JPS6050284B2 - How to measure the attitude of a spinning satellite - Google Patents

How to measure the attitude of a spinning satellite

Info

Publication number
JPS6050284B2
JPS6050284B2 JP53075966A JP7596678A JPS6050284B2 JP S6050284 B2 JPS6050284 B2 JP S6050284B2 JP 53075966 A JP53075966 A JP 53075966A JP 7596678 A JP7596678 A JP 7596678A JP S6050284 B2 JPS6050284 B2 JP S6050284B2
Authority
JP
Japan
Prior art keywords
satellite
earth
attitude
spin
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53075966A
Other languages
Japanese (ja)
Other versions
JPS554505A (en
Inventor
一郎 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP53075966A priority Critical patent/JPS6050284B2/en
Publication of JPS554505A publication Critical patent/JPS554505A/en
Publication of JPS6050284B2 publication Critical patent/JPS6050284B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 この発明は、簡単にして高精度なスピン衛星の姿勢測定
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a simple and highly accurate method for measuring the attitude of a spinning satellite.

従来スピン衛星の姿勢測定方法としては、太陽センサと
、地陽センサと、太陽センサから得られるデータを、重
み付き最小二乗法により、統計処理することにより求め
る方法が公知であつた。
As a conventional method for measuring the attitude of a spin satellite, a method has been known in which data obtained from a sun sensor, a sun sensor, and a sun sensor are statistically processed using the weighted least squares method.

第1図、第2図はその原理の一例を説明するための図で
ある。第1図においてPはスピン衛星、Eは地球、Sは
太陽を示す。PE方向およびPS方向の単位ベクトルを
それぞれVEおよびVsとする。スピン軸方向の単位ベ
クトルsと、VEおよびV、となす角φEおよびφ、は
、それぞれ地球センサおよび太陽センサにより計測され
る角度であり、以後、コーン角と呼ぶ。VBI、V、は
衛星の軌道情報および天文情報より知り得る。φB、φ
sが計測されれば、Sは第2図に示すようにVEおよび
Vsを軸とし、半頂角φEおよびφ、の2つの円錐の支
線5、または50と、方向が同じ単位ベクトルとして求
めることができる。5、または52のいずれか一方は真
の姿勢を示していない故、真の姿勢を判別する必要があ
る。
FIGS. 1 and 2 are diagrams for explaining an example of the principle. In FIG. 1, P represents a spinning satellite, E represents the earth, and S represents the sun. Let the unit vectors in the PE direction and the PS direction be VE and Vs, respectively. The angles φE and φ formed by the unit vector s in the spin axis direction and VE and V are angles measured by the earth sensor and the sun sensor, respectively, and are hereinafter referred to as cone angles. VBI, V, can be known from satellite orbit information and astronomical information. φB, φ
Once s is measured, S can be found as a unit vector with the same direction as the branch line 5 or 50 of the two cones with half apex angles φE and φ, with VE and Vs as axes, as shown in Figure 2. I can do it. Since either 5 or 52 does not indicate the true attitude, it is necessary to determine the true attitude.

それは、以下のようにして行われる。一般にスピン衛星
の姿勢は安定していて、短時間に変動しない。従つて、
5、、50のうち、真の姿勢を示す方は、時間的に安定
しているが、他方は、衛星が地球を周回するにつれて比
較的、速やかに移動する故、容易に判別可能である。次
に、複数個のφE、φsのデータを統計処理する従来の
方法を以下に述べる。第3図はスピン軸方向を示すベク
トルの表示方法を示す。γを、春分点方向、Zを地球北
極方向としsの方向を、赤経α。および赤緯δ。で表現
する。今、状態ベクトルとして、X=(α0、δ0、Δ
φE、Δφs)“を選ぶものとする。ここにΔφEおよ
びΔφSは、地球センサおよび太陽センサのミスアライ
ンメントとし、()゛は、転置を意味するものとする。
このヨとき、Xを推定するために、次のような逐次修正
法が用いられる。すなわち、初期値として、適当なVを
与え、以下、次のように微分修正ΔXを加える。ΔX=
(HTWH)−゛HTW(Θ−Θ) ・・・・・・(1
)ここに、各記号は以下のように定義するものとする。
This is done as follows. Generally, the attitude of a spinning satellite is stable and does not change over a short period of time. Therefore,
Among the satellites 5, 50, the one showing the true attitude is stable over time, but the other can be easily determined because it moves relatively quickly as the satellite orbits the earth. Next, a conventional method for statistically processing data of a plurality of φE and φs will be described below. FIG. 3 shows a method of displaying a vector indicating the spin axis direction. γ is the direction of the vernal equinox, Z is the direction of the earth's north pole, and the direction of s is the right ascension α. and declination δ. Expressed as Now, as a state vector, X = (α0, δ0, Δ
φE, Δφs)", where ΔφE and ΔφS are the misalignments of the earth sensor and the sun sensor, and ()" means transposition.
In this case, in order to estimate X, the following successive correction method is used. That is, an appropriate V is given as an initial value, and a differential correction ΔX is added as follows. ΔX=
(HTWH)-゛HTW(Θ-Θ) ・・・・・・(1
) Here, each symbol shall be defined as follows.

Θ:N回だけ、φBとφsが計測されたとして、それら
をφIE!1|φE29’゜゜9φEN、φ51|φS
29″。
Θ: Assuming that φB and φs are measured N times, they are φIE! 1|φE29'゜゜9φEN, φ51|φS
29″.

9φSNと置き)θ=(φEl9φE29l9φEN9
φSl9φS29=9φSN)Tと定 義される歩次の
ベクトル。
9φSN) θ=(φEl9φE29l9φEN9
Step vector defined as φSl9φS29=9φSN)T.

谷:姿勢推定値から計算したθの値 H:eをXで偏微分したへ×4の行列すなわ ち、W:
2NX2Nの対角行列。
Valley: value of θ calculated from the estimated pose value H: A ×4 matrix obtained by partially differentiating e with respect to X, that is, W:
2Nx2N diagonal matrix.

対角要素はφE,(1 =1,2,・・,N)およびφ
Si(1=1,2,・・,N)の重みとし、分散の逆数
にと る。(1)式で与えられる修正を一般には複数回
実施し、修正値が十分小さくなる迄、繰返す。
The diagonal elements are φE, (1 = 1, 2,..., N) and φ
The weight is Si (1=1, 2,...,N), and it is taken as the reciprocal of the variance. The correction given by equation (1) is generally performed multiple times and repeated until the correction value becomes sufficiently small.

以上が従来の公知の方法の典型的な一例である。The above is a typical example of a conventional known method.

この方法には、次のような欠点がある。(1)行列の演
算や偏微分の計算等、多くの演算が必要なため、計算プ
ログラムの規模が大きくなる。(2)逆行列や行列の掛
算を含んだ逐次計算を、収束する迄、繰返す故、計算時
間が長くなる。
This method has the following drawbacks. (1) Since many operations such as matrix operations and partial differential calculations are required, the scale of the calculation program becomes large. (2) Since sequential calculations including matrix inversion and matrix multiplication are repeated until convergence, calculation time becomes long.

(3)計算過程が物理的に、理解し易い形とならない。
従つて本発明は従来の技術の上記欠点を改善するもので
、その目的は姿勢測定におけるデータ処理を簡易化して
短時間に簡単なプログラムにより姿勢を測定することに
ある。
(3) The calculation process is not physically easy to understand.
Therefore, the present invention aims to improve the above-mentioned drawbacks of the prior art, and its purpose is to simplify data processing in posture measurement and to measure posture in a short time using a simple program.

本発明の特徴とするところは、スピン衛星に搭載した地
球センサにより得られる。
The feature of the present invention is obtained by an earth sensor mounted on a spin satellite.

スピン軸と該スピン衛星から視た地球方向のなす角を半
頂角とし、該スピン衛星から視た地球方向を対称軸とし
.た円錐が、一定時間の間に複数個得られこれら円錐の
、曲面または平面との交線が複数個存在するとき、これ
ら複数個の交線からの距離が相互に等しくなるような点
Seの時間的な軌跡を求め該点Seの推定値を求め、こ
れをスピン軸方向Sとす・るごときスピン衛星の姿勢測
定方法にある。以下図面により詳細に説明する。本発明
では、姿勢検出器どして公知の地球センサを用いる。
The angle between the spin axis and the direction of the earth as seen from the spinning satellite is the half-vertex angle, and the direction of the earth as seen from the spinning satellite is the axis of symmetry. When a plurality of cones are obtained during a certain period of time and there are a plurality of lines of intersection of these cones with a curved surface or a plane, a point Se is found such that the distances from these lines of intersection are equal to each other. A method for measuring the attitude of a spin satellite includes finding a temporal trajectory, obtaining an estimated value of the point Se, and setting this as the spin axis direction S. This will be explained in detail below with reference to the drawings. In the present invention, a known earth sensor such as an attitude detector is used.

すなわち、第1図に示した、いわゆるコーン角φEを公
知の方法で検出する。なお、参考のために第4図に、そ
の検出方法の一実施例を示す。すなわち衛星のスピン軸
Sに垂直な平面から、δの取付け角で2台の赤外線望遠
鏡T1およびT2を搭載する。今、スピンに伴つて望遠
鏡が、地球をスキャンする角度を第4図に示すようにφ
1,φ2とする。このとき、Sと地球方向単位ベクトル
VOのなす角φ。は、次の式で与えられる。地球方向の
単位ベクトルVIll:は、衛星が地球を周回するに従
い方向が変り、衛生が地球を一周す7る間に、360向
だけ回転する。
That is, the so-called cone angle φE shown in FIG. 1 is detected by a known method. For reference, FIG. 4 shows an example of the detection method. That is, two infrared telescopes T1 and T2 are mounted at an installation angle of δ from a plane perpendicular to the spin axis S of the satellite. Now, as the telescope scans the Earth as it spins, the angle at which it scans the Earth is φ, as shown in Figure 4.
1, φ2. At this time, the angle φ between S and the unit vector VO in the earth direction. is given by the following formula. The unit vector VIll: in the earth direction changes direction as the satellite orbits the earth, and rotates in 360 directions while the satellite goes around the earth.

第5図は、単位球上に地球方向単位ベクトル■。、スピ
ン軸方向Sおよび円錐の軌跡を表示した図である。第5
図中、LOは、衛生が地球を1周する間に、■Eの先端
が描く軌跡、VEl,■TE.2,VTE.3は、時刻
Tl,ノT2,t3におけるVEを示す。また、Cl,
C2,C3はそれぞれVEl9■E29VE3を軸とし
〜コーン角φEl,φE2,φE3の円錐が単位球と交
る交線である。地球センサにより検出されるコーン角φ
。1,φE2,φE3に誤差が含まれない仮想的な場合
には、Cl,C2,C3は、一点で交り、これはスピン
軸方向Sに一致する。
Figure 5 shows the earth direction unit vector ■ on the unit sphere. , is a diagram displaying the spin axis direction S and the locus of the cone. Fifth
In the figure, LO is the trajectory drawn by the tip of ■E while the satellite orbits the earth once, VEl, ■TE. 2, VTE. 3 indicates VE at times Tl, T2, and t3. Also, Cl,
C2 and C3 are intersection lines where cones with VEl9, E29, and VE3 as axes and cone angles φEl, φE2, and φE3 intersect with the unit sphere, respectively. Cone angle φ detected by earth sensor
. In a hypothetical case in which 1, φE2, and φE3 do not include errors, Cl, C2, and C3 intersect at one point, which coincides with the spin axis direction S.

実際には、センサのミスアラインメントや、ウオブルお
よび雑音等に基づく誤差のため、Cl,C2,C3は一
点で交わらず、球面三角形を描くのが一般的である。一
般には上記センサの誤差は、小さい値であり、この範囲
では(ベクトルSの先端付近)、上述の球面三角形は平
面上の三角形で近似される。また、第5図の例では、3
時刻におけるデータを考えたが、一般にはN時点即ちt
=Tl,t2,t3,・・,T,,・・,TNにおける
VIlllおよびφEのデータの組が得られる。これを
)(■El9φE1) (VE29φE2) (■
E39φE3) (VEi9φEi)
(■EN9φεN)と置く。本発明は、第6図に示す
ように、このとき得られる多角形(交線Cl,C2,C
3のベクトルSの先端付近を直線で近似して得られる多
角形)を用いて真の姿勢を知ることを特徴としている。
第6図は、C,(1=1,2,3,N)により得られる
近似的な多角形を示す。前述の通り、センサに含まれる
雑音等により、多角形は不規則となり必ずしも正多角形
とはならない。これらを統計的に処理し、多角形の中心
付近にあるスピン軸方向の推定点Seを求める。そのと
きSeから各直線への距離11(1=1,2,3,・・
,N)の平近値Vli/Nはミスアラインメント
1=1の推定値を与える。
In reality, Cl, C2, and C3 do not intersect at one point, but generally draw a spherical triangle because of errors caused by sensor misalignment, wobble, noise, and the like. Generally, the error of the sensor is a small value, and in this range (near the tip of the vector S), the spherical triangle described above is approximated by a triangle on a plane. In addition, in the example of Fig. 5, 3
Although we considered data at time, in general, data at time N, that is, t
=Tl, t2, t3, . . . , T, . . ., a data set of VIIll and φE at TN is obtained. This) (■El9φE1) (VE29φE2) (■
E39φE3) (VEi9φEi)
(■EN9φεN). In the present invention, as shown in FIG.
It is characterized by knowing the true posture using a polygon (obtained by approximating the tip of the vector S in No. 3 with a straight line).
FIG. 6 shows an approximate polygon obtained by C, (1=1,2,3,N). As mentioned above, the polygon becomes irregular due to noise contained in the sensor and is not necessarily a regular polygon. These are statistically processed to obtain an estimated point Se in the spin axis direction near the center of the polygon. At that time, the distance from Se to each straight line is 11 (1 = 1, 2, 3,...
, N) is the average value Vli/N of misalignment.
Gives an estimate of 1=1.

第7図はスピン軸姿勢が、ゆつくりと変動しSeが時間
の関数として変化する場合の実施例を示す。ここにSe
は、ベクトルSの先端を示す。各C,を直線とみなし(
X,y)座標で表現する。今、x<!:.yを時間t(
7)M次の関数で近似できるものとする。すなわち、時
刻tにおいて、と与えらf或と仮定し、係数P,,q,
(j=0,1,2,・・,M)を決定する。
FIG. 7 shows an example in which the spin axis attitude changes slowly and Se changes as a function of time. Se here
indicates the tip of vector S. Regard each C, as a straight line (
Expressed in x, y) coordinates. Now x<! :. y to time t(
7) Assume that it can be approximated by an M-order function. That is, at time t, assuming that f is given, the coefficients P,,q,
(j=0,1,2,...,M) is determined.

時刻t1におけるC,の方程式をと置く。Let the equation of C at time t1 be.

今、時刻T,におけるSeの位置の座標を(X,,yO
とすると、(X,,yOから、直線C,迄の距離hは、
次式で与えられる。と書き直される。
Now, let the coordinates of the position of Se at time T, be (X,,yO
Then, the distance h from (X,, yO to straight line C,
It is given by the following formula. is rewritten as

hの推定値をZとし、評価関係Lを次のように定義する
。今、Lがh示になるように、Pj,qj(j=0,1
,2,・・,M)及びZを決定する。
Let Z be the estimated value of h, and define the evaluation relationship L as follows. Now, Pj, qj (j=0, 1
,2,...,M) and Z.

Lの中に、絶対値記号が存在するためLの最小点を求め
るには、一般には逐次法が要求される。一例として、N
ewtOn−RaphsOn法を適用すると以下のよう
になる。初期値として、あるP,,q,(j=0,1,
2,・・,M)及びzを選びそのときのX,,y,に対
し、L≧0なるうにA,,b,,c,の符号を決める。
Since absolute value symbols exist in L, an iterative method is generally required to find the minimum point of L. As an example, N
Applying the ewtOn-RaphsOn method results in the following. As an initial value, a certain P,,q,(j=0,1,
2, .

(1=1,2,3,・・,N)このとき、L最小の条件
より、これより、(2M+1)個の未知数P,,q,(
j=0,1,2,・・,M),Zに関して以下の0M+
1)個の方程式を得る。
(1=1,2,3,...,N) At this time, from the condition of minimum L, from this, (2M+1) unknowns P,, q, (
j=0,1,2,...,M), the following 0M+ for Z
1) Obtain equations.

ここに、次のように置いた。I put it here like this:

連立方程式(6)を解いて得られたP,,q,がXi,
y,(1=1,2,3,・・,N)に対し、h≧0を与
えるとは限らず、h≧0なるようA,,b,,Clの符
号を直して、再度上述の連立方程式を立てて、P,,q
,,Zを計算する。
P,,q, obtained by solving the simultaneous equations (6) are Xi,
For y, (1=1,2,3,...,N), h≧0 is not necessarily given, but the signs of A,, b,, Cl are changed so that h≧0, and the above is repeated. Set up simultaneous equations, P,, q
, , calculate Z.

この過程を繰返し、Lの値の改善が小さくなつたときを
収束とみなす。以上説明したように本発明によれば、ス
ピン衛1星の姿勢決定が(6)式で与えられる連立方程
式を解くことに帰着され、しかも、通常(6)式は低元
の方程式であつて、計算時間は極めて短く、また計算プ
ログラムも小規模となる。
This process is repeated, and convergence is considered when the improvement in the value of L becomes small. As explained above, according to the present invention, the attitude determination of the spin satellite 1 is reduced to solving the simultaneous equations given by equation (6), and usually equation (6) is a low-element equation. , the calculation time is extremely short, and the calculation program is also small-scale.

また、ミスアラインメントは第6図に示すように視覚的
に明瞭な形で表現され、且つ、従来小さくすることが厳
しく要求されたミスアラインメントの大きさが任意に選
び得て、しかも姿勢決定精度がミスアライントの大きさ
に全く依存しない等の利点がある。
In addition, misalignment is expressed in a visually clear form as shown in Figure 6, and the size of misalignment, which was traditionally strictly required to be reduced, can be arbitrarily selected, and posture determination accuracy is improved. It has advantages such as not depending on the magnitude of misalignment at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、スピン衛星の姿勢と、地球、太陽方向の関係
を示す図、第2図は、スピン軸方向が2つの円錐の交線
として求まることを示す図、第3図は姿勢を表現する赤
経・赤緯の定義を示す図、第4図は、地球センサにより
、コーン角を検出するための公知の原理を説明する図、
第5図は、本発明の原理を説明するための、複数時点に
おけるコーンの交点を示す図、第6図は、第5図のうち
、コーンの交点付近を平面で近似して拡大した図、第7
図は時間的に姿勢が変化するときの様子を示す図である
。 E・・・・・・地球、S・・・・・・太陽、S・・・・
・・スピン軸方向単位ベクトル、■。
Figure 1 is a diagram showing the relationship between the spin satellite's attitude and the directions of the Earth and the sun. Figure 2 is a diagram showing that the spin axis direction is determined as the intersection line of two cones. Figure 3 represents the attitude. Figure 4 is a diagram illustrating the known principle for detecting cone angle by an earth sensor.
5 is a diagram showing the intersection points of cones at a plurality of points in time for explaining the principle of the present invention; FIG. 6 is an enlarged view of the vicinity of the intersection points of the cones in FIG. 5 approximated by a plane; 7th
The figure is a diagram showing how the posture changes over time. E...Earth, S...Sun, S...
...Unit vector in the spin axis direction, ■.

Claims (1)

【特許請求の範囲】[Claims] 1 スピン衛星に、搭載した地球センサにより得られる
、スピン軸と該スピン衛星から視た地球方向のなす角を
半頂角とし、該スピン衛生から視た地球方向を対称軸と
した円錐が、一定時間の間に複数個得られ、これらの円
錐の、曲面または平面との交線が複数個存在するとき、
これらの複数個の交線からの距離が、相互にほゞ等しく
なるような点S_eの時間的な軌跡を求め該点S_eの
推定値を求め、これをスピン軸方向Sとすることを特徴
とするスピン衛星の姿勢測定方法。
1. The angle between the spin axis and the earth direction as seen from the spin satellite, obtained by the earth sensor mounted on the spin satellite, is the half-apex angle, and the cone whose axis of symmetry is the earth direction as seen from the spin satellite is constant. When multiple cones are obtained over time and there are multiple lines of intersection of these cones with a curved surface or plane,
A temporal trajectory of a point S_e whose distances from these plurality of intersection lines are approximately equal to each other is found, an estimated value of the point S_e is found, and this is set as the spin axis direction S. A method for measuring the attitude of a spinning satellite.
JP53075966A 1978-06-24 1978-06-24 How to measure the attitude of a spinning satellite Expired JPS6050284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53075966A JPS6050284B2 (en) 1978-06-24 1978-06-24 How to measure the attitude of a spinning satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53075966A JPS6050284B2 (en) 1978-06-24 1978-06-24 How to measure the attitude of a spinning satellite

Publications (2)

Publication Number Publication Date
JPS554505A JPS554505A (en) 1980-01-14
JPS6050284B2 true JPS6050284B2 (en) 1985-11-07

Family

ID=13591464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53075966A Expired JPS6050284B2 (en) 1978-06-24 1978-06-24 How to measure the attitude of a spinning satellite

Country Status (1)

Country Link
JP (1) JPS6050284B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250831A (en) * 1984-05-24 1985-12-11 Heiwa Giken Kk Device for revolving transfer for press
JPH0715616Y2 (en) * 1987-05-22 1995-04-12 株式会社東芝 Press die with indexing device

Also Published As

Publication number Publication date
JPS554505A (en) 1980-01-14

Similar Documents

Publication Publication Date Title
CN101344391B (en) Lunar vehicle posture self-confirming method based on full-function sun-compass
Wu et al. A new technique for INS/GNSS attitude and parameter estimation using online optimization
CN109556631B (en) INS/GNSS/polarization/geomagnetic combined navigation system alignment method based on least squares
CN104374388B (en) Flight attitude determining method based on polarized light sensor
CN105737858B (en) A kind of Airborne Inertial Navigation System attitude parameter calibration method and device
CN110954102B (en) Magnetometer-assisted inertial navigation system and method for robot positioning
CN105160125B (en) A kind of simulating analysis of star sensor quaternary number
CN112414413B (en) Relative angular momentum-based angle-only maneuvering detection and tracking method
CN102175241A (en) Autonomous astronomical navigation method of Mars probe in cruise section
CN105806369B (en) A kind of in-orbit aberration modification method of star sensor
CN113551668A (en) Spacecraft inertia/fixed star light vector/star light refraction combined navigation method
CN109489661B (en) Gyro combination constant drift estimation method during initial orbit entering of satellite
CN113686299B (en) Marine dynamic target positioning and moving speed prediction method
CN112562077A (en) Pedestrian indoor positioning method integrating PDR and prior map
CN111044082B (en) Gyro error parameter on-orbit rapid calibration method based on star sensor assistance
CN109931952A (en) The direct analytic expression coarse alignment method of inertial navigation under the conditions of unknown latitude
CN112525203A (en) Spacecraft autonomous astronomical navigation method based on angle constraint auxiliary measurement
CN112985420A (en) Small celestial body attachment optical navigation feature recursion optimization method
CN109708663A (en) Star sensor online calibration method based on sky and space plane SINS auxiliary
Deschênes et al. Lidar scan registration robust to extreme motions
CN108871319B (en) Attitude calculation method based on earth gravity field and earth magnetic field sequential correction
JPS6050284B2 (en) How to measure the attitude of a spinning satellite
CN109099911B (en) Navigation positioning method and system for aviation system
CN114509071B (en) Attitude measurement method for wind tunnel test model
US6456371B1 (en) Attitude determination with earth horizon-crossing indicators and relative-attitude propagation