JPS6051342B2 - Coil excitation power supply - Google Patents

Coil excitation power supply

Info

Publication number
JPS6051342B2
JPS6051342B2 JP10811079A JP10811079A JPS6051342B2 JP S6051342 B2 JPS6051342 B2 JP S6051342B2 JP 10811079 A JP10811079 A JP 10811079A JP 10811079 A JP10811079 A JP 10811079A JP S6051342 B2 JPS6051342 B2 JP S6051342B2
Authority
JP
Japan
Prior art keywords
energy
coil
power
power supply
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10811079A
Other languages
Japanese (ja)
Other versions
JPS5635644A (en
Inventor
芳美 桜井
明照 植田
比佐雄 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10811079A priority Critical patent/JPS6051342B2/en
Publication of JPS5635644A publication Critical patent/JPS5635644A/en
Publication of JPS6051342B2 publication Critical patent/JPS6051342B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 本発明は(超電導)コイルによるエネルギー蓄積装置
に係り、特にエネルギーを貯蔵するコイルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy storage device using a (superconducting) coil, and more particularly to a coil for storing energy.

従来、コイルによるエネルギー蓄積装置としては第1
図の様な構成が知られている。
Conventionally, it was the first energy storage device using a coil.
A configuration as shown in the figure is known.

図において1はエネルギーを貯蔵するためのコイル、2
はコイル1にエネルギーを出し入れするためのサイリス
タ変換装置で2a〜2fのサイリスタアームより成る。
3は整流器用変圧器、4は交流電源(系統)、51、5
2はスイッチである。
In the figure, 1 is a coil for storing energy, 2
1 is a thyristor conversion device for inputting and outputting energy to the coil 1, and is composed of thyristor arms 2a to 2f.
3 is a rectifier transformer, 4 is an AC power supply (system), 51, 5
2 is a switch.

第1図の回路の動作を第2図によつて説明する。 The operation of the circuit shown in FIG. 1 will be explained with reference to FIG.

図において、(a)Edはサイリスタ変換装置の直流側
出力電圧、(b)Idはコイル電流、(c)PはEd×
Id)(d)Wはコイルの貯蔵エネルギーを示す。なお
、第2図はエネルギーを出し入れする場合にサイリスタ
変換装置の出力電圧が一定になるように運転した場合で
ある。 第2図に示すように直流電圧Ed−定に運転す
るためには、重なり角を無視すればサイリスタ変換装置
の点弧制御角を一定にすれば良く、を、てサイリスタ変
換装置の運転を開始し、を、からを2の間は整流器運転
(制御角α<90度)をする。
In the figure, (a) Ed is the DC side output voltage of the thyristor converter, (b) Id is the coil current, and (c) P is Ed×
Id) (d) W indicates the stored energy of the coil. Note that FIG. 2 shows a case where the thyristor conversion device is operated so that the output voltage is constant when energy is input and output. As shown in Figure 2, in order to operate with a constant DC voltage Ed, the ignition control angle of the thyristor converter can be kept constant if the overlap angle is ignored. From 2 to 2, the rectifier is operated (control angle α<90 degrees).

コイル電流Idは第2図をのようにほぼ直線状に増大す
る。この間は交流電源4の電力によりコイル1にエネル
ギーを貯蔵する。時間ちでコイル電流が所要の値に達し
たらサイリスタ変換装置の運転を停止して、スイッチ5
1を閉じてコイル電流をそちらに移す。このためには例
えばサイリスタ変換装置2の直列アーム(2cと2fな
ど)を導通させるバイパスペア運転とし、その後スイッ
チ51閉じればよい。時[鼎。からを、までがエネルギ
ー貯蔵ノ期間である。この間のエネルギーの損失をなく
するためには1を超電導コイル、51を超電導スイッチ
とするのが良い。時間ちからエネルギーの放出期間にな
る。この時はサイリスタ変換装置を逆変換器(インバー
タ)運転(制御角α>90度)する。これによりコイル
1に貯わえられたエネルギーを交流系統4に放出する。
本方式ではこの時も制御角をほぼ一定として直流電圧一
定の運転を行う。このようにして交流電源の電力からコ
イルにエネルギーを貯蔵しておき、その後逆にコイルの
エネルギーによつて交流系統に電力を供給することがで
きる。
The coil current Id increases almost linearly as shown in FIG. During this time, energy is stored in the coil 1 using the power from the AC power supply 4. When the coil current reaches the required value after a certain period of time, the operation of the thyristor converter is stopped and the switch 5
1 and transfer the coil current there. For this purpose, for example, the series arms (2c and 2f, etc.) of the thyristor conversion device 2 may be operated in a bypass pair mode, and then the switch 51 may be closed. Time [Ding. The period from to to is the energy storage period. In order to eliminate energy loss during this time, it is preferable to use 1 as a superconducting coil and 51 as a superconducting switch. After some time, it becomes a period of energy release. At this time, the thyristor converter is operated as an inverter (control angle α>90 degrees). This releases the energy stored in the coil 1 to the AC system 4.
In this method, the control angle is kept almost constant at this time as well, and the DC voltage is kept constant. In this way, energy can be stored in the coil from the power of the AC power supply, and then the energy of the coil can be used to supply power to the AC system.

しかしながらこのものでは第2図cに示すように直流電
力P(これは交流電源の電力とほぼ等しい)が時間とと
もに大幅に変化することである。すなわちエネルギーを
貯蔵するとき電力は初め小さく、徐々に大きくなり、放
出するときは初め大きく、徐々に小さくなる。このよう
な特性は、本エネルギー貯蔵を電力系統のピーク負荷対
策などに用いる場合には好しくない。これは夜間の余剰
電力によつてコイルにエネルギーを貯蔵し、昼間のピー
ク負荷時に放出するものであるが、サイリスタ変換装置
の運転特性により出し入れする電力が第2図cのように
変化するため好ましくない。このようにこのようなもの
ではエネルギーの流入放出時の電力の変動が大きいとい
う欠点がある。
However, in this case, as shown in FIG. 2c, the DC power P (which is approximately equal to the power of the AC power source) changes significantly over time. That is, when storing energy, the electric power is initially small and gradually increases, and when releasing energy, the electric power is initially large and gradually decreases. Such characteristics are not preferable when the present energy storage is used as a countermeasure against peak loads in electric power systems. This method stores energy in a coil using surplus power at night and releases it during peak loads during the day, but it is preferable because the power input and output changes depending on the operating characteristics of the thyristor converter as shown in Figure 2c. do not have. As described above, this type of device has the disadvantage that power fluctuations are large when energy flows in and out.

この対策としてエネルギーを出し入れする時の電力がほ
ぼ一定となる様にサイリスタ変換装置の直流出力電圧E
dを変えるものがある。
As a countermeasure for this, the DC output voltage E of the thyristor converter is
There are things that change d.

しかし、このものではコイル電流が小さい時は制御角を
小さくして直流電圧Edを大きくして運転するため、変
換装置の容量は直流出力電圧に対応した大容量のものが
必要となる欠点がある。また、コイル電流か増大するに
従い変換装置の制御角を大きくして直流出力電圧を小さ
くし電力Pがほぼ一定となるように運転する必要がある
ためにコイル電流が増大するに従い交流系統から大きな
無効電力を消費し、交流電源電圧の低下、電源電圧波形
歪一の増大などの悪影響を及ぼす欠点がある。本発明は
、エネルギー流入、放出時の電力の変動が小さく、かつ
大容量の変換器を必要とせず、消費無効電力も小さい様
なエネルギー貯蔵システムを提供するにある。
However, when the coil current is small, this device operates by reducing the control angle and increasing the DC voltage Ed, so it has the disadvantage that the converter must have a large capacity that corresponds to the DC output voltage. . In addition, as the coil current increases, the control angle of the converter must be increased to decrease the DC output voltage and operate so that the power P remains almost constant. It consumes power and has disadvantages such as a decrease in AC power supply voltage and an increase in power supply voltage waveform distortion. An object of the present invention is to provide an energy storage system that has small fluctuations in power during energy inflow and energy release, does not require a large-capacity converter, and has low reactive power consumption.

本発明の要点は、交流電源の電力によりエネルギーを貯
蔵するコイルを複数個で構成し、エネルギー蓄積前期及
びエネルギー放出後期のコイル電流が小さい時には複数
個のコイルを並列接続し、エネルギー蓄積後期及びエネ
ルギー放出前期のコイル電流が大きい時には複数個のコ
イルを直列接続することにより、過大な容量のサイリス
タ変換装置を必要とせず、また運転時の流入、放出電力
の変動を小さく抑える事にある。本発明を第3図に示す
実施例によつて詳細に説明する。
The gist of the present invention is to configure a plurality of coils that store energy using the power of an AC power supply, and when the coil current is small in the early energy storage period and the energy release period, the plurality of coils are connected in parallel, and the coils are connected in parallel. By connecting multiple coils in series when the coil current is large in the early stage of discharge, a thyristor converter with excessive capacity is not required, and fluctuations in inflow and discharge power during operation are suppressed to a small level. The present invention will be explained in detail with reference to an embodiment shown in FIG.

図において第1図と同一の物には同一の符号を付した。
第1図と比べて第3図の特徴は、エネルギー蓄積用のコ
イルを11と12の2個に1分割したこととスイッチ6
〜8を設けたことである。なお、コイル11及び12の
大きさは第1図のコイルの大きさの1/2で良い。第3
図の回路動作を第4図によつて説明する。
In the figure, the same parts as in FIG. 1 are given the same reference numerals.
The features of Fig. 3 compared to Fig. 1 are that the energy storage coil is divided into two, 11 and 12, and the switch 6
8. Incidentally, the size of the coils 11 and 12 may be 1/2 of the size of the coil shown in FIG. Third
The operation of the circuit shown in the figure will be explained with reference to FIG.

図において (a)Edはサイリスタ変換装置の直流側
出力電圧、(b)しは負荷電流、(C)ILは各コイル
の電流、(d)PはEd×し、(e)Wはコイルの貯蔵
エネルギーを示す。エネルギー蓄積期間の前半(t1〜
T2)においては、まず初めにスイッチ6,7を閉じ、
スイッチ8は開いて、コイルを並列に接続する。
In the figure, (a) Ed is the DC side output voltage of the thyristor converter, (b) is the load current, (C) IL is the current of each coil, (d) P is Ed×, and (e) W is the coil current. Indicates stored energy. The first half of the energy accumulation period (t1~
In T2), first close switches 6 and 7,
Switch 8 is open and connects the coils in parallel.

これにより、コイルには負荷電流の112の電流が流れ
る。この期間はコイル電流はまだ小さい。コイル電流が
負荷電流の定格の1ノ2になつた時点T5でコイルの接
続を並列から直列に切換える。すなわち、スイッチ8を
閉じてスイッチ6,7を開く。この切換はスイッチ51
を閉じ、52を開いてサイリスタ変換装置を短時間だけ
コイルから切離して行うこともできる。エネルギー蓄積
期間の後半T5〜T2では、コイル11と12を直列接
続しているため、負荷電流とコイル電流の大きさは等し
くなる。
As a result, a load current of 112 flows through the coil. During this period, the coil current is still small. At time T5 when the coil current reaches 1 to 2 of the load current rating, the coil connection is switched from parallel to series. That is, switch 8 is closed and switches 6 and 7 are opened. This switching is done by switch 51.
This can also be done by closing 52 and opening 52 to briefly disconnect the thyristor converter from the coil. In the latter half of the energy storage period T5 to T2, the magnitudes of the load current and coil current become equal because the coils 11 and 12 are connected in series.

このような運転をすると電力Pは第4図dに示すように
なり、第1図の場合と比べると相当平均化され電源系統
にとつて好ましい特性となる。次にエネルギーを放出す
る場合も同様の考え方で運転を行なう。すなわち、エネ
ルギー放出期間の前半T3〜T6においては、コイル1
1と12を直列に接続し、後半期においてはコイル11
と12を並列に接続して運転する。これによりエネルギ
ー蓄積期間と同様に放出電力の平均化がてきる。以上述
べた様に本発明によれば、コイルへのエネルギーの流入
及び放出時の電力が平均化され、電源系統にとつて好ま
しい特性とすることがてきる。また、本方式によると変
換装置の出力電圧を第1図と同じにすれば蓄積時間を短
縮することができ、蓄積時間を同じにすれば変換器の容
量を小さくすることができる。この点を例をあげてさら
に説明する。エネルギー貯蔵システムとして10000
MWHのエネルギーを1011寺間で貯蔵し、しばらく
後に■時間で放出するケースを取り上げる。第1図の従
来方式では電力が直線的に変化するため初期は01終期
は2000MWで平均1000MWで1時間かかつてエ
ネルギーを貯蔵することになるため、変換装置としては
2000MW(例えば100kA,20kV)の容量の
ものが必要となる。これに対し本発明の方式によれば、
変換装置の容量を前述と同じ2000MWとすれば、エ
ネルギー蓄積前期t1〜T5ては電流は4倍の傾きで上
昇し、後期ζ〜T2では負荷電流の1h時点から再び電
流は上昇していく、このため本発明の方式によれば10
000r14WHのエネルギーは7.時間で貯蔵できる
ことになり、蓄積時間を短縮することができる。
When such an operation is performed, the electric power P becomes as shown in FIG. 4d, which is considerably averaged compared to the case shown in FIG. 1, and has favorable characteristics for the power supply system. Next, when energy is to be released, operation will be carried out using the same concept. That is, in the first half T3 to T6 of the energy release period, the coil 1
1 and 12 are connected in series, and in the second half, coil 11
and 12 are connected in parallel and operated. This results in averaging of the emitted power, similar to the energy storage period. As described above, according to the present invention, the electric power when energy flows into and discharges from the coil is averaged, and characteristics favorable to the power supply system can be achieved. Furthermore, according to this system, if the output voltage of the converter is made the same as in FIG. 1, the storage time can be shortened, and if the storage time is the same, the capacity of the converter can be reduced. This point will be further explained using an example. 10,000 as an energy storage system
Let's take up a case where MWH energy is stored in 1011 temples and released after a while in ■ time. In the conventional system shown in Figure 1, the power changes linearly, so the initial power is 2000 MW at the end of 01, and the average power is 1000 MW, which means that energy is stored for an hour or so. Capacity is required. On the other hand, according to the method of the present invention,
Assuming that the capacity of the converter is 2000 MW, which is the same as described above, the current increases at a fourfold slope during the early energy accumulation period t1 to T5, and the current increases again from the load current of 1 hour during the latter period ζ to T2. Therefore, according to the method of the present invention, 10
The energy of 000r14WH is 7. This means that the storage time can be shortened.

また、蓄積時間を1叫間とすれば、変換装置の容量は従
来方式の75%で良いことになる。エネルギーを貯蔵す
るコイルの数を多くすれば電力がさらに平均化され、蓄
積時間を一定とすれば変換装置の容量も小さくできる。
Furthermore, if the storage time is set to one cycle, the capacity of the converter can be 75% of that of the conventional system. By increasing the number of coils that store energy, the power can be further averaged, and by keeping the storage time constant, the capacity of the converter can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す図面、第2図は第1図の動作を説
明するための図面、第3図は本発明の実施例を示す図面
、第4図は第3図の動作を説明するための図面である。
Fig. 1 is a drawing showing a conventional example, Fig. 2 is a drawing for explaining the operation of Fig. 1, Fig. 3 is a drawing showing an embodiment of the present invention, and Fig. 4 is a drawing for explaining the operation of Fig. 3. This is a drawing for

Claims (1)

【特許請求の範囲】[Claims] 1 エネルギー貯蔵コイル、交流電源の電力を該コイル
に出し入れするサイリスタ変換装置から成るエネルギー
貯蔵システムであり、エネルギー貯蔵コイルを複数個で
構成し、該コイルを直列若しくは並列に接続を変更して
運転するものに於いて、エネルギー蓄積前期及びエネル
ギー放出後期には上記複数個のコイルを並列接続し、エ
ネルギー蓄積後期及びエネルギー放出前期には上記複数
個のコイルを直列接続することを特徴とするコイル励磁
電源装置。
1. An energy storage system consisting of an energy storage coil and a thyristor conversion device that inputs and outputs power from an AC power supply to the coil. It is composed of a plurality of energy storage coils and is operated by changing the connection of the coils in series or parallel. A coil excitation power supply characterized in that the plurality of coils are connected in parallel during the first half of energy accumulation and the second half of energy release, and the plurality of coils are connected in series during the second half of energy accumulation and the first half of energy release. Device.
JP10811079A 1979-08-27 1979-08-27 Coil excitation power supply Expired JPS6051342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10811079A JPS6051342B2 (en) 1979-08-27 1979-08-27 Coil excitation power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10811079A JPS6051342B2 (en) 1979-08-27 1979-08-27 Coil excitation power supply

Publications (2)

Publication Number Publication Date
JPS5635644A JPS5635644A (en) 1981-04-08
JPS6051342B2 true JPS6051342B2 (en) 1985-11-13

Family

ID=14476139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10811079A Expired JPS6051342B2 (en) 1979-08-27 1979-08-27 Coil excitation power supply

Country Status (1)

Country Link
JP (1) JPS6051342B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200068720A (en) * 2017-11-08 2020-06-15 에스엠에스 메박 게엠베하 Melting furnace comprising an electrode rod that can be rotated and moved simultaneously

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139139A (en) * 1983-12-26 1985-07-23 株式会社東芝 Energy accumulating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200068720A (en) * 2017-11-08 2020-06-15 에스엠에스 메박 게엠베하 Melting furnace comprising an electrode rod that can be rotated and moved simultaneously

Also Published As

Publication number Publication date
JPS5635644A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
Karthikeyan et al. Multiple-input configuration of isolated bidirectional DC–DC converter for power flow control in combinational battery storage
US6369461B1 (en) High efficiency power conditioner employing low voltage DC bus and buck and boost converters
US5159261A (en) Superconducting energy stabilizer with charging and discharging DC-DC converters
JPS5920261B2 (en) Uninterruptible power system
US20060099463A1 (en) Direct current/direct current converter for a fuel cell system
US11165358B2 (en) Switching control method for isolated bidirectional DC-DC converter
JP2003134691A (en) Power supply system
JPH11178216A (en) Uninterruptible power unit
Moo et al. Operation of battery power modules with series output
JP3292489B2 (en) Power supply control system for consumers
JPS6051342B2 (en) Coil excitation power supply
CN109347140B (en) Photovoltaic air conditioner, control method and device thereof, direct current power grid and readable storage medium
JP2001025169A (en) Power storage method and power storage device
JPS6047825B2 (en) Coil excitation power supply
JPH02269426A (en) Dc uninterruptible power supply unit
US20240030830A1 (en) Ac/dc converter and control method thereof for charging electrical vehicles
JPS5931234B2 (en) Energy storage method using coils
US20230040172A1 (en) Efficient hierarchical distributed power storage
JPH08506475A (en) DC voltage converter
KUMAR et al. Design and Implementation of DC/DC Converter in PV System for Battery Discharging
US20210126460A1 (en) Efficient hierarchical distributed power storage
CN117767337A (en) Control method and device of multistage converter system and energy management system
JP3591361B2 (en) Switching power supply
JPS63186568A (en) Dc unit charger circuit for ac/dc converter
KR20230066956A (en) Power converter having initial charging circuit