JPS6050509A - Optical beam scanning type picture input device - Google Patents

Optical beam scanning type picture input device

Info

Publication number
JPS6050509A
JPS6050509A JP58157842A JP15784283A JPS6050509A JP S6050509 A JPS6050509 A JP S6050509A JP 58157842 A JP58157842 A JP 58157842A JP 15784283 A JP15784283 A JP 15784283A JP S6050509 A JPS6050509 A JP S6050509A
Authority
JP
Japan
Prior art keywords
laser
light
light beam
mirror
polygon mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58157842A
Other languages
Japanese (ja)
Inventor
Jinichi Hongo
本郷 仁一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58157842A priority Critical patent/JPS6050509A/en
Publication of JPS6050509A publication Critical patent/JPS6050509A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Abstract

PURPOSE:To make a light quantity constant on the surface to be scanned, by varying a light quantity of a laser light source or a sensitivity of a photoelectric converting element, so as to be in inverse proportion to a reflection factor. CONSTITUTION:A laser driving circuit 2 drives on and off a semiconductor laser 3 by switching transistors 30, 31. This semiconductor laser 3 consists of a light emitting element LD and a photodetector PD, and the light emitting quantity of the light emitting element LD is detected by the photodetector PD and fed back to an optical output controlling circuit 32. The optical output controlling circuit 32 controls a current capacity of a current source 33 and makes the semiconductor laser 3 hold an optical output at a constant value.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はレーザビームによる走査型画像入力装置に係V
%に反射鏝面保護膜形成法と画像読込信号の均一化に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a scanning type image input device using a laser beam.
% related to the method of forming a reflective trowel surface protective film and the uniformity of image reading signals.

〔発明の背景〕[Background of the invention]

回転多面鏡を用いたレーザビーム走査型画像入力装置に
おける問題点を第1〜第 図を用いて説明する。第1図
は、レーザビームによる走査型画像入力装置の構成図で
あり、信号処理装置1よりの指令によりレーザ駆動回路
2が半導体レーザ3を定出力駆動する。半導体レーザ3
より出たレーザ光はコリ、メータレンズ4によって平行
ビームとなり回転多面鏡5により偏向走査されF0レン
ズ6により被走査面a上に焦点を結ぶ。被走査面aから
の反射光を光電変換素子9で電気信号とし、信号増幅用
の七ンスアンプ13を介して信号処理装置1に伝達する
。信号処理装置1は得られた画像悄aをデジタル符号化
して記憶装置(不図示)に記憶させる。画像情報取り込
みのための基準信号としては、レーザビーム7の一部を
ミラー1(1により光′区変換素子1IVc導きその出
力よりビーム位置検出回路12でビーム位置を検出する
。以上の構成において原稿8をbの方向に移動せしめる
ことで、画像情報を読込むことができる。
Problems in a laser beam scanning type image input device using a rotating polygon mirror will be explained with reference to FIGS. FIG. 1 is a configuration diagram of a scanning type image input device using a laser beam, and a laser drive circuit 2 drives a semiconductor laser 3 with a constant output in response to a command from a signal processing device 1. Semiconductor laser 3
The emitted laser beam is collimated and turned into a parallel beam by a meter lens 4, deflected and scanned by a rotating polygon mirror 5, and focused onto a scanned surface a by an F0 lens 6. The reflected light from the scanned surface a is converted into an electric signal by the photoelectric conversion element 9, and is transmitted to the signal processing device 1 via the 7th amplifier 13 for signal amplification. The signal processing device 1 digitally encodes the obtained image a and stores it in a storage device (not shown). As a reference signal for capturing image information, a part of the laser beam 7 is guided by a mirror 1 (1) to a beam conversion element 1IVc, and the beam position is detected by a beam position detection circuit 12 from its output. By moving 8 in the direction b, image information can be read.

ここで、被走査面からの反射光量は入射光量に比例する
。そのため被走査面への入射光量゛は均一化する必要が
あり、レーザ駆動回路2を定出力動作とすることで対処
し、できた。コリメータレンズ4嘔よひFθレンス6の
透過率は汚れ等による影響を除外すれは均一であるが、
回転多面鏡は、入反射角の柔性が回転に伴い変動するた
め一定し碌い、以下その賛因を述べる。
Here, the amount of light reflected from the surface to be scanned is proportional to the amount of incident light. Therefore, it was necessary to make the amount of light incident on the surface to be scanned uniform, and this was achieved by setting the laser drive circuit 2 to constant output operation. The transmittance of the collimator lens 4 and Fθ lens 6 is uniform unless the influence of dirt etc. is excluded, but
Rotating polygon mirrors are stable because the flexibility of the angle of incidence and reflection varies with rotation, and the reasons for this will be discussed below.

回転多面鏡は、基材を鏡面化るるいは基材上に鏡面ゲ設
け、梃に保護膜を形成する。本例ではAt基拐を錬而加
工し、保護膜として5i(12を用いた回転多面鏡につ
いて述べる。第2図は基材と保護11!!全拡大して光
ビームに対する反則率を解析するものであり、記号を以
下(C足表する。
For a rotating polygon mirror, a base material is mirror-finished or a mirror-finished surface is provided on the base material, and a protective film is formed on the lever. In this example, we will discuss a rotating polygon mirror that uses At base material and 5i (12) as a protective film. Figure 2 shows the base material and protection 11! Fully enlarged to analyze the fouling rate against the light beam. The symbol is as follows (represents C foot).

Rs:S偏向成分に対する多面鏡の反射率「、:空気と
保顛膜間の反射率 δ :レーザ光の位相差 no:空気の屈折率 nl:保護膜の屈折率 n2:基材の 〃 ψ。、ψ8.ψ2:各境界での入反射屈折角この時、多
面鏡の反射率f(、sは第2図に正す式でめられ、材質
に依存する諸足数が定すると、R,sは入射角ψ。と保
護膜厚さdlの関数であることがわかる。
Rs: Reflectance of polygon mirror for S polarization component ,: Reflectance between air and protective film δ: Phase difference of laser beam no: Refractive index of air nl: Refractive index of protective film n2: 〃 ψ of base material , ψ8. ψ2: angle of incident reflection and refraction at each boundary At this time, the reflectance f(, s of the polygon mirror is determined by the formula corrected in Figure 2, and when the number of feet depending on the material is determined, R, It can be seen that s is a function of the incident angle ψ and the protective film thickness dl.

第3図は保役膜材買S+02、基材At、レーザ波長7
80 nrr+として#′i算した例であり以下その特
徴について述べる。第3図は横軸に保護膜厚d1、縦軸
に反射率R,sヶ取り、入射角ψ、をパラメータとして
示す。ここでの王な%徴は (1) 反射率はn、d、=λ/2 近傍で最大値をと
、るが90の変化に伴うRsのf動も最大となる。
Figure 3 shows maintenance film material S+02, base material At, and laser wavelength 7.
This is an example in which #'i is calculated as 80 nrr+, and its characteristics will be described below. In FIG. 3, the horizontal axis shows the protective film thickness d1, and the vertical axis shows the reflectance R, the s-cutting, and the incident angle ψ as parameters. The main % characteristic here is (1) The reflectance reaches its maximum value near n, d, = λ/2, but the f movement of Rs with a change in 90 also reaches its maximum value.

fil 9’oによるRsの変動trJd、=21(1
人近傍で極小値をとるが、d、によるRlsの変化率は
この近傍でかなり大きい。
Change in Rs due to fil 9'o trJd, = 21 (1
Although it takes a minimum value near a person, the rate of change of Rls due to d is quite large in this vicinity.

従って入射角の変化による反射率の変動、即ち被走査面
に2ける光量変動を極小にし、反射光l・全一定に保つ
KI/′i、d、=210OA近傍の膜厚を選べば良い
が、その場合、多面鏡の反射率は極大値を俄扛ず、伺か
つ保護膜厚d、の変動に対して反射率が大きく変化する
という問題がある。
Therefore, it is best to select a film thickness in the vicinity of KI/'i, d, = 210 OA to minimize the variation in reflectance due to changes in the incident angle, that is, the variation in the amount of light on the scanned surface, and to keep the total reflected light l constant. In that case, there is a problem in that the reflectance of the polygon mirror does not reach its maximum value, and the reflectance changes greatly with changes in the thickness of the protective film d.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した回転多面鏡あるいは往伎振動鏡
の特性を考慮し、走査方向に対し均一ガ光出力および有
効スポット径を得るとともに鏡面の反射効率が最大とな
るような構成の光ビーム走査型画像入力装置を提供する
ことにある。
The purpose of the present invention is to take into consideration the characteristics of the rotating polygon mirror or the oscillating mirror described above, and to create a light beam configured to obtain a uniform light output and an effective spot diameter in the scanning direction, and to maximize the reflection efficiency of the mirror surface. An object of the present invention is to provide a scanning type image input device.

〔発明の概要〕[Summary of the invention]

第3図からもわかるように、実除の回転多面鏡し使用範
囲、例えばψo−30°〜60°に3いて、反射率が最
大となるd、=3r100人近傍ではψ。と1(・Sの
関係は直線で近似できる。このことよりレーザ光源の光
量゛あるいは光電没換累子の感度を反射率に反比例して
変化させれば、被走査面上での九tを一定にできる。
As can be seen from FIG. 3, when a rotating polygon mirror with a real divisor is used in the range of use, for example ψo -30° to 60°, the reflectance is maximum d, = 3r near 100 people, ψ. The relationship between Can be done at a constant rate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第4〜第7図を由いて脱明す
る。本実施例は、電子写真方式によるレーザビームプリ
ンタにレーザビームによる走査型画像入力装置を組み込
んだものである。第4図はその構成を示すものであり、
レーザビームプリンタ20は、給紙カセット25と排紙
トレー24を持ち用紙に、給紙カセット25から給紙部
28を経て印写部27(ドラム17および帝′庫器等よ
りなる)、定看器26(+−経て排紙搬送系29によっ
て排紙カセット24に到る。印写部27の周辺にはクリ
ーナ22、現像機21が配せられる。レーザ走査系は、
レーザ光源(不図示)2J:ひその駆動回路(不図示)
、回転多面鏡5、Fθレンズ6、感光ドラム17への走
査、露光と原稿台23中の原稿8(不図示)への走査の
切換ミラー16.2よび反射光検出用の長尺光電vm索
子9a、9bよりなり、センスアンプ13は、長尺光電
変換素子9a、9bの至近距離に配している。
Hereinafter, one embodiment of the present invention will be explained with reference to FIGS. 4 to 7. In this embodiment, a scanning image input device using a laser beam is incorporated into an electrophotographic laser beam printer. Figure 4 shows its configuration,
The laser beam printer 20 has a paper feed cassette 25 and a paper output tray 24, and passes the paper from the paper feed cassette 25 through the paper feed section 28 to the printing section 27 (consisting of a drum 17, a printer, etc.), and to the regular printer. The paper reaches the paper ejection cassette 24 via the paper ejection transport system 29 via the paper container 26 (+-).A cleaner 22 and a developing device 21 are arranged around the printing section 27.The laser scanning system is
Laser light source (not shown) 2J: Hisono drive circuit (not shown)
, a rotating polygon mirror 5, an Fθ lens 6, a switching mirror 16.2 for scanning and exposing a photosensitive drum 17, and a scanning mirror 16.2 for scanning an original 8 (not shown) on an original platen 23, and a long photoelectric Vm cable for detecting reflected light. The sense amplifier 13 is arranged close to the elongated photoelectric conversion elements 9a and 9b.

第5図は実施例のレーザビーム走査画像入力装置の構成
を示す。レーザビームプリンタのレーザ糸と共用化して
いるためレーザ駆動(o回路2は、信号発生回路14に
より駆動され、レーザ光の高速スイッチング機構を有す
る。第6図はレーザ駆動回路2のブロック図、第7図は
g−調に関する信号ケ示したものである。レーザ駆動回
路2は、スイッチングトランジスタ30.31により半
導体レーザ3をオン・オフ駆動する。本実施例で用いた
半導体レーザ3け、発光素子LDと受光素子PDよりな
り、受光素子P L’)により発光素子LDの発光科全
検出し光出力制御41回路32ヘフイートバツクする。
FIG. 5 shows the configuration of a laser beam scanning image input device according to an embodiment. Since it is shared with the laser thread of a laser beam printer, the laser drive circuit 2 is driven by the signal generation circuit 14 and has a high-speed switching mechanism for laser light. Fig. 7 shows signals related to G-tone.The laser drive circuit 2 turns on and off the semiconductor laser 3 using switching transistors 30 and 31.The three semiconductor lasers and light emitting elements used in this example It consists of an LD and a light receiving element PD, and the light receiving element PL') detects all the light emitting elements of the light emitting element LD and returns the light output to the light output control circuit 32.

光出力制餌j回路32は電流源33の電流谷獅全tlj
ll ill して、半導体レーザ3の光出力を一定値
に保すする。
The light output control circuit 32 outputs the current of the current source 33.
ll ill to keep the optical output of the semiconductor laser 3 at a constant value.

第7図に示すように信号発生回路14よりのレーザ駆m
J悟夛■は、情イに読込用点灯勘間τDとビーム位置検
出用レーザ点灯期間τBJ:りなり、その他の期間は、
半導体レーザの寿命r考慮して、レーザを消灯している
。1走食周期は1°であり、この間に入反射角ψ。は約
30°から6(1”!で変化し、回転多面鏡の反射率も
それに伴い86%〃・ら93俤まで約7チ変動する。
As shown in FIG. 7, the laser drive signal from the signal generation circuit 14
J Gotan ■ carefully sets the lighting interval τD for reading and the laser lighting period τBJ for beam position detection, and the other periods are as follows:
Considering the life span of the semiconductor laser, the laser is turned off. One running cycle is 1°, and during this period, the reflection angle ψ. changes by about 30 degrees to 6 (1"!), and the reflectance of the rotating polygon mirror changes accordingly by about 7 degrees from 86% to 93 degrees.

この反射率変化に対し、本実施例のレーザ駆動回路では
、バイアス用電流源34を設け、バイアス制両回路35
により第7図に示すようにバイアス゛屯流ケ減少σせる
ことで、被走査面a上での光量の均一化を達成している
。第6図に示す構成では、バイアス電流は、スイッチン
グ電流と無関係Kmれてし1つが、半導体レーザのスレ
ッンヨルド電流以下の値なので問題ない。
In response to this reflectance change, the laser drive circuit of this embodiment includes a bias current source 34 and a bias control circuit 35.
As a result, as shown in FIG. 7, by reducing the bias force and reducing the current σ, the amount of light on the scanned surface a can be made uniform. In the configuration shown in FIG. 6, the bias current is independent of the switching current and has a value less than or equal to the Threnjord current of the semiconductor laser, so there is no problem.

バイアス電流印加のタイミングとしては、ビーム位置検
出回路12のビーム検出信号を開始時期とする。被走査
面の反射光よりの画像情報読込は、ビーム検出信号を基
準として行なわれるので、光ビームの走査角jK、即ち
回転多面鏡5への入反射角ψ。に対するバイアス電流の
印加量に常に一定となる。バイアス市’、#r、に化の
リセットタイミングとしては、ビーム位置検出用レーザ
点灯期間の始めとした。不実施例の元出力制@11!:
lJM32はビーム位置検出用レーザ点灯期間にレーザ
先出万全取込み、′電流源20の容量を定め1走畳期間
その1的を保持する。上述した如く、ビーム位置検出用
レーザ点灯期間の始めにバイアス電流変化をリセットす
れば光出力開側1回路32は、バイアス電流変化の影I
#を受けなくなり、バイアス電流変化分I++を自由に
調整できる。
The timing for applying the bias current is set to the beam detection signal from the beam position detection circuit 12. Since image information is read from the reflected light from the surface to be scanned using the beam detection signal as a reference, the scanning angle jK of the light beam, that is, the angle of incidence and reflection on the rotating polygon mirror 5 ψ. The amount of bias current applied is always constant. The reset timing for changing the bias to ', #r' was set at the beginning of the beam position detection laser lighting period. Unimplemented original output system @11! :
The JM 32 fully captures the laser first output during the beam position detection laser lighting period, determines the capacity of the current source 20, and holds that one target for one running period. As mentioned above, if the bias current change is reset at the beginning of the beam position detection laser lighting period, the optical output open side 1 circuit 32 will be free from the influence of the bias current change I.
# is no longer received, and the bias current change I++ can be adjusted freely.

不実施例によれば、回転多面鏡を最も反射率の商い領域
で用いることができるばたりでなく、その人皮射角特性
に拘らず反射光俊動幅を極めて少なくすることができる
。また回転多面鏡が最大反引率となるような保護膜厚の
近傍では、保護膜厚変動に伴う反射率の変化が緩やかで
、多面鏡製作に当たり品質管理が容易である。
According to the non-embodiment, the rotating polygon mirror can be used in the range where the reflectance is the highest, and the range of rapid movement of reflected light can be made extremely small regardless of the characteristics of the human skin incidence angle. Further, in the vicinity of the protective film thickness where the rotating polygon mirror has the maximum retraction rate, the change in reflectance due to the change in the protective film thickness is gradual, making quality control easy when manufacturing the polygon mirror.

更に不実施例では、光学系並ひにレーザ駆動回路2をレ
ーザビームプリンタと共用しているため □感光体ドラ
ム17上に迷する光量も均一となり印4品員が向上する
Furthermore, in the non-example, since the optical system and the laser drive circuit 2 are shared with the laser beam printer, the amount of light straying onto the photosensitive drum 17 is also uniform, and the number of products marked 4 is improved.

不実施例では、反射率変動の補償を三角波のバイアス電
流で近似したが、三角波に限る必要はな jく、またバ
イアス成流として分離せず、全駆動′C本実施例は、レ
ーザビームプリンタに内蔵された走査型画像入力装置で
あるために、レーザ光源の先出カケ変化させることで、
反射面の入反射用特性を補償し、プリンタとしての印字
品質の向上をも同時に目的としたが、1血像入力装置と
してはレーザ光源を定出力化し、センスアング13の感
度を入反射角に合わせて変化させても同一の効果を侍ら
nる。
In the non-example, compensation for reflectance fluctuation was approximated by a triangular wave bias current, but it is not limited to a triangular wave, and the bias current is not separated as a bias current. Since it is a scanning type image input device built into the
The aim was to compensate for the input/reflection characteristics of the reflective surface and improve the printing quality as a printer.1 As a blood image input device, the laser light source was made constant output, and the sensitivity of Sense Ang 13 was adjusted to the input/reflection angle. Even if you change it, you will get the same effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、回転多面鏡あるいは往復振動鏡を最大
反射率を有する領域で使用することができるため、レー
ザ光源に対する負担が軽減されるばかりでなく、その入
反射角にもかかわらず走査領域全域に亘り均一な走査光
量を得ることができる。
According to the present invention, a rotating polygon mirror or a reciprocating oscillating mirror can be used in the region having the maximum reflectance, which not only reduces the burden on the laser light source but also reduces the scanning area regardless of the angle of incidence and reflection. A uniform amount of scanning light can be obtained over the entire area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザビーム走査型画像入力装置の構戎図、第
2図は回転多面鏡の入反射角を示す平面図、第3図は回
転多面鏡の反射率特性を示す説明例の走査型画像人力装
置部の構成図、第6図は実施例のレーザ駆動回路のブロ
ック図、第7図は実Mu例におけるも信号のタイミング
チャートである。 2・・・レーザ駆動回路、3・・・半導体レーザ、5・
・・回転多面鏡、9a、9b・・・光電変換集子、12
・・・ビーム位1a検出1!:]回路、13・・・セン
スアンプ、1・・・信号処理装置、32・・・光出力側
斜1「91路、33・・・電流源、34・・・バイアス
、′屯流市11@1回路、35・・・バイアス81図 第2図 T=51に、(naヤk) T2=5jrL−′(千) 5=で(2ルrdrcθS5f?) 第3 図
Fig. 1 is a schematic diagram of a laser beam scanning type image input device, Fig. 2 is a plan view showing the angle of incidence and reflection of a rotating polygon mirror, and Fig. 3 is a scanning type explanatory example showing the reflectance characteristics of a rotating polygon mirror. FIG. 6 is a block diagram of the laser drive circuit of the embodiment, and FIG. 7 is a signal timing chart in the actual Mu example. 2... Laser drive circuit, 3... Semiconductor laser, 5...
...Rotating polygon mirror, 9a, 9b...Photoelectric conversion collector, 12
...Beam position 1a detection 1! :] Circuit, 13... Sense amplifier, 1... Signal processing device, 32... Optical output side diagonal 1 '91 path, 33... Current source, 34... Bias, 'Tunryu City 11 @1 circuit, 35...Bias 81 Figure 2 T = 51, (nayak) T2 = 5jrL-' (1,000) 5 = (2rrdrcθS5f?) Figure 3

Claims (1)

【特許請求の範囲】 l レーザ光源から出力された光ビームを回転多面鏡、
あるいは往復振動鏡音用いて走査偏向するとともに、光
学系ケ用いて該光ビームを被走査面上に絞り込み、その
反射光から光電変換装置により被走査面の情報を読み取
る走査光学系に2いて、前記回転多面鏡、あるいは往復
振動鏡の反射面の保護膜の厚さの影9による反射面への
光ビームの入射角度変化に伴う反射率変動の補償として
レーザ光源の光出力めるいは反射光の光電変換素子の感
度を反射面への光ビームの入射角に応じて変化させるこ
とを特徴とする光ビーム走査型画像入力装置。 2、特許請求の範囲第1項において、回転多面鏡あるい
に、往慴振動鏡の反射面の保腹膜厚を最大反射率ケ侍ら
れる厚さに形成したことを特徴とする光ビーム走査型画
像入力装置。
[Claims] l The light beam output from the laser light source is transferred to a rotating polygon mirror,
Alternatively, a scanning optical system is used to perform scanning deflection using a reciprocating vibrating mirror sound, focus the light beam onto the scanned surface using an optical system, and read information on the scanned surface from the reflected light by a photoelectric conversion device. The optical output of the laser light source or the reflected light is compensated for the reflectance fluctuation caused by the change in the angle of incidence of the light beam on the reflective surface due to the shadow 9 of the thickness of the protective film on the reflective surface of the rotating polygon mirror or the reciprocating mirror. A light beam scanning type image input device characterized in that the sensitivity of a photoelectric conversion element is changed according to an incident angle of a light beam on a reflective surface. 2. A light beam scanning type according to claim 1, characterized in that the thickness of the peritoneal coating on the reflecting surface of the rotating polygon mirror or the oscillating mirror is formed to a thickness that can accommodate the maximum reflectance. Image input device.
JP58157842A 1983-08-31 1983-08-31 Optical beam scanning type picture input device Pending JPS6050509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157842A JPS6050509A (en) 1983-08-31 1983-08-31 Optical beam scanning type picture input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157842A JPS6050509A (en) 1983-08-31 1983-08-31 Optical beam scanning type picture input device

Publications (1)

Publication Number Publication Date
JPS6050509A true JPS6050509A (en) 1985-03-20

Family

ID=15658536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157842A Pending JPS6050509A (en) 1983-08-31 1983-08-31 Optical beam scanning type picture input device

Country Status (1)

Country Link
JP (1) JPS6050509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446724A (en) * 1987-08-17 1989-02-21 Canon Kk Image recorder
WO2005091048A1 (en) * 2004-03-24 2005-09-29 Brother Kogyo Kabushiki Kaisha Retina scanning display and signal processor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446724A (en) * 1987-08-17 1989-02-21 Canon Kk Image recorder
WO2005091048A1 (en) * 2004-03-24 2005-09-29 Brother Kogyo Kabushiki Kaisha Retina scanning display and signal processor
JP2005274866A (en) * 2004-03-24 2005-10-06 Brother Ind Ltd Retina scanning display and signal processor
JP4590894B2 (en) * 2004-03-24 2010-12-01 ブラザー工業株式会社 Retina scanning display and signal processing apparatus

Similar Documents

Publication Publication Date Title
EP0134472B1 (en) Laser beam scanner apparatus
US8228583B2 (en) Optical scanning device and image forming apparatus
FR2593613A1 (en) ASSEMBLY, DEVICE AND APPARATUS FOR BEAM DEVIATION FOR PRINTER
JPH0631980A (en) Semiconductor laser array recording device
KR100264761B1 (en) Optical scanning device
US4855761A (en) Light beam recorder with an afocal anamorphic optical amplifier
JPH0611750A (en) Optical device and optical scanning device
JPS624776B2 (en)
JPS6050509A (en) Optical beam scanning type picture input device
JP2761723B2 (en) Scanning optical device
JP2939765B2 (en) Laser scanning spot diameter adjusting device
JP3362477B2 (en) Optical waveguide end face coupling device
JP3521303B2 (en) Optical scanning device
JP2007079487A (en) Optical component and optical device
JP3141597B2 (en) Optical scanning device
JPH02102072A (en) Output converting mechanism for semiconductor laser
JP2660011B2 (en) Scanning optical device
JP2584739B2 (en) Focus detection device
JP2728211B2 (en) Light head
JPH0287112A (en) Optical scanning device
JPH0225827A (en) Beam scanner
JPH05322701A (en) Jitter quantity measuring device
JPH09226174A (en) Multiple beam scanning device
JPS62287437A (en) Light pickup
JP2001319363A (en) Head for optical memory