JPS60500638A - 物理化学的、生物学的、または細菌学的現象の時間とともに起る変化を検査し、測定するための超音波による方法および装置 - Google Patents

物理化学的、生物学的、または細菌学的現象の時間とともに起る変化を検査し、測定するための超音波による方法および装置

Info

Publication number
JPS60500638A
JPS60500638A JP59501563A JP50156384A JPS60500638A JP S60500638 A JPS60500638 A JP S60500638A JP 59501563 A JP59501563 A JP 59501563A JP 50156384 A JP50156384 A JP 50156384A JP S60500638 A JPS60500638 A JP S60500638A
Authority
JP
Japan
Prior art keywords
crowbar
ultrasonic
media
echoes
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59501563A
Other languages
English (en)
Inventor
ペレチエ・ジヤン‐ルイ
モロウ・ミシエル
ボツケ・ミシエル
Original Assignee
ソシエテ・デチユ−ド・エ・ドウ・ルセルシユ・ドウ・レコ−ル・ナシオナ−ル・シユペリオ−ル・ダ−ル・エ・メチエ・スラン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソシエテ・デチユ−ド・エ・ドウ・ルセルシユ・ドウ・レコ−ル・ナシオナ−ル・シユペリオ−ル・ダ−ル・エ・メチエ・スラン filed Critical ソシエテ・デチユ−ド・エ・ドウ・ルセルシユ・ドウ・レコ−ル・ナシオナ−ル・シユペリオ−ル・ダ−ル・エ・メチエ・スラン
Publication of JPS60500638A publication Critical patent/JPS60500638A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0235Plastics; polymers; soft materials, e.g. rubber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0251Solidification, icing, curing composites, polymerisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0255(Bio)chemical reactions, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0422Shear waves, transverse waves, horizontally polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/101Number of transducers one transducer

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。

Description

【発明の詳細な説明】 物理化学的、生物学的、または細菌学 的現象の時間とともに起る変化を検査 し、測定するための超音波による方法 および装置 本発明は、変化する媒体の甲または二つの媒体の間の物理的および/またに化学 的ないくつかの特性の時間とともに起る変化を検食し、測定するための超音波に よる方法および装置に関する。
本発明に以下に挙げる場合に有効性を見出すが、それらは例示に過ぎず、それら に限ら几ることはない。
−水性結合材の凝固時間の測定、 一塗料の乾保時間または糊の硬化の評価、−固相から液相へまたは逆の移行のよ うな状報変化C語死 瞬接触の物理化学的変化(酸化−絞り加工)、−浴孜状の物体の結晶化まkに懸 濁状の吻坏の沈澱、−プラスチック物質の重合、 一皿液の凝結およJ/またに沈澱時間の評価、−乳の凝固の研究。
物理的またに化学的ないくつかの現象を検出するために超音波による装置を利用 することに既に提案された。これに関して、技術の現状が莢国公告明細曹第20 60883号に示さ几ている。そrLは雨氷の検出器を記載している。その文献 によれば、道路表面に1@られた溝の中で伸びている棒に結合さf′したバール を取シ囲む巻線に超音波周波数の電圧パルスが送ら几る。そのバールはその巻線 の中に作ら几る磁場の効果で磁歪効果を持つ材料で作られている。そのことによ って超音波周波数の振動が生じ、それが棒に伝達さ几、その壁で反射される。そ の反射は、その棒が水と接触しているかあるいは氷と接触しているとき、異なっ ている。
逆に、戻りでは、磁歪によって、反射1九た振動はバールが巻線の中に電圧パル スを惹き起すようにし、その電圧パルスは集めらrL、、それによって棒が水あ るいは氷によって取り囲まれているかどうかが導き出される。磁歪の利用がこの 特許では本質的である。
米国特許明細書第4320659号には媒体の音響学的なインピーダンスの測定 または液体のレベルの検出εための装置が記載さ几ている。このため、仮が相連 続する反射によってジグザグに伝播するように、偏極させられた超音波の横波が 側面から+i:1ifS’)して、あるいは傾斜した端面からバールの中に放射 さ几る。遠く離れた点に集めら几る波に、バールとそ几が改さ几ている媒体の間 に生じる結合の結果異なっている。変形として、偏極芒せら′f′した横波が端 面を通ってバールの中に送ら几る。しかし、超音阪ビームは反射を受け、バール の軸に平行に伝播する。そのうえ、バールは反射面の役をする%縦方向に間隔を おいて設けらnた段を再する側面を持っている。果めら几る反射波にそのバール が接触している媒体の性質あるいにレベルにしたがって異なっている。この文献 でに偏極させら几た横波の夏用が本質的でおる。
片の厚さあるいは長さの測定、または欠陥(ひび、鍛造等の際のひび@九、亀裂 )の位置決めおよび評価のための超音蔑の利用もまた却らn、ている。読取シは 縦方向に放射さ几る波の反射によってmら几るエコーの後で直ちに行なわれる。
読取シは軸に平行に放射孕几る縦波の主エコーでだけ行lf)れるから、2次エ コーri革ろ邪魔になる。
こnらのすべての例において、超音波は、特定の操作条件(直通エコーのみの検 出、垂直または水平方向に偏極させら几た波の任意の発生、ジグザグに向けらt ′した波の使用、足めらf′した場所1て♂・ける反射面の利用、等)で、限ら 几を巨万・:1判水り倹土 欠陥の朕工、距離の測定、レベル検出、等ノで利用 されてい七つ本発明は、一つの媒体の!:?おるいに二つの媒体の間のいろいろ な現象の41間とともに起る変化の咲責2よび測定の万能の万云乞もたらすとい う意味で、特定の場合に限ら几た公凡の使用とは異なっている。不発明によnげ 、単V、またに俵数の媒体の中に長いバールの側面の長さの少なくとも一部が授 さn、上記側面の全体で反射さ几る2次波のビームの発生にそのバールの甲でM 利に作用するように、そのバールの甲に放射面?通って超音ばか放射さ几、そn らの2次エコーが果められ、そ几らのうちの少なくとも一つが分離さ几、その振 幅の時間変化が記録されるっ 放射面としては、成可く縦方向の寸法に対して垂直なバールの端面が利用さnる 。
2次エコーは有利には放射の端面で果められる。
成可(I MHzと20 MH2O間にある周波数を持った波および8關と30 圏の間にあ々横方向の大きさを持ったバールが使用される。
本発明の精神で、使用される周波数およびバールの大きさく成可く直径)の間の 関係′lt遵重すれば、最適の結果が得らjる。例えば、つぎの周波数、2,5 ゜j 0. 15. 20MHzでは、つぎの対応する直径30−20−15− 10および8頭を有する円部形のバール分使用するのが胃利である。
こnらの周波数2:び直径の・丘、;クリテイカルー:′lSないが、そj−ら に!々良のは果て傅るためにζそf、ζ近いのが好ましい価を構成しているっ また、調べらたる媒体の1化の測定のた0【に反意く1次から4次子での2次エ フ−が選訳さ几々っ本発明はまた、超音波の発信−受信器官、2よびその器官と 一つの面で結合さ几、変化する、あるいは反応性の媒体の中に浸さ几るための細 長いバールによって構成さn、るブローベ、放射さ几る超音波、およびバールが 変化する、あ0いは反応性の媒体とその側面で接触芒せらrLめとき、そのバー ルによって反射さ几ふ波の特性を測定するためQで、そのブローベと従洸芒几る 測定装置を含む装置にも関し、本発明によればその装#において、その細長いバ ールはその縦方向の寸法に対して垂直な端面によって発信−受信器曾と結合され 、2次超音波がその側面の全体によってビームと1つて反射さ九るように、その 側面が滑かであり、その測定装置はその側壁によって反射さ7″l−る2次エコ ーの少なくとも一つを選択し、その選択された単数またに複数の2次エコーの振 幅の時間とともに起る変化を測定し、記録することができるエレクトロニソクス 手段を備えているう その細長いバール(グその直径の少lくとも3倍よジも大きい長さを持っている 。
バールに超音波を良く通し、側面の優f′した研若状態七と7ミことができる材 料で作られ、それが低いインピーダンスを待つように、1.57と1.70の間 にあり、反可(1,651c等しい縦波の伝播速度/構成の伝播足置の比ヲ付っ ていることが望〕しい。
また、そのバールが時として長い寿命の間非常知多岐に亘る媒体の甲に反≧n、 るためのものであることを考慮にい几nは、腐凱に効して抵抗性の材料を使用す るのか好ましい。
本発明によってその使用が望jしいバールは引き抜か几たカラスで作ら几た棒で ある。
バールは有第1」Kに、解不または破壊によって取りにずすことかできるように 、超音波発生器に結合さ几ている。
以下に本発明のいくつかの実施例の記載を示すが、それは何等限定的な意図を持 つものでになく、いかなる変形も除外するものでもない。図面が参照される。
図面中、 一再1図は、本発明を使用するための、本発明による装置の図式的な表示である 。
□第2図はし7レクトグラムでるる。
−第3図ri第1図の装置のバールの中での2次エコーの形底を示す図式図であ る。
□第4a図および第4b図は、まず空気に浸さ几たバール、ついで異なつ念媒体 の中に浸されたバールの内部における超音波の2次エコーのビームを図式的に示 す。
□第4 a’図お:び第4)′zに第4a図シよび異4b図【対応するレフレフ トグラムである。
−第5図から第11図までは第1図の裟1と使って記録さnfcいろいろな媒体 の変化を示すグラフでろる。
一第12図は第6図のグラフから媒体の状態変化Lfj徴づける彎曲点の計算に よる決定の一例を示す。
−第13図および第14図にそ几ぞれ、第1図の装置のための、解体ま九は破壊 によって取りにすすことができるバールを有するブローベの縦方向の面を通る断 面図でるる〕 第1図は、発信−受信セラミックを持ったヘッド2および訓べようとする媒体4 の中に浸さ几ている細長いバール3によってa成されるブローベに接続さ几た1  5 MHzの周波数のパルス発生器1を含む、本発明による装置を示す。この プローベに後に詳細に記載される。発生器1は一般にトランスデユーサと呼ばれ るセラミックに電気パルスを送シ、そのトランスデユーサはバールの端面の一方 3Aからバール3の中を伝播する超音波の縦波を放射するっ トランスデユーサ の部分に、一方では放射の端面とは反対側の端面で、他方ではそして特にバール の側面の全体で、波の反射によって惹き起されるエコーの結果超音波の強方な活 動の座であるバール3の部分に@接している。発生器1と発信−受信セラミック 2にニコー選択器呵きのオッシ=ス=−ブ5aを寡っ1$の公刊の装置5に1萩 さ几、その装置自体に、2次波(輿3図のS)K由来する選択さf′L7’l− 2次エコーの高さ2時間の関数として記録することができる例えばX−Yトレー サのような記録装置6に遥続さnる。
第2図は装置5のオンシロスコープの上に現ゎ几るようなレフレフトグラムを示 す。
信号の振幅が縦@に、時間が横軸にとられているこのレフレフトグラムでi、  E、に放射信号、Fl、F2゜F3,74.F5.F6・・・に一連のエコーが 見ら几る。Fl[、放射の端面とは反対側のバールの端面での縦波の超音波の反 射によって、単なる往復の後、縦波の超音波の反射によって直接得られる主エコ ーである(第3図のL)。
ビークF2.F3.F4.F5.F6. ・・・は斜の軌道およびバールの側壁 でのいろいろの反射の後、バールの放射の端面3Aを通ってトランスデユーサに 戻る2次エコーである。実際、バールの内部でに、2次波のビームが生じ、そこ では縦波と横波の異なった種類の波が混り合う。横波は縦波よりも低い伝播速度 を持っている。
第3図は縦波の直接の軌道りと、第2図でF3と画かれているエコーを与える2 次波の軌道Sを示す。軌道Sの点線で画かれた部分に側面での反射の後の横波お よび点Rでの縦、及へcK換で行なわ几る。
X 4 &図に、バール3が仝気のような媒体の甲に浸さ九ているとき、バール 3の内部で反射させら几るビームを図式的に示す。第41L′図に、オン70ス コープ5aで、バール3の側面および底から来るエコーa。
b、c’、aを眼に見えるようにしたPfrを示す。こ\では最初の四つのエコ ーa、b、c、eLしか示さ几ていない。その中VC,ぼ直接のエコーaおよび 三つの最初の2次エコーb、c、dが見ら几る。
バール3が液体、ま之によジ一般にバール3の;側面とのもつと良い伝運扱触を 保証する相を含む、異な一部た媒体の甲に浸されているときは、超音波の一部は 媒体の中に逃げ/:I(第4b図)。第4b′図でにエコーa。
b、c、(lの高嘔の低下が見られる。全体としてバール3の側面での相連続す る沢山の反射に基因する2次エコーb、c、dは非常に強くこの変化を受ける。
単数または複数のこ几らの2次エコーの高さの測定は媒体またに界面の変化を時 間の関数として追跡することを可能にする。3よりも大きい長さ/直径の比を有 するバール3を使ってこれらの2次エコーの形1i1助けるのが有利である。
勿論、バール3の側面はできる限シよく反射し々け几ばならず、変化する媒体の 甲に浸されている間その表面状態を維持しなければならないっこの理由から、引 き抜かれたガラス型のバールが適当である、また、既に前に運べ之超音月の司及 数とバール乙の大きさの間にるる一定の間隔を呆って、2次エコーの形成に有利 なようにする。周波数が蟇は几ば高い程、放射の円逍の頂点における角にそ几だ け小さくなり、反射さnた波がそれだけますます屡々側面に当るように、バール の大きさにそ几たけ小さくなけ几ばならない。こ\では幾何学的な形状が何であ っても、バールの直線部分の全周囲に亘6パールの側面の全部を1i11]面と 呼ぶと理解さ几る。
第13図および第14図は、ヘッド2を含み、そのヘッドから滑かな表面を持っ た引き扱かn之ガラス製の細長いバール3が伸びている本発明の装置の一部をな すプローぺを表わす。全体としてこのようなプローベは公知であシ、詳細に記載 される必要はない。ヘッド2は、原町く組み立てられた二つの部分から反る、一 端で閉じられ、縦方向の寸法に対して垂直な端面3Aで終るバール3の端の部分 を受けるために、反対側の端で開いている中空の物体7を含んでいる。物体7の 中には、例えばチタン酸バリウムをベースとする、ピエゾ電気または強誘電体の 公知の種類の発信−受信セラミックが置か几ている。第13図では、セラミック 8はバールの端面3Aとの直接接触によってバール3と結合されているちバール 3の端の部分を受ける物体7の端は縦方向に割ら几て2り、締環9の助けでバー ル3の上に啼め付けら几る。第14図でぼ物理7の千に強制的に嵌め込ま几てい るつじ刀・シ、そ几1;その外側の面のバール3の1面3A■後ンて円形の溝4 0(z持ってお汐、そnが破壊の端緒となるっセラミック8と端面3Aの間の個 含に液体11忙介して行なゎ几る。
二つの場合に、パール31Scヘツドから取シぽずは几、そ11は、例えば凝固 が監視さ几たコンクリートの中のような、調べられている媒体の甲に放粱δ几る 。
前に調べたように、バール3がその滑かな側面によって、バールから逃げる縦波 でない阪の部分の対応する変化を惹き起す物理化学的Iたは生動学的変化が生じ る変化媒体と接触させら几るとき、2次エコーの蛋幅を観察してそ几らの変化? 監視し、測定することができるっ 装置のより高い、感度を得るためには、バール3がその長さの殆んど全部に亘っ て検査さnている媒体の中に浸っているのが好ましいっ しかし、ある状況の下 では、その側面が検査づ几でいる媒体と適当に接触してい几げ十分である。
こ\で、本発明の実際の応用例を与えるためVC1第5図から第11図までが参 照される。
こ几らの図において、曲線は(横軸に秒を単位として画かnでいる)時間の関数 として第1図の装置5゜6の助けで選択され、記録された2次エコーの(MI軸 にボルトを単位として画かれている)振幅の変化を表わす。第1図の装置5シよ び6 fl −Ultrasonic typeF7−6るいζ+A u Z  CS & Z −4M i G n ”C7p 681480 ”’ の商品名 で矧ら几でいるものの;つな装置お:び“Seframtype Tyy″ の 商品名で云ら几ているカーブトレーサであることができるっ物′誓の大部分につ いて、本発明の万εに二って傅らnた曲線の法因変化に対応する部分が3次曲線 に同化でさることにに注意しなけ几ばならない。媒体(液体−同体)あるいぼ界 0]](酸化θfていない一酸化ち凡ている)の状態変化はこの曲線の彎曲点と 相関関係を持って2り、その彎曲点にグラフの上であるいに訂其によって決定子 nることができる。
最初の2次エコー(薦41)’図のb)の振幅のカーブである第5図は、1.5 に等しい石骨/水の質量比で特徴ツけら九る 1ブラートル・ド・パ’) (p l’aゝtre deParis ) (パリの石膏)″の商品名で却ら几てい る物質の凝固の変化を示す。彎曲点r135.5分の経過の後に認めら几る。こ の試験および以下の試験で、ガラス製のパール3id2 oxの直径と100. の長さ乞持っていた。発生器−トランスデユーサの一式が15 MHzの周波数 の超音波を供給した。
第6図は、1に等しい樹脂に対する硬化剤の比を持った“Metolux″の商 品名で販売されている、硬化剤の効果の下で重合することができる樹脂上線かい 粉末の混合物でるる公知の物質の硬化の推移を示す。彎曲点は約37分(2,2 20秒)にある(グラフによる決定)。
第7図は、0.6に等しいエポキシ明所に剌する硬化剤の質量比によって特徴づ けら几る“迅速アラルダイト″の商品名で知ら几ている材料の硬化の推移を示す 。
彎曲点に約146分にhる(グラフによる決定ン。
第8図に、溶媒が水である塗料の乾燥の推移を示す。
約400秒続く最初の期間の後で、曲線ははソ指数関数的であり、その半減期( 360秒)がグラフの上で決定嘔几た。
第9図は、リットル当!1122の凝乳酵素を帆面された、凝固途中の乳の振舞 いを示す。この場曾、測定は第2の2次エコー(第4b′図のC)で行lわr′ したつ第10図は、リットル当り412の苛性ソーダ浴液に浸さnた“ジュラル ″の商品名で知らnている(直径20鴎、長さ100 m )のアルミニウム合 金製のバールの腐蝕の推移を示す。測定は最初の2次エコーbの推移を追跡して 行なわれた。
第11図は” Mecapre! =の商品名で知られている重合することがで きる樹脂の重合途中の振舞い分示す。
測定は最初の2次エコーの記録で行なわれた。この図で、時間は分で示され、電 圧は2mV/目盛の割合で示されている。彎曲点は24分にある(グラフによる 決定)。
第12図は、第6図の列の物質と同じ物質の硬化の推移を特徴づける彎曲点の数 学的決定の例を示す9計算は最小自乗法に二つて二次多項式の関数に調面するこ とによって行なわれた。彎曲点のfJ座漂に2223秒でゐり、その点における 傾斜に−CL154である。
不発明の方法が記載され、図示された夾施例に決して限られるものでにないこと は明らかである。そ几らは例として与えらnでいるに過ぎない。そのほか、本発 明に、その精神を逸几ることもその枠から出ることもない記載された手段の技術 的等価物を構成するあらゆる手段およびそれらの組合−もカバーしている。
りγ2 FX/j 国際調食報告 特表昭60−500638 (7)第1頁の続き ■発明者 モロウ・ミシエル @発明者 ホッケ・ミシエル フランス国、91330 イエーレ、リュ、デュ、ニラ、1フランス国、921 30 イツシーーレームリノウ、リュ、ロジエ・ヅラングロ、10

Claims (1)

    【特許請求の範囲】
  1. 1. 一つの媒体のI:Pするいは二つの媒体の間のいろいろな現象の時間とと もに起る変化の検査および測定方法において、細長いバールの側面の少なく七も 一部をその単数またに複数の媒体と接触させ、上記側面の全体で反射される2次 波のビームの発生にそのバールの甲で有利に作用するように、そのバールの中に 放射面を通って超音波の縦波が放射さ几、それらの2次エコーが集められ、それ らのうちの少なくとも一つが分離さ几、検査される現象の変化を導き出すために 、その振幅の時間変化が測定され、記碌さnるこ七2特徴とする方法。 2 バールがその側面の長さの大きな部分で単数またζ複数の#体に浸さ几るこ と全特徴とする、特許請求の耗月第1項記載り方法。 五 放を面として縦方向の寸法に対して垂直なバールの端面が利用さ几ることを 特徴とする特許悄求の範囲第1項記載の方法。 42次波が同じ放射の端面で果めら几ること全特徴とする、特許請求の範囲第3 項記載の方法。 5 滑かな側面を有する、我町く引抜か几たガラスで作ら几たバールが使用さ几 ることを特徴とする特許請求の範囲第1項記載の方法。 68−と30嘘の間で送択さ几た大きさを有すり細長いバールが使用され、そ几 に対応して20と1MHzの間にある超音波周波数が選択されるこさご、特徴と する、特許請求の範囲第1項記載の方法。 Z パルス発生器(1)、詔音波発信−受信器管(8)を有するヘッド(2)お よび上記器庁に結会さ几る細長論バール(3)を含むブローベ、その器V <θ ンによって発信および受信さ几る超音波の測定’A jiff(5)を含む、一 つの媒体の甲あるいは二つの媒体の間のいろいろな現象の時間とともに起る変化 の検査および測定装置に2いて、そのバール(3)がその縦方向の寸法に対して 垂直な端面(3A)によってその器管(8)と結合さ几、そのバール(3)が滑 かな側面を持っておシ、その測定装置(5)がその器管(8)によって受けら几 る2次エコー(F2からF6まで)の一つを選択すなエレクトロエックス手段お よびその選択さ几たエコーの振幅の時間、ン化をjピ録する手段(6)を含むこ 七て特徴とする装置。 a バール(3)が長でかその大きざの少なくとも3倍よりも大きい−jj面を 有することeVj徴とする、特許請求の範囲第7項記載の装J。 9 バール(3)が、1.57と1.7oの間にあり、放可く約1.65に号し い4疲の伝播速度/横波の伝播速度の比を持っている材料で作ら几ているこ七を 特徴とする特許S貴下の範囲第7項d己n戊の装置。 10 バール(3)が、解体またに破壊によって戒9はずすことかできるように 、ヘッド(2)と−緒VC,組み立てら几でいることを特徴とする特許所求の範 囲第7項記載の装置っ
JP59501563A 1983-04-12 1984-04-09 物理化学的、生物学的、または細菌学的現象の時間とともに起る変化を検査し、測定するための超音波による方法および装置 Pending JPS60500638A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8305910 1983-04-12
FR8305910A FR2544499B1 (fr) 1983-04-12 1983-04-12 Appareillage destine a mesurer la variation de la transmission ultrasonore a une interface

Publications (1)

Publication Number Publication Date
JPS60500638A true JPS60500638A (ja) 1985-05-02

Family

ID=9287742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59501563A Pending JPS60500638A (ja) 1983-04-12 1984-04-09 物理化学的、生物学的、または細菌学的現象の時間とともに起る変化を検査し、測定するための超音波による方法および装置

Country Status (10)

Country Link
US (1) US4614115A (ja)
EP (1) EP0138935B1 (ja)
JP (1) JPS60500638A (ja)
AU (1) AU560374B2 (ja)
DE (1) DE3464970D1 (ja)
DK (1) DK161789C (ja)
FR (1) FR2544499B1 (ja)
IT (1) IT1180057B (ja)
WO (1) WO1984004167A1 (ja)
ZA (1) ZA842680B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991124A (en) * 1988-10-11 1991-02-05 Simmonds Precision Products, Inc. System and method for ultrasonic determination of density
EP0483491B1 (de) * 1990-09-28 1995-07-05 Siemens Aktiengesellschaft Ultraschall (US)-Dichtemesser zum Messen der spezifischen Dichte eines Fluid
EP0482326B1 (de) * 1990-09-28 1995-07-05 Siemens Aktiengesellschaft Ultraschall (US)-Dichtemesser zum Messen der spezifischen Dichte eines Fluid
FR2693271B1 (fr) * 1992-07-03 1994-09-16 Bongrain Dispositif et procédé de détection de changement de phases et de caractérisation de la phase d'un produit liquide, gélifié ou solide.
FR2693270B1 (fr) * 1992-07-03 1994-09-16 Bongrain Dispositif et procédé de caractérisation ou de mesure par ultrasons de texture de produits.
US6769307B1 (en) * 1997-11-21 2004-08-03 Perceptron, Inc. Method and system for processing measurement signals to obtain a value for a physical parameter
US6209387B1 (en) 1997-07-30 2001-04-03 Gas Research Institute System and method for determining thermodynamic properties
US6763698B2 (en) 2002-03-15 2004-07-20 Battelle Memorial Institute Self calibrating system and technique for ultrasonic determination of fluid properties
US7395711B2 (en) * 2002-05-06 2008-07-08 Battelle Memorial Institute System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy
GB0317727D0 (en) * 2003-07-29 2003-09-03 Univ Warwick Liquid viscosity sensor
US7418860B2 (en) * 2004-10-05 2008-09-02 Parker-Hannifan Corporation Ultrasonic fluid level sensor
DE102007030566A1 (de) * 2007-03-28 2008-10-02 Man Roland Druckmaschinen Ag Zerstörungsfreie Prüfverfahren der Aushärtungs- oder Trocknungsgrades von Farben und Lacken
AT505796B1 (de) * 2007-10-08 2009-08-15 Arc Austrian Res Centers Gmbh Verfahren sowie vorrichtung zur ultraschallprüfung
US20090158822A1 (en) * 2007-12-20 2009-06-25 General Electric Company Devices, methods and systems for measuring one or more characteristics of a biomaterial in a suspension
US10126266B2 (en) 2014-12-29 2018-11-13 Concentric Meter Corporation Fluid parameter sensor and meter
US10107784B2 (en) 2014-12-29 2018-10-23 Concentric Meter Corporation Electromagnetic transducer
US9752911B2 (en) 2014-12-29 2017-09-05 Concentric Meter Corporation Fluid parameter sensor and meter
CN111513763B (zh) * 2020-03-24 2021-03-05 清华大学 血液粘稠度测量装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139358A (en) * 1975-05-28 1976-12-01 Hitachi Ltd Device of measuring the liquid level of an ultralow-temperature contai ner
JPS5797498A (en) * 1980-10-24 1982-06-17 Framatome Sa Method and device for detecting failed fuel element in reactor fuel assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE798896A (fr) * 1973-04-27 1973-10-29 Centre Rech Metallurgique Procede pour mesurer l'effervescence d'un acier
US4320659A (en) * 1978-02-27 1982-03-23 Panametrics, Inc. Ultrasonic system for measuring fluid impedance or liquid level
CS212352B1 (en) * 1978-08-01 1982-03-26 Jiri Docekal Method of continuous measuring the changes of rheological properties of polymeres in the course of the polymerization process
DD145961A1 (de) * 1979-09-28 1981-01-14 Juergen Brueckner Verfahren zur kontaktlosen kontrol e von gasen in behaeltern
FI61249C (fi) * 1979-10-10 1982-06-10 Vaisala Oy Anordning foer indikering av nedisning av asfaltsvaeg eller motsvarande
US4325255A (en) * 1980-04-07 1982-04-20 Energy And Minerals Research Co. Ultrasonic apparatus and method for measuring the characteristics of materials
DE3174632D1 (en) * 1980-10-20 1986-06-19 Atomic Energy Authority Uk Apparatus for indicating variations in acoustic properties on an interface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139358A (en) * 1975-05-28 1976-12-01 Hitachi Ltd Device of measuring the liquid level of an ultralow-temperature contai ner
JPS5797498A (en) * 1980-10-24 1982-06-17 Framatome Sa Method and device for detecting failed fuel element in reactor fuel assembly

Also Published As

Publication number Publication date
IT8467370A0 (it) 1984-04-12
DE3464970D1 (en) 1987-08-27
US4614115A (en) 1986-09-30
FR2544499B1 (fr) 1986-02-07
DK161789B (da) 1991-08-12
EP0138935A1 (fr) 1985-05-02
DK161789C (da) 1992-02-17
AU560374B2 (en) 1987-04-02
ZA842680B (en) 1984-11-28
DK591084A (da) 1984-12-11
DK591084D0 (da) 1984-12-11
EP0138935B1 (fr) 1987-07-22
WO1984004167A1 (fr) 1984-10-25
IT8467370A1 (it) 1985-10-12
FR2544499A1 (fr) 1984-10-19
IT1180057B (it) 1987-09-23
AU2812784A (en) 1984-11-07

Similar Documents

Publication Publication Date Title
JPS60500638A (ja) 物理化学的、生物学的、または細菌学的現象の時間とともに起る変化を検査し、測定するための超音波による方法および装置
Ohara et al. Ultrasonic evaluation of closed cracks using subharmonic phased array
US5708191A (en) Ultrasonic fluid densitometry and densitometer
Leighton et al. Acoustic detection of gas bubbles in a pipe
Hertz Ultrasonic engineering in heart diagnosis∗
Kuskibiki et al. VHF/UHF range bioultrasonic spectroscopy system and method
US4249422A (en) Apparatus and process for determining the composition of fluid-filled cavities
JPH0352825B2 (ja)
JP2004150875A (ja) 超音波による内部欠陥の映像化方法、及び、装置
Yadav et al. Importance of Ultrasonic Testing and Its Metrology Through Emerging Applications
Makin et al. Measurement of pressure and assessment of cavitation for a 22.5‐kHz intra‐arterial angioplasty device
JP2004053288A (ja) 超音波音速測定方法及びこれらに基づいてヤング率及びポアソン比を求める方法
Grosse et al. The resonance method-application of a new nondestructive technique which enables thickness measurements at remote concrete parts
SU1460623A1 (ru) Способ определени акустического сопротивлени материалов с неровной поверхностью
Eriksson et al. A microcirculation phantom for performance testing of blood perfusion measurement equipment
Greenwood et al. Ultrasonic fluid densitometry and densitometer
Cracknell et al. Applications of ultrasonics
Gan Diagnostic ultrasound
Park et al. Ultrasonic shear wave characterization in beef longissimus muscle
SU1254366A1 (ru) Способ определени глубины проникновени межкристаллитной коррозии в издели х
Goueygou et al. Measurement of ultrasonic attenuation and Rayleigh wave dispersion for testing concrete with subsurface damage
SU1380430A1 (ru) Способ определени анизотропии упругих свойств материала
SU1260842A1 (ru) Способ определени физико-механических свойств объектов при помощи преобразовател с буферным стержнем
SU1355924A1 (ru) Способ контрол качества пьезопреобразователей
Didenkulov Acoustic vision with the nonlinear techniques