JPS6050353A - Method of controlling auxiliary cold source of cryogenic liquefying refrigerator - Google Patents

Method of controlling auxiliary cold source of cryogenic liquefying refrigerator

Info

Publication number
JPS6050353A
JPS6050353A JP15779483A JP15779483A JPS6050353A JP S6050353 A JPS6050353 A JP S6050353A JP 15779483 A JP15779483 A JP 15779483A JP 15779483 A JP15779483 A JP 15779483A JP S6050353 A JPS6050353 A JP S6050353A
Authority
JP
Japan
Prior art keywords
refrigerant gas
pressure refrigerant
refrigeration system
cold source
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15779483A
Other languages
Japanese (ja)
Other versions
JPH0381064B2 (en
Inventor
松本 孝三
梶原 博毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15779483A priority Critical patent/JPS6050353A/en
Publication of JPS6050353A publication Critical patent/JPS6050353A/en
Publication of JPH0381064B2 publication Critical patent/JPH0381064B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明め利用分野〕 本発明は液体窒素などな補助寒冷源とした極低温液化冷
凍装置に係り、特に長時間の連続運転を行なう場合に好
適な極低温液化冷凍装置の補助寒冷源制御方法に関する
ものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a cryogenic liquefaction refrigeration system using an auxiliary cooling source such as liquid nitrogen, and is particularly suitable for a cryogenic liquefaction refrigeration system suitable for long-term continuous operation. This invention relates to a method for controlling an auxiliary cold source.

〔発明の背景〕[Background of the invention]

極低温液化冷凍装置では、一般的に液体窒素などを補助
寒冷源として使用することにより装置のエネルギー効率
を向上させることが行なわれている。したがって、補助
寒冷源供給量を適正に制御することが、装置の能力を保
持し!ii置のエネルギー効率をも最適に保持するため
に重要である。
In cryogenic liquefaction refrigeration equipment, the energy efficiency of the equipment is generally improved by using liquid nitrogen or the like as an auxiliary cooling source. Therefore, properly controlling the supply amount of the auxiliary cold source maintains the capacity of the device! It is also important to maintain optimum energy efficiency.

以下、ヘリウム液化冷凍装置〃を例にとり説明する。第
1図は、従来のヘリウム液化冷凍装置の補助寒冷源制御
を行なう構成の一例を示すブロック図である。第1図に
おいて、1は圧縮機ユニット、2は中圧タンク、3aお
よび3bは圧力制御弁、5は高圧冷媒ガスの導入管、6
は低圧冷媒ガスの導出管、7は温度制御器、88〜8c
は流量制御弁、9はコールドボックス、10 a〜10
 eは熱交換器、12aおよび12bは膨張機、14は
被冷却体である。
The helium liquefaction refrigeration system will be explained below as an example. FIG. 1 is a block diagram showing an example of a configuration for controlling an auxiliary cold source of a conventional helium liquefaction refrigeration system. In FIG. 1, 1 is a compressor unit, 2 is an intermediate pressure tank, 3a and 3b are pressure control valves, 5 is a high-pressure refrigerant gas introduction pipe, and 6
is a low-pressure refrigerant gas outlet pipe, 7 is a temperature controller, 88 to 8c
is a flow control valve, 9 is a cold box, 10 a to 10
e is a heat exchanger, 12a and 12b are expanders, and 14 is an object to be cooled.

次に、上記のように構成された従来のヘリウム液化冷凍
装置の動作について述べる。圧縮機ユニット1で圧縮さ
れた高圧冷媒ガスは導入管5を通すコールドボックス9
に導入され、第1の熱交換器10 aで液体窒素および
低圧冷媒ガスによって冷却された後、液化ラインと膨張
機ラインに分岐する。膨張機ラインに分岐した高圧冷媒
ガスは、第1の膨張!ll 12 aで断熱膨張仕事を
行なうことによって寒冷を発生した後、第3の熱交換!
il!IOCで低圧冷媒ガスと熱交換することによって
更に温度が降下し、第2の膨張機12bで再び断熱膨張
仕事を行ない寒冷を発生し低圧ラインに合流する。液化
ラインに分岐した高圧冷媒ガスは、第2〜第5の熱交換
器io b〜10e′で低圧冷媒ガスと熱交換し最終的
に逆転温度以下に冷却された後、流量制御弁8Cでジュ
ールトムゲン膨張をすることによって極低温冷媒を生成
して被冷却体14に送られる。被冷却体14で熱負荷を
吸収した極低温冷媒はコールドボックス9に戻り、熱交
換器1(le〜10 aで熱交換することによって寒冷
回収した後、圧縮機ユニット1に帰還する。
Next, the operation of the conventional helium liquefaction refrigeration system configured as described above will be described. The high-pressure refrigerant gas compressed by the compressor unit 1 passes through the introduction pipe 5 to the cold box 9.
After being cooled by liquid nitrogen and low-pressure refrigerant gas in the first heat exchanger 10a, it branches into a liquefaction line and an expander line. The high-pressure refrigerant gas branched into the expander line undergoes the first expansion! After generating cold by performing adiabatic expansion work in ll 12 a, the third heat exchange!
Il! The temperature is further lowered by exchanging heat with the low-pressure refrigerant gas in the IOC, and the second expander 12b performs adiabatic expansion work again to generate refrigeration, which joins the low-pressure line. The high-pressure refrigerant gas branched into the liquefaction line exchanges heat with the low-pressure refrigerant gas in the second to fifth heat exchangers IO B to 10e', and is finally cooled to below the reversal temperature. By performing Tomgen expansion, a cryogenic refrigerant is generated and sent to the object 14 to be cooled. The cryogenic refrigerant that has absorbed the heat load in the object to be cooled 14 returns to the cold box 9, recovers the cold by exchanging heat in the heat exchangers 1 (LE to 10A), and then returns to the compressor unit 1.

一方、補助寒冷源である液体窒素は、コールドボックス
9からの低圧冷媒ガス導出管6を流れる冷媒ガス温度を
一定に保持するように、温度制御器7.流量制御弁8a
によって制御される。
On the other hand, the liquid nitrogen, which is an auxiliary cooling source, is controlled by a temperature controller 7. Flow control valve 8a
controlled by

以上のように構成された従来のヘリウム液化冷凍装置で
は、圧縮機ユニット1で使用する冷却水の温度が変わる
と高圧冷媒ガスの温度が変化し、コールドボックス9の
冷媒ガス人出ロガス温度差が変化する。このことは、コ
ールドボックス9の人出ロガス温度差に伴なう寒冷損失
が変化し、装置能力が変動することを意味する。
In the conventional helium liquefaction refrigeration system configured as described above, when the temperature of the cooling water used in the compressor unit 1 changes, the temperature of the high-pressure refrigerant gas changes, and the temperature difference between the refrigerant gas output and log gas in the cold box 9 changes. Change. This means that the cooling loss in the cold box 9 due to the temperature difference in the output log gas changes, and the equipment capacity fluctuates.

以上の関係を第2図によって説明する。第2図は、コー
ルドボックスの冷媒ガスの入口温度および出口iiiを
パラメータとした装置能力を示した一例である。第2図
に示したように、高圧冷媒ガス入口温度に対応して装置
能力を保持するためには、低圧冷媒出口温度を変える必
要があることがわかる。
The above relationship will be explained with reference to FIG. FIG. 2 is an example showing the device capacity using the inlet temperature and outlet iii of the cold box refrigerant gas as parameters. As shown in FIG. 2, it can be seen that in order to maintain the device capacity in response to the high-pressure refrigerant gas inlet temperature, it is necessary to change the low-pressure refrigerant outlet temperature.

以上のように、従来のヘリウム液化冷凍装置では、高圧
冷媒入口ガス温度の変化に対応し装置能力を保持し補助
寒冷源である液体窒素の使用量を適正にするためには、
温度制御器の唆定値を頻繁に調整する必要があった。
As mentioned above, in conventional helium liquefaction refrigeration equipment, in order to maintain equipment capacity in response to changes in high-pressure refrigerant inlet gas temperature and to optimize the usage of liquid nitrogen, which is an auxiliary cooling source,
It was necessary to frequently adjust the suggested value of the temperature controller.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、液体窒素などを補助寒冷源とした極低
i液化冷凍装置において、補助寒冷源を適正かつ容易に
制御できる方法を提供することにある。
An object of the present invention is to provide a method for appropriately and easily controlling the auxiliary cold source in an extremely low i liquefaction refrigeration system using liquid nitrogen or the like as the auxiliary cold source.

〔発明の概要〕[Summary of the invention]

極低温液化冷凍装置において、圧縮機ユニットで使用す
る冷却水温度は夜と昼、冬と夏のように周囲条件によっ
て変動することは避けられない。
In a cryogenic liquefaction refrigeration system, the temperature of the cooling water used in the compressor unit inevitably fluctuates depending on the ambient conditions, such as night and day, winter and summer.

これに対し、コールドボックスの熱収支を保持するため
には、コールトポ・ツクスの人出ロ冷媒カス温度差を一
定に保持する必要がある。本発明は。
On the other hand, in order to maintain the heat balance of the cold box, it is necessary to maintain a constant temperature difference between the cold box and the refrigerant waste. The present invention is.

上記冷媒ガスi度差を制御量とし補助寒冷源の供給量を
操作することによって装置能力を保持し、補助寒冷源使
用量を適正に制御できるようにしたものである。
By using the i degree difference of the refrigerant gas as a control variable and manipulating the supply amount of the auxiliary cold source, the device capacity can be maintained and the amount of auxiliary cold source used can be properly controlled.

・ 〔発明の実施例〕 以下、本発明の一実施例を第3図によって説明する。第
3図において、重複を避けるために第1図と同一部分に
は同一符号を付してその説明を省る 略し、第1図とは異なを部分を重点的に述べることにす
る。15は高圧冷媒ガスの導入管5のガス温度から低圧
冷媒ガス温度の制御設定値を計算するための演算器であ
る。その他の部分は第1図と同様である。
- [Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to FIG. In FIG. 3, in order to avoid duplication, the same parts as in FIG. 1 are given the same reference numerals and their explanations are omitted, and the parts that are different from FIG. 1 will be mainly described. Reference numeral 15 denotes an arithmetic unit for calculating a control set value for the low-pressure refrigerant gas temperature from the gas temperature of the high-pressure refrigerant gas introduction pipe 5. Other parts are the same as in FIG.

次に、以上のような構成による本発明の動作について説
明する。圧縮機ユニット1から導入される高圧冷媒ガス
温度は、圧縮機ユニブトlの冷却水温度の変動に伴い変
動するが、これに対応して演算器15では予め設定され
た温度差に基づき低圧冷媒ガス温度の設定値を計算し、
制御器7に設定する・制御器7は上記の設定値に基づき
、補助寒冷源である液体窒素の供給量を流量制御弁8a
を操作することによって制御する。
Next, the operation of the present invention having the above configuration will be explained. The temperature of the high-pressure refrigerant gas introduced from the compressor unit 1 fluctuates as the temperature of the cooling water in the compressor unit 1 fluctuates. Calculate the temperature setpoint,
Set in the controller 7 Based on the above set value, the controller 7 controls the supply amount of liquid nitrogen, which is an auxiliary cold source, by controlling the flow rate control valve 8a.
control by operating.

以上のように本実施例によれば、コールドボックスに導
入する高圧冷媒ガスiIi度の変動に対してコールドボ
ックスの熱収支を適正に保持することができ、*置部力
を保持すると共に補助寒冷源の使用量をも適正に保持す
ることが容易に可能となる。
As described above, according to this embodiment, it is possible to appropriately maintain the heat balance of the cold box against fluctuations in the high-pressure refrigerant gas IIi degrees introduced into the cold box. It becomes possible to easily maintain the appropriate amount of energy used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、極低温液化冷凍装置の装置能力を適正
に保持することが容易になり、補助寒冷源の使用量をも
適正かつ容易に制御でき、装置のエネルギー効率が向上
するという効果がある。
According to the present invention, it becomes easy to appropriately maintain the equipment capacity of the cryogenic liquefaction refrigeration equipment, the amount of auxiliary cold source used can be appropriately and easily controlled, and the energy efficiency of the equipment is improved. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の極低温液化冷凍装置Itの構成を示飄 
すブロック図、第2図は極低温液化冷凍装置の特性の一
例を示す線図、第3図は本発明を実施する極低温液化冷
凍装置の一実施例を示すブロック図である。 l・・・・・・圧縮機ユニット、5・・・・・・導入管
、6・・・・・唇 導出管、7・・・・・・制御春、8・・・・・・流量制
御弁、9・・・才1図 31=2回 葎涯冷媒〃ス士a温崖rK) 半3図
Figure 1 shows the configuration of a conventional cryogenic liquefaction refrigeration system It.
FIG. 2 is a diagram showing an example of the characteristics of a cryogenic liquefaction refrigeration system, and FIG. 3 is a block diagram showing an embodiment of a cryogenic liquefaction refrigeration system embodying the present invention. l...Compressor unit, 5...Introduction pipe, 6...Lip outlet pipe, 7...Control spring, 8...Flow rate control Valve, 9...years old 1 figure 31 = 2 times a period refrigerant

Claims (1)

【特許請求の範囲】[Claims] 1 冷媒ガスを圧縮循環する圧縮機ユニットと、液体窒
素などを補助寒冷源とし前記圧縮機ユニットで圧縮され
た高圧冷媒ガスの一部またはすべてに断熱膨張仕事を行
なわせることにより寒冷を発生させ極低温冷媒を生成す
るコールドボックスよりなる極低温液化冷凍装置におい
て、前記圧縮機ユニットで圧縮された高圧冷媒ガスと前
記コールドボックスからの帰還低圧冷媒ガスとの温度差
を一定に保持するように補助寒冷源の供給量を制御する
ことを特徴とする極低温液化冷凍装置の補助寒冷源制御
方法。
1. A compressor unit that compresses and circulates refrigerant gas, and liquid nitrogen or the like as an auxiliary cooling source, which generates extremely cold air by making some or all of the high-pressure refrigerant gas compressed by the compressor unit perform adiabatic expansion work. In a cryogenic liquefaction refrigeration system consisting of a cold box that generates low-temperature refrigerant, an auxiliary refrigeration system is used to maintain a constant temperature difference between the high-pressure refrigerant gas compressed by the compressor unit and the low-pressure refrigerant gas returned from the cold box. 1. A method for controlling an auxiliary cold source for a cryogenic liquefaction refrigeration system, the method comprising controlling the supply amount of the cold source.
JP15779483A 1983-08-31 1983-08-31 Method of controlling auxiliary cold source of cryogenic liquefying refrigerator Granted JPS6050353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15779483A JPS6050353A (en) 1983-08-31 1983-08-31 Method of controlling auxiliary cold source of cryogenic liquefying refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15779483A JPS6050353A (en) 1983-08-31 1983-08-31 Method of controlling auxiliary cold source of cryogenic liquefying refrigerator

Publications (2)

Publication Number Publication Date
JPS6050353A true JPS6050353A (en) 1985-03-20
JPH0381064B2 JPH0381064B2 (en) 1991-12-26

Family

ID=15657427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15779483A Granted JPS6050353A (en) 1983-08-31 1983-08-31 Method of controlling auxiliary cold source of cryogenic liquefying refrigerator

Country Status (1)

Country Link
JP (1) JPS6050353A (en)

Also Published As

Publication number Publication date
JPH0381064B2 (en) 1991-12-26

Similar Documents

Publication Publication Date Title
Zubair Thermodynamics of a vapor-compression refrigeration cycle with mechanical subcooling
JPS6050353A (en) Method of controlling auxiliary cold source of cryogenic liquefying refrigerator
JPH1019402A (en) Low temperature refrigeration system by gas turbine
JPH07117309B2 (en) Auxiliary cold source control method for cryogenic liquefaction refrigeration system
JPS63131960A (en) Loss operation method of cryogenic liquefying refrigerator
Trepp Refrigeration systems for temperatures below 25 K with turboexpanders
JP2510637B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JP2574823B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JP3465117B2 (en) Helium refrigeration and liquefaction machine and its operation method
JPH07117311B2 (en) Control method for cryogenic liquefaction refrigeration system
JPH0643647Y2 (en) Cryogenic refrigerator
JPH0579717A (en) Helium refrigerator
JP2512041B2 (en) Operation control method for cryogenic refrigerator
JPH0349025B2 (en)
CN117232212A (en) Nitrogen-oxygen integrated liquefying device and liquefying method thereof
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator
JPS6179954A (en) Cryogenic liquefying refrigerator
Caughley et al. Results from a Year of Running a 12 L
JPH0250381B2 (en)
JPS6179953A (en) Method of controlling cryogenic liquefying refrigerator
JPH0379623B2 (en)
JPS6138364A (en) Helium refrigerator
JPS62284153A (en) Refrigeration air conditioner
JPH0579716A (en) Very-low temperature refrigerator using auxiliary cold source
JPS647306B2 (en)