JPS60501367A - wave power generation device - Google Patents

wave power generation device

Info

Publication number
JPS60501367A
JPS60501367A JP58501648A JP50164883A JPS60501367A JP S60501367 A JPS60501367 A JP S60501367A JP 58501648 A JP58501648 A JP 58501648A JP 50164883 A JP50164883 A JP 50164883A JP S60501367 A JPS60501367 A JP S60501367A
Authority
JP
Japan
Prior art keywords
float
impeller
generator
power generation
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58501648A
Other languages
Japanese (ja)
Inventor
トレプル,ジヨン エ−, ザ セカンド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS60501367A publication Critical patent/JPS60501367A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/181Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation
    • F03B13/1815Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for limited rotation with an up-and-down movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Massaging Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 板 力 発 庫: 装 硝 千支fホ丁分野 本発明は、波の作用により生ずる海水の迎初から電力を発生することに関↑るも のである。[Detailed description of the invention] Board power source: Soso Thousand branch f hot field The present invention relates to the generation of electric power from the beginning of seawater generated by wave action. It is.

背 景 技 イ、も1 海水連動のエネルギを動力化しよらとする従来の試みとしては、王をこ潮汐作用 に基ついγこり、または−゛II−II−潮イる彼の連動を利用した筬分複雑な 計画に基づいたa雑な計画があった。しかし、矩′力需要が小規模なへんぴな海 浜地域においては、従来提案された計画はコストの面から実用的ではなかった。Background technique A, Mo1 Previous attempts to convert seawater-related energy into power have been based on tidal action. Based on the There was a rough plan based on the plan. However, in remote seas where the demand for rectangular power is small, In the beach area, previously proposed plans were not practical due to cost considerations.

従って、海水の波の作用から電気を経済的に発生して大観4な用途にもまた小規 模な用途にも適用できる構成簡午で信頼性の高い装置に対する必要性がある。Therefore, electricity can be economically generated from the action of seawater waves and can be used for large-scale purposes as well as for small-scale purposes. There is a need for a simple and reliable device that can be applied to various applications.

発 明 の 開 示 本発明は海の1皮の作用から市、力を生ずる、構成5Q1卑てイ1;、頼性の高 い装動を提供する。本発明tば、基本的には、適当なインペラ部材を介して波に 浮ぶフロートによす駆動されるビニオンまたはスプロケットにより構成される。Demonstration of invention The present invention generates power from the action of the skin of the sea, and has a highly reliable configuration. Provides easy loading. The present invention basically allows waves to pass through a suitable impeller member. Consists of a pinion or sprocket driven by a floating float.

このピニオンまたはスプロケットにより一方面クラッチ構成を介してフライホイ ールを駆動する。このフライホイールか発電機を駆動して市′Aを発生する。This pinion or sprocket connects the flywheel through a one-sided clutch configuration. drive the wheel. This flywheel drives a generator to generate city'A.

本発明による装置がいかなる潮位でもすべての波の運動を利用することができる ようにするため、所要に応してフロート作動インペラ部材か潮の干満による潮位 限界に達したときに装置を自動的に調整する機構を設けることができる。The device according to the invention can take advantage of all wave motion at any tide level. Float-operated impeller components or tidal-driven A mechanism can be provided to automatically adjust the device when limits are reached.

本発明の他の特徴によれば、フロートか、波の上下動からだけでなく、装部を設 置する位置でとさどき発生する海揄の水平移動からも持上刃を生ずる構成とする 。According to another feature of the invention, it is possible to protect the The structure is such that a lifting blade is generated even from the horizontal movement of the sea stroke that occurs at the position where the blade is placed. .

図面の簡単な説明 第1図は本発明による好適な実施例を自然の10境に設置した状態を示す斜視図 。Brief description of the drawing FIG. 1 is a perspective view showing a preferred embodiment of the present invention installed in a natural environment. .

第2図は第1図の実施例の主要機構を称す側面図。FIG. 2 is a side view showing the main mechanism of the embodiment shown in FIG.

第3図は詠発明の変更例の機構の側面図。FIG. 3 is a side view of a mechanism according to a modification of the invention.

第4図は本発明の他の変更例の側面図。FIG. 4 is a side view of another modification of the present invention.

第5図は本発明の更に他の変更例の側面図。FIG. 5 is a side view of still another modification of the present invention.

ゐ)6図は本発明に使用するのに適した好適な型式のフロートの端面図。ii) Figure 6 is an end view of a preferred type of float suitable for use in the present invention.

第7図は第6図の7−7線上のフロートの縦断面図。FIG. 7 is a longitudinal sectional view of the float on line 7--7 in FIG. 6.

第8図は潮位変動を補償する機構の側面図。Figure 8 is a side view of the mechanism that compensates for tidal level fluctuations.

第9図は満潮期におけるインペラの行程の1,0点に対応する位置にある第8閲 と同じ機構の側面[A。Figure 9 shows the eighth observation point located at the position corresponding to the 1 and 0 points of the impeller stroke during the high tide period. Aspects of the same mechanism as [A.

第10図は第5図に示す実施例に使用するのに特に適した潮位変動機構の変更例 の一部断面とする1j、ll 11!Tj図。Figure 10 is an example of a modification of the tidal level fluctuation mechanism particularly suitable for use in the embodiment shown in Figure 5. 1j, ll 11! Tj diagram.

第11図は第10間の11−11線■二の横断面図。FIG. 11 is a cross-sectional view taken along line 11-11 (2) between the 10th and 10th sections.

第12図は第11図の12−12絆上の拡大詳細1断面図。FIG. 12 is an enlarged detailed cross-sectional view of the bond 12-12 in FIG. 11.

図面の簡単な説明 第1図は本発明の代表的な好適例を示す。支柱2例えばポールまたはマスト10 化、波の一部を利用すべき水@11の適正位僅に位置決めする。支柱10に取付 けた取付ブラケット12によりフライホイール16を具んた発電機14を支持す る。フライホイール16をスブロケッI・18によりv)°通の一方向クラッチ (図示せす9を介して駆動する。この一方向クラッチは、この機構がフライホイ ール16をチェーン22の」−ハ移動により駆動し、チェーン22の下降移動中 はフライホイール16あよひ発電機14を消勢することかできる構成にすると好 適である。代案として普通の伝動装置を一方向クラッチの代りに設け、互いに逆 向きのラチェットの付いた適当な歯車装置を介して、チェーン22の上下移動に もフライホイール16ヲ同一方向に駆動するようにすることもできる。Brief description of the drawing FIG. 1 shows a typical preferred embodiment of the present invention. Post 2 e.g. pole or mast 10 , and slightly position the water @ 11 at the appropriate point where part of the waves should be used. Attached to post 10 A generator 14 with a flywheel 16 is supported by a girder mounting bracket 12. Ru. Flywheel 16 is connected to sub-block I/18 by v)° one-way clutch (It is driven via 9 shown in the figure.) This one-way clutch is The wheel 16 is driven by the movement of the chain 22, and the chain 22 is moving downward. It is preferable to have a configuration in which the flywheel 16 and the baby generator 14 can be deenergized. suitable. As an alternative, an ordinary transmission may be provided in place of the one-way clutch, and The vertical movement of the chain 22 is controlled through a suitable gearing mechanism with oriented ratchets. It is also possible to drive the flywheel 16 in the same direction.

チェーン22は、ブラケッ)12に取付けた回動軸受28に回動自在に取付けた 1対の相互連結したアーム24゜26の各外端間に張り渡す。つり合いii!3 0を設けて回動軸受28に関してアーム24.28とつり合いをとるようにする とよい。引張ばね31を設け、チェーン22をピニオンギア18に圧着させるこ ともできる。The chain 22 is rotatably attached to a rotation bearing 28 attached to the bracket 12. It spans between each outer end of a pair of interconnected arms 24 and 26. Balance ii! 3 0 to balance the arm 24.28 with respect to the pivot bearing 28. Good. A tension spring 31 is provided to press the chain 22 to the pinion gear 18. Can also be done.

フロートの特別な構成については後に説明するが、このフロート32を部分34 においてアーム26に回動自在に取付ける。リンク33を、フロート32のフロ ート軸36、アーム26およびブラケット35に協働させ、フロート軸36を常 に垂直状態に維持するパンタブラフ構成をなすようにする。The special configuration of the float will be explained later, but this float 32 is It is rotatably attached to the arm 26 at. link 33 to the floor of float 32. The float shaft 36, the arm 26 and the bracket 35 work together to keep the float shaft 36 at all times. form a pantobluff configuration that maintains it vertically.

第3図ないし第5図に、ピニオンギア118を駆動する他の機構を示し、このピ ニオンギア118はフライホイール16および発電機14を駆動するのに第1図 および第2図に示すスブロケッ1−18と同様の作用をする。第3図の駆動機構 が、特にチェーン22の代りに弓形ギアセグyント122を使用した点が第1図 および第2図のものと異なる。第4図の他の変更例では、駆動素子としてラック ギア222を使用し、このラックギア222は、支柱10に取付けた案内ブラケ ット40,42に支持して垂直移動自在にする。ランクギア222の下端を20 −)・軸36に固着して波の作用により垂直移動かてきるよう゛にする。第4図 の実施例の場合、ラックギア222を予憩されるすべての潮位変動に対処できる のiこ十分な長さに容易にすることかできるため潮位調整機構は必要でない。3 through 5 show other mechanisms for driving the pinion gear 118, The onion gear 118 drives the flywheel 16 and the generator 14 as shown in FIG. The subblock 1-18 shown in FIG. 2 functions similarly to the block 1-18 shown in FIG. Drive mechanism in Figure 3 However, in particular, the point that an arcuate gear segment 122 is used instead of the chain 22 is as shown in Fig. 1. and different from that in Fig. 2. In another modification of FIG. 4, a rack is used as a driving element. A gear 222 is used, and this rack gear 222 is connected to a guide bracket attached to the column 10. It is supported by supports 40 and 42 to be vertically movable. 20 at the lower end of rank gear 222 -) - It is fixed to the shaft 36 so that it can be moved vertically by the action of waves. Figure 4 In the case of the embodiment, the rack gear 222 can cope with all tidal level fluctuations. No tidal level adjustment mechanism is required since the length can be easily adjusted to a sufficient length.

第5しJの更に他の変更例においては、インペラ素子を、支柱10に取イ」けた 軸受44に支承した回転ギア322とする6駆動ロンド46を枢着点48で回転 ギア322に偏1心させて連結し、部分50でフロート軸36に連結する。In yet another modification of No. 5, the impeller element is mounted on the column 10. A six-drive iron 46, which is a rotating gear 322 supported on a bearing 44, is rotated at a pivot point 48. It is eccentrically connected to the gear 322 and connected to the float shaft 36 at the portion 50.

案内52におけるフロート軸36の垂直移動は、第5閣から容易にわかるように 、モア322の回転匣勅に笈りされる。The vertical movement of the float shaft 36 in the guide 52 is easily seen from the fifth cabinet. , is carried out by the rotary box of the mower 322.

枢着点48が軸受44の真上または真下にくる位1a(この位置ではギア322 が回転を起こしにくい)でこの機構か停止するのを防ローするため、錘54を回 転ギア322に設け、休止しても機構を中間位δに押しやるようにする。Position 1a where the pivot point 48 is directly above or below the bearing 44 (in this position, the gear 322 The weight 54 is rotated to prevent this mechanism from stopping due to It is provided in the rotation gear 322 so as to push the mechanism to the intermediate position δ even when the mechanism is stopped.

第8図および第7図はフロート32の好適例を示す。8 and 7 show preferred examples of the float 32. FIG.

この好−例においては、フロート32(中空体または浮揚性のある材料により構 成する)をフロート軸36から旋回機構60を介して懸垂し、この旋回機構80 により垂不側力翼82.64が湾曲面66とともに作、甲してフロート32の位 置決めをすることができ、水N11(第1図不照)に存在するいかなる測流また は他の海流でも水流が矢印68(第7図参照)の方向からフロートに接近するよ うにすることかできる。水流が矢印68の方向からフロートに按、近すると、湾 曲面66に水流が衝突してフロート自体の浮力により生ずる持上刃よりも大きな 持」−力を伺加的に発生させることができる。In this preferred example, a float 32 (made of a hollow body or a buoyant material) is used. ) is suspended from the float shaft 36 via a turning mechanism 60, and this turning mechanism 80 Due to this, the vertical force wing 82.64 is made with the curved surface 66, and the position of the float 32 is Any currents or currents present in water N11 (not shown in Figure 1) In other ocean currents, the water current approaches the float from the direction of arrow 68 (see Figure 7). I can do it. When the water current approaches the float from the direction of arrow 68, the bay It is larger than the lifting blade generated by the buoyancy of the float itself when the water flow collides with the curved surface 66. ``Holding'' - able to generate additional force.

フロート32は自動的に水域に存在する水流方向68に指向するよう旋回するか 、この旋回は、−股に拡開する1対のアーム82a、92bを支持するジャーナ ル9oと、フロート320本体に形成してフロート軸36の端部を回動自在に収 容するジャーナル94とよりなる旋回構成により生する。この構成により凧向計 か風下に回転する(即ち、キャスタリング作用)のと全く同じにフロート32は いかなる同きでも水1介の方向1(8に回転する。このとき、フロート32の本 体に対するジャーナル34およびアーム92の位置は、波と潮汐の合成作用によ ってほぼフロート軸36と同軸の方向に心決めされた′r、A力を生ずることか できるものとなる。Does the float 32 automatically turn to point in the water flow direction 68 present in the body of water? , this rotation is caused by a journal supporting a pair of arms 82a and 92b that expand to the crotch. 9o and is formed on the float 320 body to rotatably accommodate the end of the float shaft 36. This is achieved by a pivoting configuration consisting of a journal 94 that accommodates the shaft. With this configuration, the kite indicator The float 32 rotates downwind (i.e., castering action) in exactly the same way. At any time, the water rotates in direction 1 (8). At this time, the main part of the float 32 The position of journal 34 and arm 92 relative to the body is determined by the combined action of waves and tides. This produces forces 'r and A centered approximately in the direction coaxial with the float axis 36. Become what you can.

第8図および第8図は潮汐作用による平均水位の変動を補償する調整機構を示す 。第1図ないし第3図の下側アーム26は枢着点34で切欠き付きのブラケット 7゜により分断され、このブラケン)・を枢着点34でスリーブ72に所動自在 に連結する。引張りばね74により歯付き板76をNM点78の周りにブラケッ ト80に向けてF方に引上げる作用を行わせ、このブラケット80はスリーブ7 2に取付ける。歯付き板76かスリーブ72の内側のフロート軸36に接触して いる限りは、フロート軸36はスリーブ72に対して堅固に保持され、第1圀な いし第3閲につき説明したのと同様に作用する。Figures 8 and 8 show the adjustment mechanism that compensates for fluctuations in average water level due to tidal action. . The lower arm 26 of FIGS. 1-3 has a notched bracket at the pivot point 34. The bracket is separated by 7° and can be freely moved into the sleeve 72 at the pivot point 34. Connect to. A tension spring 74 brackets the toothed plate 76 around the NM point 78. The bracket 80 is pulled up in the F direction toward the sleeve 7 . Attach to 2. The toothed plate 76 contacts the float shaft 36 inside the sleeve 72. As long as the float shaft 36 is held firmly against the sleeve 72 and the first It works in the same way as explained for the third review.

潮が満ちる期間中、上行行程にあるフロートは下側アームを高く押し上げ灸よう とする。フロートが上行行程の頂点に達したときには第8図に示す状態となる。During the rising tide, the float on its upward stroke pushes the lower arm high to perform moxibustion. shall be. When the float reaches the top of its upward stroke, it will be in the state shown in FIG.

この時点では、切欠き付きのブラケット70の切欠き82が作用アーム86の水 平部分84に掛合してこの作用アーム86を押下げる。これによって画伯き板7 6は枢漬6、Bsの周りにばね?4の張力に抗して下方に回動I−、スリーブ7 2内でフロート軸36か自由に回動することかできるようになる。次にフロート が更に上行するとフロート+m36はスリーブ72内で上方に移動し、従ってフ ロート軸36の有効長さが短くなる。フロートの下行イ1程か始まると、切欠き 82は作用アーム86から離れ、フロート軸36は再ひスリーブ72にロックさ れる。At this point, the notch 82 of the notched bracket 70 is in contact with the water in the working arm 86. It engages the flat portion 84 and presses down this working arm 86. With this, the painter's board 7 6 is a spring around 6, Bs? Rotate downward against the tension of 4 I-, sleeve 7 2, the float shaft 36 can be freely rotated. then float As the float +m36 moves upwardly within the sleeve 72, the float +m36 moves upwardly within the sleeve 72, thus The effective length of the funnel shaft 36 becomes shorter. When the float begins to descend about 1 or so, the notch will open. 82 is separated from the working arm 86 and the float shaft 36 is re-locked to the sleeve 72. It will be done.

上潮時のフロート軸36の下行行程の限界位置では、フロート32が水面から抜 は出る状態となる。この時点ではフロート軸36の型部が相当増大することにな り、はね74の引張力に打ち勝ってフロート軸36がスリーブ72内で下方に摺 動することができるようになり、このとき歯付き板76はフロート軸36の壁面 から離脱する。At the limit position of the downward stroke of the float shaft 36 at the time of high tide, the float 32 is pulled out of the water surface. is in a state where it appears. At this point, the mold portion of the float shaft 36 will increase considerably. The floating shaft 36 overcomes the tensile force of the spring 74 and slides downward within the sleeve 72. At this time, the toothed plate 76 is attached to the wall surface of the float shaft 36. depart from.

第8同および第9図の機構の作用によりフロート軸36の有効長さを調整してフ ロート32か誦に彼の動作に応答するすべての行程に追従する二とができること 明らかであろう。The effective length of the float shaft 36 is adjusted by the mechanism shown in FIG. 8 and FIG. To be able to follow Roth 32 or recite every step in response to his movements. It should be obvious.

フロート軸36のための潮位調整機構の変更例を第10図ないし第12図に示す 。第10図ないし第12図の機構は第1図ないし第5図のいずれの実施例の装置 にも使用てさるが、特に第8図および第8図の調整機構を使用するのに適さない 第5図の実施例に使用するとよい。Modified examples of the tide level adjustment mechanism for the float shaft 36 are shown in FIGS. 10 to 12. . The mechanism shown in FIGS. 10 to 12 is the apparatus of any of the embodiments shown in FIGS. 1 to 5. may also be used, but is particularly unsuitable for using the adjustment mechanism shown in Figures 8 and 8. It may be used in the embodiment shown in FIG.

第10図に示すように、フロート32には、アーム92の一ヒ端とフロート32 の本体との間にわたり延在するスリーブ102を設ける。フロート軸36をスリ ーブ+02内に摺動自在・こ収容し、比申交的小さな制御フロート104をスリ ーブ102にブラケット106によって取付け このブラケット106には回動 軸受108を担持し、この回動軸受108に制御フロート104のアーム110 を支へする。@10図の機構を第5図の実施例に使用する場合、フロート32の ギヤスタリング作用は、フロート軸36の上方部分36aと下方部分38bとを 連結する旋回軸受112(第5図参傅)により行われる。As shown in FIG. 10, the float 32 includes one end of the arm 92 and the float 32. A sleeve 102 is provided that extends between the main body of the device. Slide the float shaft 36 A small control float 104 is slidably housed in the float +02. Mounted on the tube 102 with a bracket 106, this bracket 106 has a rotating It carries a bearing 108 to which the arm 110 of the control float 104 is attached. to support. @ When using the mechanism shown in Figure 10 in the embodiment shown in Figure 5, the float 32 The gear starring action causes the upper portion 36a and lower portion 38b of the float shaft 36 to This is done by a connecting pivot bearing 112 (see Fig. 5).

第10図ないし第12図に示す機構の作用は以下の通りである。The operation of the mechanism shown in FIGS. 10 to 12 is as follows.

水位が上行するにつれ、波頭における水位が更に上行する時点でフロート軸38 は究極的に行程の頂点に達する。このとき、フロート32がそれ以上上昇できな いとフロート32は水中に没することになる。As the water level rises, the float shaft 38 ultimately reaches the apex of the process. At this time, the float 32 cannot rise any further. Otherwise, the float 32 will be submerged in the water.

この場合フロー[・32に対して水位は制御フロート’104を上A−させるに 十分な十Aをする。このことによりアーム110は回動軸受108の周りに反時 計力量に回動する。第12UAの状態ではフロート軸36に強固に掛合している ドグlI[iの画伯き渦巻き状端面114 (第12図参1111)はこのとき フロート軸36を釈放し、フロート32をフロート軸3日に対して上宿させ、こ の結果制御フロート104か下降して再びフロート軸36をスリーブ102にの 下限において波の谷で水面から露出する。このことが生じたどき、フロートの重 量(制御フロート+04の重がよりも相因大きい)か歯付さ渦巻状端[i’1N 1aのロック作用に打ち勝って制御フロー1−10’4を引g上げ、スリーブ1 02 とともにフロート軸38に沿って下方に摺動し、フロート32は水中の平 素位置で古び浮遊する。In this case, the water level is such that the control float '104 is raised to A- for the flow [・32]. Do enough ten A. This causes the arm 110 to rotate around the rotation bearing 108. Rotate according to the measured amount. In the state of the 12th UA, it is firmly engaged with the float shaft 36. At this time, the painter's spiral end face 114 (see Figure 12, 1111) of dog lI [i] The float shaft 36 is released and the float 32 is placed on the float shaft for 3 days. As a result, the control float 104 descends and the float shaft 36 is reattached to the sleeve 102. At the lower limit, it is exposed above the water surface in the trough of the wave. When this happens, the weight of the float (the weight of the control float +04 is proportionally greater than) or the toothed spiral end [i'1N Overcoming the locking action of 1a, the control flow 1-10'4 is pulled up, and the sleeve 1 02 and slides downward along the float shaft 38, and the float 32 remains flat in the water. Floating in an old position.

上述したところは本発明の若干の例を示したに過ぎず、発明の範囲内で種々の変 更を加えることができること勿論である。本発明は図示の実施例に限定されるも のではなく、付記の請求の範囲によってのみ限定されるべきであり、請求の範囲 における多構成要件は答価範囲のものすべてを総称するものである。What has been described above merely shows some examples of the present invention, and various modifications may be made within the scope of the invention. Of course, additions can be made. Although the invention is limited to the embodiments shown, shall be limited only by the scope of the appended claims, and not by the scope of the claims appended hereto. ``Multi-component requirements'' is a general term for all the items in the answer range.

浄書(内容に変更なし) 国際調査報告Engraving (no changes to the content) international search report

Claims (1)

【特許請求の範囲】[Claims] 1. 波の運動から電力を発生させる装置において、 a)波の運動を受ける水域に固定配性した支持装置ど、 b) この支持装置に数句けた発電機と、C) この発電機に51連させ、回転 エネルギを蓄積して前記発′市機を駆動するフライホイール装置と、d)前記支 持装置に移動自在に取(−jけて前記フライホイール装置に回転エネルギを与え るインペラ装置と、 e)前記水域の波の動作に応答して前記インペラ装着を駆動する構成とし、キャ スタリング作用により水流の方向に指向することができるようにするjこめへ旋 回構成に連結したフロート装置であり、1)部分的に水没する浮揚性のあるフロ ート本体、 11)このフロート本体から垂下するほぼ平行な翼装置、 111)フロート本体の下面に設け、上端が前記翼装置の一端に隣接しかつ下端 が前記翼装置の他端に隣接する傾剰面、 iv)前記フロートをほぼ垂直な軸線の周りSこ回動自在に支持するフロート支 持装置 よりなるフロート装置と を具えたことを特徴とするマ反力発電装置。 2、 更に前記インペラ装置と発電機との間に介在させた一方向クラッチ装置を 具えたことを特徴とする請求の範囲第1.第13または第14項記載の波力発電 装置。 3、 前記インペラ装置は、 l)互いに一足角度をなし、その交点の周りに回動自在に支承した1対のアーム と、 百)前記アームの交点から離れた部分間にづレリ渡したチェーン装置と、 111)前記発電機に関連させ、また前記チェーン装置に掛合して前記アームの 回動の際に回転するスプロケット装置と ヲ塙するものとして構成したことを特徴とする請求の範囲第1項または第14項 記載の波力発電装置。 4、 前記アームのうちの一方と前記チェーン装置の一端との間に介在させたば ね装置を更に具え、このばね装置により前記チェーン装置を前記スプロケット装 置に押し付けて強固に掛合させる構成としたことを特徴とする請求の範囲第3項 または第14項記載の波力発電装置。 5、 前記インペラ装置は、 l)互いに一定角度をなし、その頂点の周りに回動自在に支承した1対のアーム と、 i+)前記アームの頂点からrIれた部分間に張り爬した弓形ギア装置と、 111)この弓形ギア装置に関連し、また前記弓形キア装貯に掛合して前記アー ムの回動の際に前記弓形キア装僅によって回転するピニオンギア装置とを有する ものとして構成したことを特徴とする請求の範囲第1項または第14項記載の波 力発電装置。 6、 前記インペラ装置は、 1)前記支持装置にほぼ垂直方向に摺動自在に数句けたラックギア装装置と、 11)前記発電機に関連し、かつ前記ラックギア装置6に掛合してこのラックギ ア装置の移動の際に回転するピニオンギア装置と、 ごイ1するものとして構成したことそ特徴とする請求Qノ範囲第1項または第1 4項記載の波力発電装置。 7 前記インペラ装置は、 1)前記支持装置に固着した回転ギア装置と、11)この回転ギア装置に偏心さ せて連結するとともに前記フロート装置に連結し、前記フロート装置の垂力移動 の際に前記回転ギア装置を回転させるリンク装置と、 1】】)前記発電機に関連し、かつ前記回転ギア装置に掛゛合してこの回転ギア 装置によって回転するビニオンキャ装置 とを有するものとして構成したことを特徴とする請求の範囲第1項または¥A1 4項配時0マ電力発電装置。 8、 前記回転ギア装置は、前記リンク装置の回転ギア装置との連結点が回転ギ ア装置の軸線から水平方間に大きくずれる位置に回転ギア装置を押しやることか できる位置に錘装置を配設したものとして構成したことを特徴とする請求の範囲 @7項記載の波力発電装置。 9、 フロート装置と前記支持装置との固着点との間に連結したバンクグラフ装 置を具え、このパンタグラフ装置により前記フロート装置をほぼ垂直移動のみを させる構成としたことを特徴とする請求の範囲第1項または$13項記載の波力 発電装置。 10、前記インペラ装置は垂直方向に限られた範囲内で移動自在にし、更に潮位 変動を補償する調整装置を設け、この調整装置は、 l)前記フロート装置に関連するフロート軸装置、 11)前記フロート軸装置を包囲するスリーブ装置、 11】)前記スリーブ装置に関連し、平素前記フロート軸装置に掛合するよう押 圧され、a記スリーブ装置に対して前記フロート軸装置か長手方向に摺動するの を防止する動作M止装置、 iv)前記インペラ装置か移動の上限に達したとき前記揚貨を釈放する釈放装置 、よりなるbのとして構成し、 ■)前記フロート装置がフロート軸装置に欠って本面から抜は出たとき前記フロ ート装置の重量により前記動作防止装置か解離する構成としたことを特徴とする 請求の範囲第1JJ11または第13項記載の波力発電装置。 +1.前記フロート軸装置を前記フロート装置に対して垂直方向に固定し、前記 フロート軸装置か前記支持装置6に対して一定角度をなすよう拘束し、前記釈放 装置は前記インペラ装置に対する前記フロート軸装置の相対角度に応答して作動 する構成としたことを特徴とする請求の範囲第10項または第14 JU記載の 波力発電装置。 +2−前記フロートM ”A Rそ前記フロート装置6しこ対して垂直方向に移 動自在にし、更に、制御フロート装置を設け、この制御フロート装置は前記フロ ート装置が過剰に水没した際に前記釈放装置を作動させる構成としたことを特徴 とする請求の範囲第10項または第14柳記載の波力発電装置。 13、波の運動から電力を発生させる装置において、a)波の運動を受ける水域 に固定I¥誼した支持装置と、 b)この支持装置に取付けた発電機と、C)この発電機に関連させ、回転エネル ギを蓄積して前記発電機を駆動するとフライホイール装置と、d)前記支持装置 に移動自在に取付けて前記フライホイール装置6に回転エネルギを与えるインペ ラ装置であり、 I)互いに一定角度をなし、その交点の周りに回動自在に支承した1対のアーム 、 II)前記交点に連結して前記1対のアームとのつり合いをとるつり合い錘、 】1】)前記アームの交点から離れた部分間に張り鍍したチェーン装置、 iv)前記発電機に関連させ、また前記チェーン装置に係合して前記アームの回 動の際に回転するスプロケット装置、 よりなるインペラ装置と、および・ e)前記水域の波の連動に応答して前記インペラを運動させるフロート装置と を具えたことを特徴とする波力発電装置。 14、波の運動から電力を発生させる装置において、a)波の運動を受ける水域 に固定配置した支持装置と、 b)この支持装置に取付けた発電機と、C)この発電機に関連させ、回転エネル ギを蓄積して前記発電機を駆動するフライホイール装置と、d)前記支持装置に 移動自在に取付けて前記フライホれた範囲の移動をするインペラ装置と、e)前 記水域の波の運動に応答して河記インペラ装置を運動させるフロート装置と、 f)潮位変動を補償する調整装置とを具え、この調整装置は、 1)前記フロート装置に関連するフロート軸装置、 11)前記フロート軸装置を包囲し、かつ前記インペラ装置に連結したスリーブ 装置、 111)前記スリーブ装置に関連し、乎素前記フロート軸装置に掛合するよう押 圧され、前記スリーブ装置に対して前記フロート軸装置が長手方向に摺動するの を防止する動作阻止装置、 iv)前記インペラ装置か移動の上限に達したとき前記掛合を釈放する釈放装部 、よりなるものとして構成し、 ■)前記フロート装置かフロート軸装置によって水面から抜き出たとき前記フロ ート装置の重量により前記動作阻止装置か解題する構成としたことを特徴とする 波力発電装置。 15、前記フロート装置は、 a)部分的に水没する浮揚性のあるフロート本体と、 b)このフロート本体から垂下するほぼ平行な翼装置と、 C)フロート本体の下面に設け、上端が前記翼装置の一端に隣接しかつ下端か前 記翼装置の他端に隣接する傾斜面と、 d)前記フロートをほぼ垂面な軸線の周り(こ回ψカ自在に支持するフロート支 持装飾と を有するものとして構成したことを特徴とする請求の範囲第13項または第14 項記載の波力発電装置。 16 前記垂直軸線を前記フロートの中心力)ら大きくすれた位置に配置し、前 記フロート(こキャスク(リンク1乍用を与える構成としたことを特徴とする請 求の範囲第15項記載の波力発電装置。1. In a device that generates electric power from wave motion, a) supporting devices fixedly placed in a body of water subject to wave motion; b) Several generators are attached to this support device, and C) 51 units are connected to this generator to rotate. d) a flywheel device that stores energy to drive the starting machine; and d) the support. The flywheel device is movably attached to the flywheel device (-j) and gives rotational energy to the flywheel device. an impeller device, e) The impeller mounting is configured to be driven in response to the movement of waves in the water body, and A turning point in the j that allows for orientation in the direction of the water flow due to starling action. A float device connected to a floating structure, which includes: 1) a partially submerged buoyant float; main body, 11) a substantially parallel wing arrangement depending from this float body; 111) Provided on the lower surface of the float main body, the upper end is adjacent to one end of the wing device, and the lower end is an inclined surface adjacent to the other end of the wing device; iv) a float support that supports the float rotatably around a substantially vertical axis; holding device The float device consists of A magnetic reaction force generating device characterized by comprising: 2. Furthermore, a one-way clutch device interposed between the impeller device and the generator Claim 1. Wave power generation according to item 13 or 14 Device. 3. The impeller device includes: l) A pair of arms that form an angle with each other and are rotatably supported around their intersection. and, 100) A chain device extending between the parts of the arms apart from the intersection; 111) associated with the generator and engaged with the chain device of the arm; A sprocket device that rotates when rotating. Claim 1 or 14, characterized in that it is configured as a The described wave power generation device. 4. A lever interposed between one of the arms and one end of the chain device further comprising a spring device, which spring device causes the chain device to be connected to the sprocket mounting. Claim 3, characterized in that the device is configured to be firmly engaged by being pressed against the device. Or the wave power generation device according to item 14. 5. The impeller device includes: l) A pair of arms that form a certain angle to each other and are rotatably supported around the apex of the arms. and, i+) a bow-shaped gear device extending between a portion rI from the apex of the arm; 111) In connection with this bow-shaped gear device and also engaged with the bow-shaped gear storage, the and a pinion gear device that is rotated by the bow-shaped gear when the arm rotates. The wave according to claim 1 or 14, characterized in that it is configured as power generator. 6. The impeller device includes: 1) a rack gear mounting device that is slidably mounted on the support device in a direction substantially perpendicular to the support device; 11) A rack gear associated with the generator and engaged with the rack gear device 6. a pinion gear device that rotates when the equipment is moved; Claim Q, Scope 1 or 1, characterized in that the The wave power generation device according to item 4. 7 The impeller device includes: 1) a rotary gear device fixed to the support device; and 11) an eccentric to the rotary gear device. and connected to the float device, and the vertical force movement of the float device a link device that rotates the rotating gear device when 1]) associated with the generator and engaged with the rotary gear device, the rotary gear Binion cap device rotated by device Claim 1 or ¥A1 characterized in that it is configured as having Section 4 time distribution 0ma power generation device. 8. The rotary gear device is such that the connection point of the link device with the rotary gear device is a rotary gear device. Pushing the rotating gear device to a position that is significantly horizontally offset from the axis of the device Claims characterized in that a weight device is disposed at a position where it is possible to @ Wave power generation device described in item 7. 9. A bank graph device connected between the float device and the fixing point of the support device. The pantograph device allows the float device to be moved almost only vertically. The wave force according to claim 1 or $13, characterized in that the wave force is configured to cause Power generator. 10. The impeller device is movable within a limited range in the vertical direction, and furthermore, the impeller device is movable within a limited range in the vertical direction, and A regulating device is provided to compensate for the fluctuations, the regulating device comprising: l) a float shaft device associated with the float device; 11) a sleeve device surrounding the float shaft device; 11]) Associated with the sleeve device and normally pressed to engage the float shaft device. The float shaft device slides in the longitudinal direction with respect to the sleeve device a. An operation M stop device that prevents iv) a release device for releasing the cargo when the upper limit of travel of the impeller device is reached; , constituted as b consisting of, ■) When the float device is removed from the main body due to a lack of the float shaft device, the float device is The invention is characterized in that the movement preventing device is configured to dissociate due to the weight of the boot device. The wave power generation device according to claim 1 JJ11 or claim 13. +1. The float shaft device is fixed perpendicularly to the float device, and The float shaft device is restrained to form a certain angle with respect to the support device 6, and the release The device is actuated in response to a relative angle of the float shaft device to the impeller device. Claim 10 or 14 JU, characterized in that Wave power generation device. +2-The float M"A" is moved in the vertical direction with respect to the float device 6. further provided with a control float device, the control float device being The release device is configured to operate when the exit device is excessively submerged in water. A wave power generation device according to claim 10 or 14. 13. In a device that generates electric power from wave motion, a) a body of water receiving wave motion; a supporting device fixed to the b) a generator mounted on this support; and C) a rotational energy source associated with this generator. d) the support device; an impeller that is movably attached to the flywheel device 6 and provides rotational energy to the flywheel device 6 It is a la device, I) A pair of arms that form a certain angle to each other and are rotatably supported around their intersection. , II) a counterweight connected to the intersection point to balance the pair of arms; 1]) a chain device stretched between parts of the arms apart from the intersection; iv) associated with said generator and engaged with said chain device to rotate said arm; A sprocket device that rotates during movement, an impeller device consisting of; e) a float device that moves the impeller in response to interlocking waves in the water body; A wave power generation device characterized by comprising. 14. In a device that generates electric power from wave motion, a) a body of water receiving wave motion; a support device fixedly arranged on the b) a generator mounted on this support; and C) a rotational energy source associated with this generator. a flywheel device for accumulating energy to drive the generator; and d) a flywheel device for accumulating energy to drive the generator; an impeller device which is movably attached and moves within the flywheel range; e) a front impeller device; a float device that moves a river impeller device in response to wave motion in a recording area; f) an adjustment device for compensating for tidal level fluctuations, the adjustment device comprising: 1) a float shaft device related to the float device; 11) A sleeve surrounding the float shaft device and connected to the impeller device. Device, 111) associated with said sleeve device and pressed to engage said float shaft device; pressure, and the float shaft device slides longitudinally relative to the sleeve device. a motion blocking device that prevents iv) a release device for releasing the engagement when the impeller device reaches its upper limit of travel; , composed of ■) When the float is removed from the water surface by the float device or the float shaft device, the float The invention is characterized in that the operation blocking device is determined based on the weight of the boot device. Wave power generation device. 15. The float device includes: a) a buoyant float body that is partially submerged; b) a substantially parallel wing arrangement depending from the float body; C) Provided on the lower surface of the float body, with the upper end adjacent to one end of the wing device and the lower end or front an inclined surface adjacent to the other end of the recording wing device; d) A float support that freely supports the float around a substantially vertical axis (this rotation with decoration Claim 13 or 14, characterized in that Wave power generation device as described in section. 16 Place the vertical axis at a position far away from the central force of the float, and This float (this cask) is characterized by being configured to provide one link. The wave power generation device according to claim 15.
JP58501648A 1983-03-30 1983-03-30 wave power generation device Pending JPS60501367A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1983/000494 WO1984003912A1 (en) 1983-03-30 1983-03-30 Wave action generator

Publications (1)

Publication Number Publication Date
JPS60501367A true JPS60501367A (en) 1985-08-22

Family

ID=22174974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58501648A Pending JPS60501367A (en) 1983-03-30 1983-03-30 wave power generation device

Country Status (6)

Country Link
EP (1) EP0140884A4 (en)
JP (1) JPS60501367A (en)
AU (2) AU573525B2 (en)
BR (1) BR8307703A (en)
DK (1) DK572584A (en)
WO (1) WO1984003912A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622812A (en) * 1985-04-23 1986-11-18 Thompson Randall Jr Apparatus for deriving energy from variation of the level of a body of fluid
US5084630A (en) * 1989-03-24 1992-01-28 Hossein Azimi Wave powered apparatus for generating electric power
WO2012015354A1 (en) * 2010-07-26 2012-02-02 Teng Choy Lam Converting kinetic energy of fluid currents into electricity

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US428283A (en) * 1890-05-20 Wave-motor
US657943A (en) * 1900-04-02 1900-09-18 Franklin R Kimball Tide-motor.
US918870A (en) * 1908-10-22 1909-04-20 Henry Jonathan Lawrence Wave-motor.
FR439779A (en) * 1911-10-30 1912-06-22 Giuseppe Carlo Francesco Del Piano Enrico Device for collecting the energy produced by the wave and the tides, transforming it into usable work and transporting this work to a place on
GB264722A (en) * 1926-06-01 1927-01-27 Frank Joseph Kappes Wave motor
US1746613A (en) * 1927-11-08 1930-02-11 Chester E Shuler Wave motor
US1864499A (en) * 1927-11-25 1932-06-21 Grigsby Russell Cole Wave motor driving mechanism
FR685300A (en) * 1928-11-22 1930-07-08 Device for using the movement of sea waves
US1923887A (en) * 1933-03-08 1933-08-22 Renda Vincent Power mechanism
FR778750A (en) * 1933-12-12 1935-03-22 Motive force producing device using wave power
US3898471A (en) * 1974-08-15 1975-08-05 Jr Enos L Schera Electric generator responsive to waves in bodies of water
US3965365A (en) * 1975-01-14 1976-06-22 Parr Edward L Power generating machine actuated by ocean swells
US4260901A (en) * 1979-02-26 1981-04-07 Woodbridge David D Wave operated electrical generation system
DE3027892A1 (en) * 1980-07-23 1982-02-25 Elmar 8380 Landau Putz Wave force driven power generator - has float with fixed horizontal position, but unlimited freedom of vertical movement, utilised for drive purposes

Also Published As

Publication number Publication date
BR8307703A (en) 1985-03-12
DK572584D0 (en) 1984-11-30
WO1984003912A1 (en) 1984-10-11
EP0140884A1 (en) 1985-05-15
AU1551084A (en) 1984-10-25
DK572584A (en) 1984-11-30
EP0140884A4 (en) 1985-10-01
AU573525B2 (en) 1988-06-16

Similar Documents

Publication Publication Date Title
US3912937A (en) Submarine electrical energy generating apparatus
JP5376533B2 (en) Wave power generation system
JP5905829B2 (en) Power plant equipment
US4392060A (en) Wind and water power generator
CN101490341B (en) Wave energy converter
US7930885B2 (en) Water wave-based energy transfer system
AU727860B2 (en) System for conversion of wave energy
US20060208494A1 (en) Wave powered electric generating device
US4268757A (en) Water wheel electric generation device
US4249639A (en) Power generating apparatus
JPH05164036A (en) Barge type platform for wave activated power generation
WO2005090777A1 (en) Apparatus for extracting power from a watercurrent
US4803839A (en) Apparatus for converting ocean motion to useable energy
US833361A (en) Wave and current electrical generator.
US8650870B2 (en) Wave actuated devices
JPS60501367A (en) wave power generation device
JPS59215969A (en) Converting device of energy
CN111874159A (en) Wave energy power generation buoy
US4421991A (en) Wave powered electrical generator
DE3060275D1 (en) Moving-fluid energy-conversion device
JPH0532592B2 (en)
CN112922766A (en) Environmental protection small-sized hydroelectric generation device
JPS6263177A (en) Power generator utilizing sea/river wave
AU2001100291A4 (en) PowerPod
CN113279909B (en) Buoyancy and gravity combined type offshore wind power generation energy storage device