JPS6050515B2 - Particle size measuring device for powder and granular materials - Google Patents

Particle size measuring device for powder and granular materials

Info

Publication number
JPS6050515B2
JPS6050515B2 JP14657381A JP14657381A JPS6050515B2 JP S6050515 B2 JPS6050515 B2 JP S6050515B2 JP 14657381 A JP14657381 A JP 14657381A JP 14657381 A JP14657381 A JP 14657381A JP S6050515 B2 JPS6050515 B2 JP S6050515B2
Authority
JP
Japan
Prior art keywords
sieve
particle size
storage case
powder
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14657381A
Other languages
Japanese (ja)
Other versions
JPS5849480A (en
Inventor
裕昭 石川
昭二 新田
卓美 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14657381A priority Critical patent/JPS6050515B2/en
Publication of JPS5849480A publication Critical patent/JPS5849480A/en
Publication of JPS6050515B2 publication Critical patent/JPS6050515B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、粉粒体の粒度測定装置に係り、特に、整粒
工場における鉄鉱石の粒度管理、焼結工場における焼結
鉱の粒度管理、高炉、炉前における焼結鉱の粉率及ひ粒
度分布の管理等の、付着水分がそれほど問題にならない
粉粒体の工程管理に用いるに好適な、粒度別網目を有す
る複数の篩と、各篩を積層状態で収納する収納ケースと
、該収納ケースを振動可能な状態で支持する支持機構と
、篩分け時に前記収納ケースを振動させる単一の加振機
構とを備えた粉粒体の粒度測定装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a particle size measuring device for powder and granules, and in particular, to particle size control of iron ore in a sizing factory, particle size control of sintered ore in a sintering factory, and sintering in a blast furnace or in front of a furnace. Suitable for use in process control of powder and granular materials where adhesion of moisture is not a major problem, such as control of powder rate and particle size distribution of concretion, multiple sieves with meshes according to particle size and each sieve are stored in a stacked state. The present invention relates to an improvement in a particle size measuring device for powder and granular material, which is equipped with a storage case that vibrates, a support mechanism that supports the storage case in a vibrating state, and a single vibration mechanism that vibrates the storage case during sieving.

一般に、整粒工場における鉄鉱石、焼結工場における
焼結鉱等においては、その粒度を管理することが要求さ
れており、又、高炉、炉前における焼結鉱においては、
その粉率及ひ粒度分布を管理−することが要求されてい
る。
Generally, it is required to control the particle size of iron ore in a sizing factory and sintered ore in a sintering factory, and in sintered ore in front of a blast furnace or furnace.
It is required to control the powder ratio and particle size distribution.

このような粒度管理等のための粒度測定装置として、従
来は、第1図に示すような、篩分け粒度のそれぞれ異な
る、例えば3個の篩分機12、14、16と、各篩分機
12、14、16で篩分けられた銃士試料とすべての
篩分機を通過した篩下試料をそれぞれ計量する計量ホッ
パ18、20、22、24とを有してなる自動粒度測定
装置10を分析室26に配置して、粒度管理が必要とさ
れる工程において、粉粒体30を輸送しているコンベア
32のヘッド部分で、サンプラ34によつて粒度測定用
試料36を採取し、該試料36をコンベア38によつて
自動粒度測定装置10が配設された分析室26まで運搬
し、自動粒度測定装置10の第1段目の篩分機12に試
料36を投入し、該篩分機12によつて篩分けられた篩
上試料を計量ホッパ18に投入して自動計量し、更に、
篩分機12で篩分けられた篩下試料を第2段目の篩分機
14に投入し、以下、同様に、第3段目の篩分機16を
経て、各篩上産物は計量ホッパ20及び22により、又
、第3段目の篩分機16を通過した篩下試料は計量ホッ
パ24により、それぞれ自動計量するようにしている。
図において、40は、計量された試料を回収するための
試料回収用コンベアである。このような自動粒度測定装
置10によれば、粉粒体の粒度を連続的に自動測定でき
るものであるが、各粒度区分毎に篩分機と計量ホッパが
必要であり、設備規模が大きくなり、設備費がかさむ。
又、工程中のサンプリングの行なわれる最寄りの場合へ
、自動粒度測定装置10を容易に移動することが難しい
ため、採取した試料を分析室26までベルトコンベア3
8又はトラック等で搬送しなければならないという欠点
を有した。一方、篩網を数段重ねて一台の振動装置て篩
分ける、バッチ式の粒度測定装置を市販され、連続式に
比べて装置がコンパクトで設備費も安いという利点を有
しているが、篩分された後の各粒度区分毎の試料を人手
によつて取出し、更に、人手に.よつて計量器にかけて
測定する必要があり、篩分から計量までの自動化を図る
ことができないという欠点を有した。
Conventionally, as a particle size measuring device for such particle size control, etc., as shown in FIG. An automatic particle size measuring device 10 having weighing hoppers 18, 20, 22, and 24 for weighing the musketeer sample sieved by the sieves 14 and 16 and the under-sieve sample passed through all the sieving machines, respectively, is installed in the analysis room 26. In a process that requires particle size control, a sample 36 for particle size measurement is collected by a sampler 34 at the head of the conveyor 32 transporting the powder and granular material 30, and the sample 36 is transferred to the conveyor. 38 to the analysis room 26 where the automatic particle size measuring device 10 is installed, the sample 36 is introduced into the first stage sieving machine 12 of the automatic particle size measuring device 10, and the sample 36 is sieved by the sieving machine 12. The separated sieved sample is put into the weighing hopper 18 and automatically weighed, and further,
The unsieved sample sieved by the sieving machine 12 is fed into the second stage sieving machine 14, and similarly passes through the third stage sieving machine 16, and each sieved product is transferred to weighing hoppers 20 and 22. In addition, the under-sieve sample that has passed through the third-stage sieve separator 16 is automatically weighed by a weighing hopper 24.
In the figure, 40 is a sample collection conveyor for collecting weighed samples. According to such an automatic particle size measuring device 10, it is possible to continuously and automatically measure the particle size of powder and granular materials, but a sieve and a weighing hopper are required for each particle size classification, which increases the scale of the equipment. Equipment costs are high.
Furthermore, since it is difficult to easily move the automatic particle size analyzer 10 to the nearest location where sampling is performed during the process, the collected samples are transported to the analysis room 26 by the belt conveyor 3.
This had the disadvantage that it had to be transported by truck or truck. On the other hand, there are commercially available batch-type particle size analyzers in which several layers of sieve screens are stacked and sieved using a single vibrating device, and these have the advantage of being compact and having lower equipment costs than continuous types. After sieving, the samples of each particle size category are taken out manually, and then the samples are taken out manually. Therefore, it is necessary to use a measuring device for measurement, which has the disadvantage that it is not possible to automate the process from sieving to weighing.

本発明は、前記従来の欠点を解消するべくなされもので
、設備費が安価で、装置の移動が容易で.あり、しかも
、自動測定が可能な粉粒体の粒度測定装置を提供するこ
とを目的とする。
The present invention was made to solve the above-mentioned drawbacks of the conventional technology, and the equipment cost is low and the device can be easily moved. It is an object of the present invention to provide a particle size measuring device for powder and granular material that is capable of automatic measurement.

本発明は、粒度別網目を有する複数の篩と、各篩を積層
状態て収納する収納ケースと、該収納ケースを振動可能
な状態で支持する支持機構と、篩・分け時に前記収納ケ
ースを振動させる単一の加振機構とを備えた粉粒体の粒
度測定装置において、各篩を収納ケースに対して水平方
向に移動可能とすると共に、篩分け時に各篩を収納ケー
スに固定する固定機構と、篩分け終了後に前記篩を水平
方向に押し出す押し出し機構と、前記篩の押し出し方向
先端に設けられた先端枠と、押し出された篩を順次倒立
させ、篩上試料を払い出すための倒立機構と、各篩から
順次払い出された試料を計量する単一の計量機構と、を
設けることにより、前記目的を達成したものである。
The present invention provides a plurality of sieves having meshes according to particle size, a storage case that stores the sieves in a stacked state, a support mechanism that supports the storage case in a vibrating state, and a vibrator that vibrates the storage case during sieving and sorting. In a particle size measuring device for powder and granular materials, which is equipped with a single vibration mechanism, each sieve can be moved horizontally with respect to a storage case, and a fixing mechanism that fixes each sieve to the storage case during sieving. an extrusion mechanism for extruding the sieve in the horizontal direction after sieving is completed; a tip frame provided at the extrusion direction tip of the sieve; and an inversion mechanism for sequentially inverting the extruded sieve and discharging the sample on the sieve. The above object has been achieved by providing a single weighing mechanism for weighing the samples sequentially discharged from each sieve.

又、前記先端枠を、篩倒立時に開放するようにしたもの
である。
Further, the tip frame is opened when the sieve is inverted.

更に、前記固定機構が、前記先端枠の閉止機構を兼ねる
ようにしたものである。
Furthermore, the fixing mechanism also serves as a closing mechanism for the tip frame.

又、前記押し出し機構が、全篩を一斉に、且つ徐々に水
平方向に押し出すようにしたものである。
Further, the extrusion mechanism is configured to extrude all the sieves at once and gradually in the horizontal direction.

更に、前記倒立機構が、前記収納ケースの、各篩の側枠
と対向する、各篩毎に突出量が順次異なる突出位置に配
設された、篩倒立時の支点となる倒立用ピンを有してな
るものとしたものである。
Furthermore, the inverting mechanism has an inverting pin that is disposed in a protruding position facing a side frame of each sieve in the storage case and having a protruding amount that is sequentially different for each sieve, and that serves as a fulcrum when the sieve is inverted. This is what will happen.

以下図面を参照して、本発明の実施例を詳細に説明する
。第2図は、本実施例の正面図、第3図は、第2図の■
−■線に沿う断面図、第4図は、第2図の■−■方向か
ら見た側面図、第5図は、本実施例で用いられている篩
の形状を示す斜視図、第6図は、第2図の■部詳細図、
第7図は、第6図の■−■方向から見た側面図、第8図
は、第6図の■−■線に沿う断面図、第9図乃至第13
図は、各篩の倒立状態を示す正面図である。
Embodiments of the present invention will be described in detail below with reference to the drawings. Figure 2 is a front view of this embodiment, and Figure 3 is the
4 is a sectional view taken along line -■, FIG. 4 is a side view seen from the direction -■ in FIG. 2, FIG. The figure is a detailed view of the part ■ in Figure 2.
FIG. 7 is a side view seen from the direction ■-■ in FIG. 6, FIG. 8 is a sectional view taken along the line ■-■ in FIG. 6, and FIGS.
The figure is a front view showing each sieve in an inverted state.

本実施例は、第2図に示す如く、下段に至る程小となる
粒度別網目50a〜50eを有する複数、例えば5個の
篩50と、各篩50を積層状態て収納する収納ケース5
2と、該収納ケース52を振動可能な状態で支持する支
持金具54a〜54dと、篩分け時に前記収納ケース5
2を振動させるための、駆動モータ58、伝動装置60
、バランスウェイト62を有してなる単一の加振装置5
6と、を備えた粉粒体の粒度測定装置において、前記収
納ケース52の内側側面に前記各篩50の下部を支持す
る支持ローラ64を配設して、各篩50を収納ケース5
2に対して水平方向に移動可能とすると共に、第5図に
詳細に示す如く、前記篩50の押し出し方向先端枠66
をヒンジ68により支持して、該押し出し方向先端枠6
6を、篩倒立時に開放するようにし、更に、篩分け時に
各篩50を収納ケース52に固定するための、前記押し
出し方向先端枠66の閉止機構を兼ねた固定機構69と
、篩分け終了時に全篩を一斉に、且つ、徐々に水平方向
に押出す押出し機構82と、押出された篩を順次倒立さ
せ、篩上試料を.払い出すための倒立機構91と、倒立
状態の篩を、収納ケース52内に引き込んで収納するた
めの引き込み機構95と、各篩50から順次払い出され
た試料を計量する単一の計量機構102と、を設けたも
のである。
As shown in FIG. 2, this embodiment includes a plurality of sieves 50, for example, 5 sieves 50, each having meshes 50a to 50e according to particle size, which become smaller toward the bottom, and a storage case 5 in which each sieve 50 is stored in a stacked state.
2, support fittings 54a to 54d that support the storage case 52 in a vibrating state, and the storage case 5 during sieving.
Drive motor 58, transmission device 60 for vibrating 2
, a single vibration device 5 having a balance weight 62
6, a support roller 64 for supporting the lower part of each sieve 50 is disposed on the inner side surface of the storage case 52, and each sieve 50 is placed in the storage case 5.
2, and as shown in detail in FIG.
is supported by a hinge 68, and the end frame 6 in the extrusion direction is supported by a hinge 68.
6 is opened when the sieve is inverted, and further includes a fixing mechanism 69 which also serves as a closing mechanism for the tip frame 66 in the extrusion direction for fixing each sieve 50 to the storage case 52 during sieving, and A push-out mechanism 82 pushes out all the sieves simultaneously and gradually in the horizontal direction, and the pushed-out sieves are inverted one after another to remove the sample on the sieve. An inverted mechanism 91 for dispensing, a retraction mechanism 95 for retracting and storing the inverted sieve into the storage case 52, and a single weighing mechanism 102 for weighing the samples sequentially dispensed from each sieve 50. .

前記固定機構69は、第6図乃至第8図に詳細に示す如
く、篩50の押し出し方向先端枠66を閉止するための
、収納ケース52により支点70を中心として回動自在
に支持された、略L字形状の爪72と、先端が該爪72
の略中央部に固着され、後端が、収納ケース52の篩押
し出し方向後端面52aに固着されたピン74に係止さ
れたワイヤ76と、該ワイヤ76をガイドする、両つば
付のガイドローラ78及ひ前記押し出し機構82の押し
出し枠83に固着されたガイドバイブ80−と、前記ワ
イヤ76の途中に固着されたストッパ81とから構成さ
れている。
As shown in detail in FIGS. 6 to 8, the fixing mechanism 69 is rotatably supported by the storage case 52 about a fulcrum 70 for closing the extrusion direction end frame 66 of the sieve 50. A substantially L-shaped claw 72 and a tip of the claw 72
A wire 76 whose rear end is fixed to a pin 74 fixed to the rear end surface 52a of the storage case 52 in the sieve extrusion direction, and a guide roller with double flanges that guides the wire 76. 78 and a guide vibe 80- fixed to the push-out frame 83 of the push-out mechanism 82, and a stopper 81 fixed to the middle of the wire 76.

前記押し出し機構82は、第2図に示される如く、前記
収納ケース52の篩押し出し方向後端面52aに固着さ
れたアーム84と、前記収納ケース52内を水平方向に
移動可能とされた、上端及び下端に走行台車83a,8
3bが固着された押し出し枠83と、該押し出し枠83
を前進或いは後退させるための、押し出し枠83の略中
央部と前記アーム84間に配設されパワーシリンダ86
と、前記押し出し枠83に固着された、前記篩50の一
方の側枠に形成された逆L字形状のストッパ88(第5
図参照)を押すことにより前記篩50を押し出すための
押し出し用ピンとから構成されている。
As shown in FIG. 2, the extrusion mechanism 82 includes an arm 84 fixed to a rear end surface 52a of the storage case 52 in the sieve extrusion direction, and an upper end and an arm 84 that are movable horizontally within the storage case 52. Traveling trolleys 83a, 8 at the lower end
3b is fixed to the extrusion frame 83, and the extrusion frame 83
A power cylinder 86 is disposed between a substantially central portion of the extrusion frame 83 and the arm 84 to move the extrusion frame 83 forward or backward.
and an inverted L-shaped stopper 88 (fifth
(see figure) for pushing out the sieve 50 by pushing out the sieve 50.

前記倒立機構91は、第2図及び第5図に示す如く、各
篩50の両側枠に形成された、先端開口がラツパ状の翼
状サイドガイド92と、前記収納ケース52の、各篩5
0の側枠と対向する、各篩毎に突出量が順次異なり、上
方の篩程突出量が大なる突出位置に配設された、篩突出
時に前記サイドガイド92内に進入して、篩倒立時の支
点となる倒立用ピン93a−eと、最下段の篩が倒立し
た際に、その位置を決めるためのバンパ94から構成さ
れている。
As shown in FIGS. 2 and 5, the inversion mechanism 91 includes wing-shaped side guides 92 each having a flap-like tip opening formed on both side frames of each sieve 50, and each sieve 5 of the storage case 52.
The protrusion amount is sequentially different for each sieve facing the side frame 0, and the protrusion amount is larger for the upper sieve. It is composed of inverted pins 93a-e that serve as fulcrums when the sieve is inverted, and a bumper 94 that determines the position of the lowest sieve when it is inverted.

前記引き込み機構95は、第2図及び第4図に示す如く
、先端が前記篩50の後端に固着されたワイヤ96と、
前記収納ケース52の篩押し出し方向後端面52aに配
設された、前記ワイヤ96の後端を巻き取る、各篩50
の倒立位置に応じて異なるワイヤ96の引き出し長さの
相違に応じて、巻き取り半径が順次変えられたドラム9
8と、該ドラム98を回転駆動する駆動モータ100と
、前記ワイヤ96をガイドするガイドローラ101a,
101bとから構成されている。
As shown in FIGS. 2 and 4, the drawing mechanism 95 includes a wire 96 whose tip is fixed to the rear end of the sieve 50;
Each sieve 50 is arranged on the rear end surface 52a of the storage case 52 in the sieve extrusion direction and winds up the rear end of the wire 96.
The winding radius of the drum 9 is sequentially changed depending on the length of the wire 96 drawn out depending on the inverted position of the drum 9.
8, a drive motor 100 that rotationally drives the drum 98, a guide roller 101a that guides the wire 96,
101b.

前記計量装置102は、第2図に示す如く、前記倒立状
態の篩50から払い出された試料を集めるための下部受
シュート103と、計量ホッパ104と、計量ホッパ1
04内に収容された試料の重量を測定するための荷重計
106と、測定終了後の試料を払い出すためのホッパゲ
ート108と、該ホッパゲート108を開閉するための
ゲート開閉モータ110と、ホッパゲート108から吐
き出された計量後の試料を回収するための試料回収用コ
ンベア112と、上記各構成部品を支持する架台114
と、前記荷重計106の出力を伝送信号に変換するため
の電流変換器116と、制御盤118とから構成されて
いる。第2図において、120はサンプラ、122は、
該サンプラ120から吐き出された試料26を収納ケー
ス52内に積層配置された篩50上に装入するための試
料受シュートである。
As shown in FIG. 2, the weighing device 102 includes a lower receiving chute 103 for collecting the sample discharged from the inverted sieve 50, a weighing hopper 104, and a weighing hopper 103.
04, a hopper gate 108 for discharging the sample after measurement, a gate opening/closing motor 110 for opening and closing the hopper gate 108, and a hopper gate 108 for discharging the sample after measurement. A sample recovery conveyor 112 for recovering the discharged weighed sample, and a pedestal 114 for supporting each of the above components.
, a current converter 116 for converting the output of the load cell 106 into a transmission signal, and a control panel 118. In FIG. 2, 120 is a sampler, 122 is
This is a sample receiving chute for loading the sample 26 discharged from the sampler 120 onto the sieves 50 stacked in the storage case 52.

以下作用を説明する。The action will be explained below.

ノ まず、加振装置56の駆動モータ58を回転し、収
納ケース52ごと、すべての篩50を振動させた状態で
、サンプラ120により採取された試料36を試料受シ
ュート122を介して、一番大きな篩目を有する篩網5
0aが張られた第1段7目の篩50上に装入し篩分ける
First, the drive motor 58 of the vibrating device 56 is rotated to vibrate all the sieves 50 together with the storage case 52, and the sample 36 collected by the sampler 120 is passed through the sample receiving chute 122 and placed in the first place. Sieve screen 5 with large sieve mesh
It is charged onto the sieve 50 at the 7th stage of the first stage lined with Oa and sieved.

篩分けられた後、篩目より大きい試料は篩網50a上に
残り、篩目より小さい試料は、次段の篩網50b上に落
ちる。以下同様にして最終篩網50eに倒達し、篩下が
発生しなくなつた時点(通常2〜5分間)フで篩分けが
完了する。この篩分け時においては、押し出し枠83が
収納ケース52の篩押し出し方向後端面52aと密着し
た状態に維持されており、従つて、第6図に実線で示す
如く、ストッパ81の作用によりワイヤ76が張られ、
爪72が支点70を中心として上方に回動し、篩50の
押し出し方向先端枠66を閉止すると共に、篩50の前
端を固定した状態にあるので、加振装置56によつて与
えられる振動が確実に各篩50に印加されて、従来と同
様の篩分けが行なわれ、しかも、篩の押し出し方向先端
から篩分け中の試料が洩れ出すことがない。篩分け完了
後は、パワーシリンダ86により押し出し枠83を第2
図の右方向に押し、第6図の位置X迄押し出す。
After being sieved, samples larger than the sieve mesh remain on the sieve screen 50a, and samples smaller than the sieve mesh fall onto the next sieve screen 50b. Thereafter, the sieving is completed in the same manner when the final sieve screen 50e is reached and no sifting occurs (usually for 2 to 5 minutes). During this sieving, the extrusion frame 83 is maintained in close contact with the rear end surface 52a of the storage case 52 in the sieve extrusion direction, and therefore, as shown by the solid line in FIG. is stretched,
Since the pawl 72 rotates upward about the fulcrum 70 and closes the extrusion direction end frame 66 of the sieve 50 and fixes the front end of the sieve 50, the vibration given by the vibration device 56 is The voltage is reliably applied to each sieve 50, and sieving is performed in the same manner as in the past, and the sample being sieved does not leak out from the tip of the sieve in the extrusion direction. After the sieving is completed, the power cylinder 86 moves the extrusion frame 83 to the second
Push it to the right in the figure until it reaches position X in Figure 6.

すると、ワイヤ76がたるみ、第6図に一点鎖線で示す
如く、爪72が、支点70を中心として下方に落下する
。この時、ワイヤ76の長さと、押し出し用ピン90及
びストッパ88との関係で、爪72の動きが変り、篩5
0の固定状態からの開放が円滑に行なわれない場合も考
えられるが、このような時には、例えば第14図に示す
如く、押し出し用ピン90とストッパ88の間に間隙A
を設けておくことにより、篩50の移動に先立ち、まず
爪72が確実に落下するようにしてもよい。又、爪72
を駆動するための別体の駆動装置を設けることも可能で
ある。爪72が落下しで、収納ケース52との固定状態
が解かれた篩50は、ストッパ88を介して押し出し枠
83の押し出し用ピン90に押され、一斉に、且つ、徐
々に前進してゆく。篩50の移動一によつて、倒立用ピ
ン93a−eは、下側のピンから順次50のサイドガイ
ド92内に入つてゆき、しかも、篩50は、支持ローラ
64がなくなつてくるため、前方は倒立用ピンで支持さ
れている状況となり、倒立用ピンの位置が篩50の重心
!゛を越えれば、反転して倒立することとなる。この時
、倒立用ピンは、下段側から上段側へと、順次突出量が
大となるようにされているので、第9図に示す如く、ま
ず最下段の篩50が倒立用ピン93eを中心として倒立
し、バンパ94に当つて停こ止する。篩50とバンパ9
4の衝突時の衝撃により、篩50中の試料は、すべて、
下段受シュート103を経由して計量ホッパ104に入
り、荷重計106により試料の重量が検出され、その信
号が電流変換器116により電流変換され、制御盤ク1
18に自動読み込み記憶される。計量が完了したら、計
量ホッパ104のホッパゲート108を開けて、試料回
収用コンベヤ112上に排出する。計量後、再びパワー
シリンダ86を駆動し、残りの篩をすべて、一斉に、且
つ、徐々に前進させる。すると、今度は、第10図に示
す如く、下から2段目の篩50が倒立用ピン93dを中
心として倒立し、その中の試料が計量ホッパ104内に
払い出される。この時において、この下から2段目の篩
は、最下段の篩に当つて停止するので、専用のバンパを
設ける必要はない。なお、各篩に対して、それぞれ、バ
ンパを設定することも勿論可能である。以下同様の操作
を繰返し、第11ノ図、第12図、第13図の状態を経
て、第1段目の篩の篩上試料の計量が完了したら、制御
盤118でそれぞれの重量を合計し、合計重量に対する
各粒度の百分率を演算し、粒度分布を求める。又、各粒
度毎の計量を完了した後は、パワーシーリンダ86を反
対方向に駆動して、押し出し枠83を、爪72が落下状
態のままである。第6図の位置x迄後退させて停止する
。この状態で、引き込み機構95のドラム98を回転し
、ワイヤ96をガイドローラ101a,101bを介し
て引入れ、ドラム98に巻き取れば、各篩50は、収納
ケース52内の元の位置に戻る。その後、更にパワーシ
リンダ86を駆動し、押し出し枠83を第6図の位置Y
迄後退させれば、ワイヤ76が緊張し、爪72が上方に
回動して、篩の押し出し方向先端枠66が閉じられると
共に、各篩50が収納ケース52に固定されて、次回の
測定に備えられる。本実施例においては、倒立状態の篩
50を収納ケース52内に引き込んで収納する引き込み
機構95を設けているので、粒度測定が完全に自動化さ
れている。
Then, the wire 76 becomes slack, and the claw 72 falls downward about the fulcrum 70, as shown by the dashed line in FIG. At this time, the movement of the claw 72 changes depending on the length of the wire 76, the pushing pin 90, and the stopper 88, and the sieve 5
0 may not be released smoothly from the fixed state, but in such a case, for example, as shown in FIG.
By providing this, the claws 72 may be ensured to fall first before the sieve 50 is moved. Also, the claw 72
It is also possible to provide a separate drive for driving the. The sieves 50, which have been released from the fixed state with the storage case 52 by the falling of the claws 72, are pushed by the push-out pins 90 of the push-out frame 83 via the stopper 88, and gradually move forward all at once. . As the sieve 50 moves, the inverted pins 93a to 93e enter the side guides 92 of the 50 sequentially starting from the lower pin, and since the sieve 50 loses its support roller 64, The front side is supported by an inverted pin, and the position of the inverted pin is the center of gravity of the sieve 50! If it exceeds ゛, it will be reversed and become a handstand. At this time, since the protrusion amount of the inverting pins is made to gradually increase from the lower side to the upper side, as shown in FIG. It then stands upside down and stops when it hits the bumper 94. Sieve 50 and bumper 9
Due to the impact of the collision of 4, all the samples in the sieve 50 are
The sample enters the weighing hopper 104 via the lower receiving chute 103, the weight of the sample is detected by the load cell 106, the signal is converted into a current by the current converter 116, and the sample is sent to the control panel 104.
18 is automatically read and stored. When the weighing is completed, the hopper gate 108 of the weighing hopper 104 is opened and the sample is discharged onto the sample collection conveyor 112. After weighing, the power cylinder 86 is driven again to advance all the remaining sieves simultaneously and gradually. Then, as shown in FIG. 10, the second sieve 50 from the bottom is inverted about the inverting pin 93d, and the sample therein is discharged into the weighing hopper 104. At this time, the sieve in the second stage from the bottom stops when it hits the sieve in the lowest stage, so there is no need to provide a dedicated bumper. Note that it is of course possible to set a bumper for each sieve. Thereafter, the same operation is repeated, and when the state shown in Fig. 11, Fig. 12, and Fig. 13 is completed, the weight of each sample on the sieve of the first stage sieve is completed, and the weight of each sample is totaled on the control panel 118. , calculate the percentage of each particle size relative to the total weight, and obtain the particle size distribution. Further, after the measurement of each particle size is completed, the power cylinder 86 is driven in the opposite direction to move the extrusion frame 83 and the claw 72 remains in the falling state. It is moved back to position x in Fig. 6 and stopped. In this state, if the drum 98 of the drawing mechanism 95 is rotated and the wire 96 is drawn in through the guide rollers 101a and 101b and wound around the drum 98, each sieve 50 returns to its original position in the storage case 52. . Thereafter, the power cylinder 86 is further driven to move the extrusion frame 83 to the position Y shown in FIG.
When the wires 76 are moved back to this point, the wires 76 are tensed, the claws 72 are rotated upward, the sieve extrusion direction end frame 66 is closed, and each sieve 50 is fixed to the storage case 52 for the next measurement. Be prepared. In this embodiment, a retracting mechanism 95 for retracting and storing the sieve 50 in an inverted state into the storage case 52 is provided, so that particle size measurement is completely automated.

以上説明した通り、本発明によれば、設備費が安価とな
るだけでなく、装置の移動が容易となり、サンプリング
される最寄りの場所に簡単に設置できる。
As explained above, according to the present invention, not only is the equipment cost low, but the device is also easily movable and can be easily installed at the location closest to sampling.

又、測定が自動化できる。更に、分析時間が短く、デー
タをプロセスのフィードバック制御に使うことができる
等の優れた効果を有する。
Moreover, measurement can be automated. Furthermore, it has excellent effects such as short analysis time and the ability to use data for feedback control of processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の自動粒度測定装置の一例の構成を示す
ブロック線図、第2図は、本発明に係る粉粒体の粒度測
定装置の実施例を示す正面図、第3図は、第2図の■−
■線に沿う断面図、第4図は、同じく第2図の■−■方
向から見た側面図、第5図は、前記実施例に用いられて
いる篩の形状を示す斜視図、第6図は、第2図の■部詳
細図、第7図は、第6図の■−■方向から見た側面図、
第8図は、第6図の■−■線に沿う断面図、第9図乃至
第13図は、前記実施例における各篩の倒立状態を示す
正面図、第14図は、固定機構の変形例を示す断面図で
ある。 50・・・・・・篩、50a−e・・・・・・篩網、5
2・・・・・・収納ケース、52a・・・・・篩押し出
し方向後端面、54a−d・・・・・・支持金具、56
・・・・・・加振装置、64・・・支持ローラ、66・
・・・・・押し出し方向先端枠、68・・・・・・ヒン
ジ、69・・・・・・固定機構、70・・・・・・支点
、72・・・・・・爪、76・・・・ワイヤ、82・・
・・・・押し出し機構、83・・・・・・押し出し枠、
86・・・・・・パワーシリンダ、88・・・・ストッ
パ、90・・・・・・押し出し用ピン、91・・・・・
・倒立機構、92・・・・・・サイドガイド、93a−
e・・・・・・倒立用ピン、95・・・・・・引き込み
機構、96・・・・・ワイヤ、98・・・・・・ドラム
、102・・・・・・計量装置。
FIG. 1 is a block diagram showing the configuration of an example of a conventional automatic particle size measuring device, FIG. 2 is a front view showing an embodiment of the particle size measuring device for powder and granular materials according to the present invention, and FIG. ■- in Figure 2
4 is a sectional view taken along the line 2, FIG. The figure is a detailed view of the part ■ in Figure 2, and Figure 7 is a side view seen from the ■-■ direction in Figure 6.
FIG. 8 is a sectional view taken along the line ■-■ in FIG. 6, FIGS. 9 to 13 are front views showing the inverted state of each sieve in the above embodiment, and FIG. 14 is a modification of the fixing mechanism. It is a sectional view showing an example. 50...Sieve, 50a-e...Sieve screen, 5
2... Storage case, 52a... Rear end surface in the sieve extrusion direction, 54a-d... Support metal fittings, 56
... Vibration device, 64 ... Support roller, 66.
...Extrusion direction end frame, 68...Hinge, 69...Fixing mechanism, 70...Fully point, 72...Claw, 76... ...Wire, 82...
...Extrusion mechanism, 83...Extrusion frame,
86...Power cylinder, 88...Stopper, 90...Pushing pin, 91...
・Inverted mechanism, 92...Side guide, 93a-
e...Inversion pin, 95...Retraction mechanism, 96...Wire, 98...Drum, 102...Measuring device.

Claims (1)

【特許請求の範囲】 1 粒度別網目を有する複数の篩と、各篩を積層状態で
収納する収納ケースと、該収納ケースを振動可能な状態
で支持する支持機構と、篩分け時に前記収納ケースを振
動させる単一の加振機構とを備えた粉粒体の粒度測定装
置において、各篩を収納ケースに対して水平方向に移動
可能とすると共に、篩分け特に各篩を収納ケースに固定
する固定機構と、篩分け終了後に前記篩を水平方向に押
し出す押し出し機構と、前記篩の押し出し方向先端に設
けられた先端枠と、押し出された篩を順次倒立させ、篩
上試料を払い出すための倒立機構と、各篩から順次払い
出された試料を計量する単一の計量機構と、を設けたこ
とを特徴とする粉粒体の粒度測定装置。 2 前記先端枠が、篩倒立時に解放するようにされてい
る特許請求の範囲第1項に記載の粉粒体の粒度測定装置
。 3 前記固定機構が、前記先端枠の閉止機構を兼ねるよ
うにされている特許請求の範囲第2項に記載の粉粒体の
粒度測定装置。 4 前記押し出し機構が、全篩を一斉に、且つ徐々に水
平方向に押し出すようにされている特許請求の範囲第1
項に記載の粉粒体の粒度測定装置。 5 前記倒立機構が、前記収納ケースの、各篩の側枠と
対向する、各篩毎に突出量が順次異なる突出位置に配設
された、篩倒立時の支点となる倒立用ピンを有してなる
特許請求の範囲第1項に記載の粉粒体の粒度測定装置。
[Scope of Claims] 1. A plurality of sieves having meshes according to particle size, a storage case that stores the sieves in a stacked state, a support mechanism that supports the storage case in a vibrating state, and a support mechanism that supports the storage case during sieving. In a powder particle size measuring device equipped with a single vibration mechanism that vibrates, each sieve is movable in the horizontal direction relative to the storage case, and in particular, each sieve is fixed to the storage case. a fixing mechanism, a pushing mechanism for pushing out the sieve in the horizontal direction after sieving is completed, a tip frame provided at the tip of the sieve in the pushing direction, and a mechanism for sequentially inverting the pushed out sieve and discharging the sample on the sieve. A particle size measuring device for powder or granular material, characterized in that it is provided with an inverted mechanism and a single weighing mechanism that weighs samples sequentially discharged from each sieve. 2. The particle size measuring device for powder and granular material according to claim 1, wherein the tip frame is configured to be released when the sieve is inverted. 3. The particle size measuring device for powder or granular material according to claim 2, wherein the fixing mechanism also serves as a closing mechanism for the tip frame. 4. Claim 1, wherein the extrusion mechanism is configured to extrude all the sieves at once and gradually in a horizontal direction.
A particle size measuring device for powder and granular materials as described in 2. 5. The inverting mechanism has an inverting pin that is disposed in a protruding position facing a side frame of each sieve in the storage case and having a protruding amount that is sequentially different for each sieve, and that serves as a fulcrum when the sieve is inverted. An apparatus for measuring the particle size of powder or granular material according to claim 1.
JP14657381A 1981-09-17 1981-09-17 Particle size measuring device for powder and granular materials Expired JPS6050515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14657381A JPS6050515B2 (en) 1981-09-17 1981-09-17 Particle size measuring device for powder and granular materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14657381A JPS6050515B2 (en) 1981-09-17 1981-09-17 Particle size measuring device for powder and granular materials

Publications (2)

Publication Number Publication Date
JPS5849480A JPS5849480A (en) 1983-03-23
JPS6050515B2 true JPS6050515B2 (en) 1985-11-08

Family

ID=15410742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14657381A Expired JPS6050515B2 (en) 1981-09-17 1981-09-17 Particle size measuring device for powder and granular materials

Country Status (1)

Country Link
JP (1) JPS6050515B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426243B2 (en) * 1985-06-29 1992-05-06 Tokyo Shibaura Electric Co
JP2014018707A (en) * 2012-07-13 2014-02-03 Eisai Machinery Co Ltd Irregularly granulated substance removal device and granulated substance carrier system mounted with the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751807B2 (en) * 1988-03-14 1995-06-05 株式会社大林組 Safety device for horizontal pulling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426243B2 (en) * 1985-06-29 1992-05-06 Tokyo Shibaura Electric Co
JP2014018707A (en) * 2012-07-13 2014-02-03 Eisai Machinery Co Ltd Irregularly granulated substance removal device and granulated substance carrier system mounted with the same

Also Published As

Publication number Publication date
JPS5849480A (en) 1983-03-23

Similar Documents

Publication Publication Date Title
CA1189493A (en) Apparatus and method for return of empty aluminum cans
US20060096655A1 (en) Measuring catalyst(s) for filling reactor tubes in reactor vessels
US3545281A (en) Method and apparatus for analyzing a particulate material
JPS6050515B2 (en) Particle size measuring device for powder and granular materials
CN111921848A (en) Screening method for ore detection
CN110333162B (en) Method and system for detecting moisture and particle size composition of sintering mixture
JPH0385451A (en) Method and apparatus for automatic analysis on degrading of leaf tobacco
JPS6028545Y2 (en) Particle size measuring device for powder and granular materials
CN110940819A (en) Full-automatic sample preparation screening and measuring system for alloy ore
JPS5870869A (en) Apparatus for measuring particle size of particulate material
CN114602794A (en) Automatic online screening and analyzing system for particle size of sand blasting material
JPH0288940A (en) Automatic sample preparing device
SU1390537A1 (en) Device for testing blast furnace charge material
CN217141101U (en) Automatic online screening and analyzing device for sand particle size
CN211740976U (en) Detection apparatus for metal powder finished product granularity
CN219356906U (en) Automatic shaking and screening integrated equipment for pellets
JP2654463B2 (en) Powder supply device
JPH02201246A (en) Particle size measurement for powdery material
CN217059614U (en) Full-automatic bagged raw material sampling and screening integrated unit
CN219935365U (en) Blast furnace raw material sampling trolley
JPH09236597A (en) Coke strength tester and coke strength automatic measuring apparatus
KR102518948B1 (en) Devide for measuring dropping strength of sinter ore, and the method
JP2809094B2 (en) Automatic particle size analyzer
CN211318476U (en) Full-automatic sample preparation screening and measuring system for alloy ore
CN213377938U (en) System bag material sieving mechanism that weighs