされ、その製造原料としては種
々のチタン化合物が提案されている。
Fine powder of hydrous titanium oxide (TiO2.NH2O) is said to have the largest adsorption amount of uranium, and various titanium compounds have been proposed as raw materials for its production.

含水酸化チタン吸着剤の製造に当り、ウラン吸着の活性
は、沈殿生成時にウラン吸着の活性点である表面水酸基
の生成が原料化合物に含まれる陰イオンにより促進され
るものと考えられる。本発明においては、陰イオンとし
て硫酸イオンを使用することにより極めて優れた上記効
果が発揮されることが確認された。本発明においては、
吸着剤に磁性をもたせるため、第一鉄塩を使用し尿素分
解法により水酸化鉄の均一沈殿を行なう。
In producing a hydrous titanium oxide adsorbent, the uranium adsorption activity is thought to be promoted by the anions contained in the raw material compound, which generate surface hydroxyl groups, which are active sites for uranium adsorption, during precipitation. In the present invention, it has been confirmed that the extremely excellent effects described above are exhibited by using sulfate ions as anions. In the present invention,
In order to make the adsorbent magnetic, iron hydroxide is uniformly precipitated using ferrous salt and urea decomposition method.

周知のように、尿素分解法は、金属イオンを含む水溶液
中に尿素を添加し、通常約85℃以上(尿素分解温度)
に加熱することにより尿素を分解し、発生するアンモニ
アにより金属水酸化物の均一沈殿を徐々に生成させる方
法である。磁性をもたせるために使用する第一鉄塩は、
その種類による吸着量及び磁化率への影響は小さいが、
尿素分解法によれば、通常の中和法の場合より大きい磁
化率を示すことがわかつた。これは、加熱温度の上昇に
伴ない空気酸化により酸化鉄が生成し、磁性体であるγ
−Fe2O3の生成そして特にFe3O4(マグネタイ
ト)への結晶化が進むためと考えられ、このことはX線
回折により確認することができた。本発明においては、
硫酸チタンと第一鉄塩の混合溶液に尿素を加え約85〜
100′Cの範囲内の温度に加熱し、溶液の最終PHを
約5.5〜9.3にして均一な沈殿を生成させる。
As is well known, in the urea decomposition method, urea is added to an aqueous solution containing metal ions, and the temperature is usually about 85°C or higher (urea decomposition temperature).
This is a method in which urea is decomposed by heating to a temperature of 100°C, and a homogeneous precipitate of metal hydroxide is gradually formed using the generated ammonia. The ferrous salt used to impart magnetism is
Although the influence of the type on the adsorption amount and magnetic susceptibility is small,
It was found that the urea decomposition method showed a higher magnetic susceptibility than the normal neutralization method. This is because iron oxide is produced by air oxidation as the heating temperature rises, and γ, which is a magnetic substance, is produced.
This is thought to be due to the progress of the formation of -Fe2O3 and especially the crystallization to Fe3O4 (magnetite), and this was confirmed by X-ray diffraction. In the present invention,
Add urea to a mixed solution of titanium sulfate and ferrous salt and add about 85~
Heat to a temperature in the range of 100'C to bring the final pH of the solution to about 5.5-9.3 to produce a uniform precipitate.

この場合、加熱温度が約85℃を下廻ると尿素が分解せ
ず、一方約100℃以上−になると得られる吸着剤の吸
着力が低下する。又、PHは約5.5以上でないと沈殿
が円滑に行なわれない。この条件は、原料の使用量及び
製造に要する時間を考慮した場合、PH6以上、温度9
0゜C程度とすることが望ましい。又、本発明において
、磁性吸着剤のウラン吸着量を増加させるためには、チ
タンの含有量が多い程良いが、一方磁化率を上げるため
にはチタンの含有量は少ない方が良い。
In this case, if the heating temperature is below about 85°C, urea will not be decomposed, while if the heating temperature is above about 100°C, the adsorption power of the resulting adsorbent will decrease. Further, unless the pH is about 5.5 or higher, precipitation will not occur smoothly. Considering the amount of raw materials used and the time required for production, these conditions are: pH 6 or higher, temperature 9.
It is desirable to set the temperature to about 0°C. Furthermore, in the present invention, in order to increase the amount of uranium adsorbed by the magnetic adsorbent, the higher the titanium content, the better; however, in order to increase the magnetic susceptibility, the lower the titanium content is.

したがつて、吸着量が大きくしかも磁化率の高い磁性吸
着剤を得るためには、その組成比が重要な因子となる。
本発明においては、硫酸チタンと第一鉄塩のモル比(以
下Ti/Feという)が約0.5〜6の範匪内となる割
合”で硫酸チタン及び第一鉄塩を使用することにより、
優れた吸着性能及び磁気分離性能を得ることができ、こ
の範囲を外れるといずれか一方の性能が低下する。なお
、本発明における第一鉄塩としては、硫酸第一鉄が好適
であるが、その他の第一鉄塩例えば塩化第一鉄等も有効
に使用することができる。本発明の実施に当つては、所
定量の硫酸チタン及び第一鉄塩を混合し、この溶液に硫
酸チタン及び第一鉄塩と反応し所定PH値まで分解する
に足る量(特に限定されない)の尿素を添加し、得られ
た混合溶液を空気雰囲気下において所定温度及び所定最
終PHで加熱反応させてから放冷する。室温まで冷却後
傾斜法で沈殿を水洗後、遠心分離し数日間乾燥(室温)
後粉砕することにより、粉末状磁性吸着剤を得ることが
できる。次に、本発明及びその効果を実施例により説明
するが、本発明はこれによりなんら限定されるものでは
ない。
Therefore, in order to obtain a magnetic adsorbent with a large amount of adsorption and a high magnetic susceptibility, the composition ratio is an important factor.
In the present invention, titanium sulfate and ferrous salt are used in a ratio such that the molar ratio of titanium sulfate to ferrous salt (hereinafter referred to as Ti/Fe) is within the range of about 0.5 to 6. ,
Excellent adsorption performance and magnetic separation performance can be obtained, and outside this range, either performance will deteriorate. Although ferrous sulfate is preferred as the ferrous salt in the present invention, other ferrous salts such as ferrous chloride can also be effectively used. In carrying out the present invention, a predetermined amount of titanium sulfate and ferrous salt are mixed, and an amount (not particularly limited) sufficient to react with the titanium sulfate and ferrous salt and decompose to a predetermined pH value is added to the solution. of urea is added, and the resulting mixed solution is reacted by heating at a predetermined temperature and a predetermined final pH in an air atmosphere, and then allowed to cool. After cooling to room temperature, wash the precipitate with water using a decanting method, centrifuge, and dry for several days (room temperature).
By post-pulverizing, a powdered magnetic adsorbent can be obtained. Next, the present invention and its effects will be explained by examples, but the present invention is not limited thereto.

実施例1 Ti/Feを1.0とし、6モル/′の濃度の硫酸チタ
ン水溶液200m1及び0.6モル/fの濃度の硫酸第
一鉄水溶液200m1を混合した溶液に尿素150yを
添加し、この混合溶液を空気雰囲気下で90゜Cに加熱
した。
Example 1 Ti/Fe was set to 1.0, and 150 y of urea was added to a mixed solution of 200 ml of a titanium sulfate aqueous solution with a concentration of 6 mol/f and 200 ml of a ferrous sulfate aqueous solution with a concentration of 0.6 mol/f, This mixed solution was heated to 90°C under an air atmosphere.

溶液の最終PHが6.0になつたところで加熱を止め放
冷した。放冷後、傾斜法により沈殿を水洗した。次いで
、沈殿物を遠心分離した後室温で約10日間乾燥し、メ
ノー乳鉢で粒径約20〜40μmに粉砕した。この粉末
を試料とし、次の方法によりウランの吸着量及び磁気分
離性能(捕捉率)を調べた。
When the final pH of the solution reached 6.0, heating was stopped and the solution was allowed to cool. After cooling, the precipitate was washed with water using a decanting method. Next, the precipitate was centrifuged, dried at room temperature for about 10 days, and ground in an agate mortar to a particle size of about 20 to 40 μm. Using this powder as a sample, the adsorption amount of uranium and magnetic separation performance (capture rate) were investigated using the following method.

ウラン吸着量は、10ppbのウラン富化海水に試料3
0mgを添加し、5時間攪拌した後、液中のウランをア
ルセナゾ■(ウラン分析用試薬)による吸光光度法によ
り求め、吸着前後の濃度差から算出した。又、磁気分離
性能は、次の方法によつた。すなわち、約300mgの
試料を入れた海水3′を高勾配磁気分離機(HighG
radientMagrleticSeparatOr
,HGMS)に流すと、HGMSを通過している間に、
試料はフィルター部(磁化されたニッケル製金網)で捕
捉される。試料の捕捉率はHGMS通過前後の液中のチ
タンを分析して求めた。この場合の捕捉条件は、外部磁
場25000e1金網の空間率0.9s金網の厚さ0.
5T1,、流速0.37TL/秒とした。実施例2 第一鉄塩として塩化第一鉄を使用した以外は、実施例1
と同様の実験を行なつた。
The amount of uranium adsorbed was 10 ppb in sample 3 of uranium-enriched seawater.
After adding 0 mg and stirring for 5 hours, uranium in the liquid was determined by spectrophotometry using Arsenazo (a reagent for uranium analysis), and calculated from the difference in concentration before and after adsorption. Moreover, the magnetic separation performance was determined by the following method. That is, seawater 3' containing approximately 300 mg of sample was placed in a high gradient magnetic separator (HighG
radiantMagrleticSeparatOr
, HGMS), while passing through the HGMS,
The sample is captured by the filter section (magnetized nickel wire mesh). The capture rate of the sample was determined by analyzing titanium in the liquid before and after passing through the HGMS. The capture conditions in this case are: external magnetic field: 25,000e1, void ratio of wire mesh: 0.9s, thickness of wire mesh: 0.
5T1, and the flow rate was 0.37TL/sec. Example 2 Example 1 except that ferrous chloride was used as the ferrous salt
conducted a similar experiment.

実施例3及び4 溶液の最終PHをそれぞれ5.5及び9.0とした以外
は、実施例1と同様の実験を行なつた。
Examples 3 and 4 An experiment similar to Example 1 was conducted except that the final pH of the solution was 5.5 and 9.0, respectively.

実施例5及び6 溶液の加熱温度をそれぞれ85℃及び100℃とした以
外は実施例1と同様の実験を行なつた。
Examples 5 and 6 The same experiment as in Example 1 was conducted except that the heating temperature of the solution was 85° C. and 100° C., respectively.

実施例7Ti/Feを0.5とし、0.3モル/fの濃
度の硫酸チタン水溶液200mt及び0.6モル/′の
濃度の硫酸第一鉄水溶液200m1を混合した以外は、
実施例1と同様の実験を行なつた。
Example 7 Ti/Fe was set to 0.5, and 200 mt of a titanium sulfate aqueous solution with a concentration of 0.3 mol/f and 200 ml of a ferrous sulfate aqueous solution with a concentration of 0.6 mol/f were mixed.
An experiment similar to Example 1 was conducted.

実施例8.F ′+′Tj/Feを2.0とし、0.6モル/fの濃度
の硫酸チタン水溶液200mt及び0.3モル/′の濃
度の硫酸第一鉄水溶液200m1を混合した以外は、実
施例1と同様の実験を行なつた。
Example 8. Example except that F'+'Tj/Fe was 2.0, and 200 mt of a titanium sulfate aqueous solution with a concentration of 0.6 mol/f and 200 ml of a ferrous sulfate aqueous solution with a concentration of 0.3 mol/f were mixed. An experiment similar to 1 was conducted.

実施例9 T1/Feを6.0とし、0.6モル/eの濃度の硫酸
チタン水溶液200m1及び0.1モル/lの濃度の硫
酸第一鉄水溶液200m1を混合した以外は、実施例1
と同様の実験を行なつた。
Example 9 Example 1 except that T1/Fe was 6.0 and 200 ml of a titanium sulfate aqueous solution with a concentration of 0.6 mol/e and 200 ml of a ferrous sulfate aqueous solution with a concentration of 0.1 mol/l were mixed.
conducted a similar experiment.

比較例1 硫酸チタンの代わりに四塩化チタンを用いた以外は、実
施例1と同様の実験を行なつた。
Comparative Example 1 An experiment similar to Example 1 was conducted except that titanium tetrachloride was used instead of titanium sulfate.

比較例2 Ti/Feを0.3とし、0.18モル/′の濃度の硫
酸チタン水溶液200m1及び0.6モル/fの濃度の
硫酸第一鉄水溶液200m1を混合した以外は、実施例
1と同様の実験を行なつた。
Comparative Example 2 Example 1 except that Ti/Fe was 0.3 and 200 ml of a titanium sulfate aqueous solution with a concentration of 0.18 mol/f and 200 ml of a ferrous sulfate aqueous solution with a concentration of 0.6 mol/f were mixed. conducted a similar experiment.

比較例3 Ti/Feを8.0とし、0.48モル/lの濃度の硫
酸゜チタン水溶液200mt及び0.06モル/eの硫
酸第一鉄水溶液200m1を混合した以外は、実施例1
と同様の実験を行なつた。
Comparative Example 3 Example 1 except that Ti/Fe was 8.0 and 200 mt of titanium sulfate aqueous solution with a concentration of 0.48 mol/l and 200 ml of ferrous sulfate aqueous solution with a concentration of 0.06 mol/e were mixed.
conducted a similar experiment.

以上、実施例1〜9及び比較例1〜3における主原料、
製造条件及び得られた各磁性吸着剤の性能試験結果を纏
めて下記表に示す。
As mentioned above, the main raw materials in Examples 1 to 9 and Comparative Examples 1 to 3,
The production conditions and performance test results of each magnetic adsorbent obtained are summarized in the table below.

表から明らかなように、実施例1〜9に示す本発明によ
る磁性吸着剤はウラン吸着量が大きくしかも磁気分離性
能が優れている。
As is clear from the table, the magnetic adsorbents according to the present invention shown in Examples 1 to 9 have a large amount of uranium adsorbed and excellent magnetic separation performance.

以上説明したように、本発明によれば、ウラン吸着性能
に優れかつ磁気分離性能が良好で海水から容易に回収可
能な磁性吸着剤を提供することができる。
As described above, according to the present invention, it is possible to provide a magnetic adsorbent that has excellent uranium adsorption performance, good magnetic separation performance, and can be easily recovered from seawater.

Claims (1)

【特許請求の範囲】 1 硫酸チタン、第一鉄塩及び尿素からなる混合溶液を
約85〜100℃の範囲内の温度でかつ約5.5〜9.
3の範囲内の最終pHで反応させることを特徴とする磁
性吸着剤の製造方法。 2 硫酸チタンと第一鉄塩を約0.5〜6のモル比で混
合する特許請求の範囲第1項記載の磁性吸着剤の製造方
法。
[Claims] 1. A mixed solution consisting of titanium sulfate, ferrous salt, and urea is heated at a temperature in the range of about 85 to 100°C and about 5.5 to 9.5°C.
A method for producing a magnetic adsorbent, characterized in that the reaction is carried out at a final pH within the range of 3. 2. The method for producing a magnetic adsorbent according to claim 1, wherein titanium sulfate and ferrous salt are mixed in a molar ratio of about 0.5 to 6.
JP11751678A 1978-09-26 1978-09-26 Manufacturing method of magnetic adsorbent Expired JPS6051379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11751678A JPS6051379B2 (en) 1978-09-26 1978-09-26 Manufacturing method of magnetic adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11751678A JPS6051379B2 (en) 1978-09-26 1978-09-26 Manufacturing method of magnetic adsorbent

Publications (2)

Publication Number Publication Date
JPS5544342A JPS5544342A (en) 1980-03-28
JPS6051379B2 true JPS6051379B2 (en) 1985-11-13

Family

ID=14713691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11751678A Expired JPS6051379B2 (en) 1978-09-26 1978-09-26 Manufacturing method of magnetic adsorbent

Country Status (1)

Country Link
JP (1) JPS6051379B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710681U (en) * 1993-07-19 1995-02-14 新興弁栓株式会社 Pipe fitting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710681U (en) * 1993-07-19 1995-02-14 新興弁栓株式会社 Pipe fitting

Also Published As

Publication number Publication date
JPS5544342A (en) 1980-03-28

Similar Documents

Publication Publication Date Title
Xuan et al. Hydroxyapatite modified ZIF-67 composite with abundant binding groups for the highly efficient and selective elimination of uranium (VI) from wastewater
Sheha Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions
CN109847691A (en) A kind of lanthanum iron modified zeolite dephosphorization adsorbent and the preparation method and application thereof
CN104485148B (en) High-efficient method of extracting uranyl ions from water
JP2019193926A (en) Manufacturing method of magnetic hydrothermal charcoal, and application thereof
JP5652559B2 (en) Method for removing cesium ions in aqueous solution using magnetic particles
JP5352853B1 (en) Method of treating radioactive Cs contaminated water
Goswami et al. Removal of fluoride from drinking water using nanomagnetite aggregated schwertmannite
CN112897627A (en) Method for removing heavy metal wastewater
Zhan et al. Oxalate promoted iron dissolution of hematite via proton coupled electron transfer
KR101658475B1 (en) Method for preparing magnetic absorbent
JP6448820B2 (en) Adsorbent particles
JP4519665B2 (en) Recovery method for heavy metal components
JP5653408B2 (en) Radioactive Cs adsorbent and method for producing the same
JP5110463B2 (en) Method for producing magnetic nanocomplex material having anion adsorptivity and magnetism
Liu et al. The adsorption of arsenic on magnetic iron oxide in aqueous solutions
Miraoui et al. Thorium (IV) sorption onto sodium bentonite and magnetic bentonite
KR101576396B1 (en) A preparation method of core-shell magnetic silica having metal ferrocyanide, and Cs or Sr adsorbent
JPS6051379B2 (en) Manufacturing method of magnetic adsorbent
CN110745936A (en) Method for removing heavy metal pollution in water based on laterite-nickel iron ore
CN112723461B (en) Heavy metal wastewater treatment method
JP5694593B2 (en) Radioactive Cs adsorbent and method for producing the same
CN115703060A (en) Preparation method and product of magnetic bimetallic MOF rubidium/cesium adsorbent
CN113694874A (en) Titanium-zirconium adsorbent and preparation method and application thereof
JP2015108606A (en) METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER