JPS6049888B2 - optical demultiplexer - Google Patents

optical demultiplexer

Info

Publication number
JPS6049888B2
JPS6049888B2 JP54051473A JP5147379A JPS6049888B2 JP S6049888 B2 JPS6049888 B2 JP S6049888B2 JP 54051473 A JP54051473 A JP 54051473A JP 5147379 A JP5147379 A JP 5147379A JP S6049888 B2 JPS6049888 B2 JP S6049888B2
Authority
JP
Japan
Prior art keywords
optical
optical waveguides
optical waveguide
different electrical
electrical lengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54051473A
Other languages
Japanese (ja)
Other versions
JPS55143519A (en
Inventor
隆市 渡辺
信生 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP54051473A priority Critical patent/JPS6049888B2/en
Publication of JPS55143519A publication Critical patent/JPS55143519A/en
Publication of JPS6049888B2 publication Critical patent/JPS6049888B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 本発明は、電気長の異なる2本の光導波路の入力端を偏
光子で、出力端を検光子で接続して構成する光分波器に
かかわり、特に周波数応答の立上)り特性を鋭くするこ
とにより、周波数帯域利用率を高くすることを可能にす
る光通信用分波器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical demultiplexer constructed by connecting two optical waveguides with different electrical lengths, with their input ends connected by a polarizer and their output ends connected by an analyzer. The present invention relates to a demultiplexer for optical communications that makes it possible to increase the frequency band utilization rate by sharpening the rise characteristic.

従来のこの種の光分波器は、第1図Aに示すように偏光
子1、検光子2、これらの間に配置されクた複屈折結晶
3より構成されている。
A conventional optical demultiplexer of this kind is composed of a polarizer 1, an analyzer 2, and a birefringent crystal 3 disposed between them, as shown in FIG. 1A.

入射光導波路4を伝搬して来た光は、偏光子1を通過し
たのち第1図Bに示す座標系におけるP方向の偏光をも
つ。検光子2はこの偏光を互に直交した偏光成分の2つ
に分離する機能を有し、かつ光学軸ZとこのZ軸に垂直
な方向XとをP方向に対して45をなす方向に向けられ
た複屈折結晶3を伝搬した光を、Pに平行な偏光成分と
垂直な偏光成分を分離する方向にむける。このとき、周
波数Fl,f2,f3,・・,F2nをそれぞれ中心周
波数とする頷個の信号を含む光が偏光子1を通り、P方
向の偏光となつて複屈折結晶3を伝搬する。複屈折結晶
3の長さeを次式のように定めると、複屈折結晶3を出
た光のうち、奇数番目の中心周波数Fl,f3,・・,
F2..−1を含む光の偏光方向がPと平行、偶数番目
の中心周波数F2,f4,・・,F2nを含む光の偏光
方向がPと垂直となつている。ここで、Cは真空中の光
速度、Δfは隣接する中心周波数の差、N8は常光線に
対する屈折率、NOは異常光線に対する屈折率てある。
次に、検光子2によつてPと平行と垂直な偏光成分をそ
れぞれ出射光導波路5,6から分離して取出すと、奇数
番分波中心周波数Fl,f3,・・,F2n−1と偶数
番分波中心周波数F2,fl,・・,F2nとが別々の
出射光導波路から取り出され光分波器として動作する。
このとき、複屈折結晶3を伝搬する常光線と異常光線は
その屈折率が異なるので、両者の位相は複屈折結晶3を
出たところで第2図Aに示したようになり、各中心周波
数のところで、それらの位相差はπの整数倍になつてい
る。このため、出射光導波路5,6に出力する光振幅の
周波数応答は第2図Bのようになる。しかし、このよう
な構成の光分波器では、常光線と異常光線の位相差は、
第2図A及びBに示すように1チャネル周波数間隔の中
の中心周波数でしかπの整数倍にしかならず出射光導波
3路から取り出される光振幅の周波数応答は正弦波状に
しかならない。このため周波数応答の立上り特性は鈍く
周波数帯域利用率が悪いという欠点があつた。本発明は
、前述のような従来技術の欠点を解決4するもので、こ
の発明の目的は振幅の立上り特性を鋭くして周波数帯域
利用率を大きくした光分波器を提供することにある。
After the light propagating through the incident optical waveguide 4 passes through the polarizer 1, it has polarization in the P direction in the coordinate system shown in FIG. 1B. The analyzer 2 has the function of separating this polarized light into two mutually orthogonal polarized light components, and also directs the optical axis Z and the direction X perpendicular to this Z axis in a direction forming 45 degrees with respect to the P direction. The light propagated through the birefringent crystal 3 is directed in a direction that separates the polarized light component parallel to P and the polarized light component perpendicular to P. At this time, light containing a number of signals having center frequencies of frequencies Fl, f2, f3, . . . , F2n passes through the polarizer 1, becomes polarized light in the P direction, and propagates through the birefringent crystal 3. When the length e of the birefringent crystal 3 is determined as shown in the following equation, the odd-numbered center frequencies Fl, f3, . . . of the light exiting the birefringent crystal 3 are
F2. .. The polarization direction of light including −1 is parallel to P, and the polarization direction of light including even-numbered center frequencies F2, f4, . . . , F2n is perpendicular to P. Here, C is the speed of light in vacuum, Δf is the difference between adjacent center frequencies, N8 is the refractive index for ordinary rays, and NO is the refractive index for extraordinary rays.
Next, when the polarized light components parallel and perpendicular to P are separated and taken out from the output optical waveguides 5 and 6 by the analyzer 2, the odd numbered branch center frequencies Fl, f3,..., F2n-1 and the even numbered The center frequencies F2, fl, . . . , F2n are taken out from separate output optical waveguides and operate as an optical demultiplexer.
At this time, since the ordinary ray and the extraordinary ray propagating through the birefringent crystal 3 have different refractive indices, their phases will be as shown in FIG. By the way, their phase difference is an integral multiple of π. Therefore, the frequency response of the optical amplitude output to the output optical waveguides 5 and 6 is as shown in FIG. 2B. However, in an optical demultiplexer with such a configuration, the phase difference between the ordinary ray and the extraordinary ray is
As shown in FIGS. 2A and 2B, only the center frequency within one channel frequency interval is an integral multiple of π, and the frequency response of the light amplitude taken out from the three output optical waveguides is only sinusoidal. For this reason, the rise characteristic of the frequency response was slow and the frequency band utilization rate was poor. The present invention solves the above-mentioned drawbacks of the prior art.An object of the present invention is to provide an optical demultiplexer that sharpens the amplitude rise characteristic and increases the frequency band utilization rate.

この目的を達成するための本発明の構成の要点は、光分
波器における偏光子および検光子で接続された電気長の
異なる2本の光導波路の任意の位置の少なくとも一方に
周期的遅延回路を挿入して、電気長の異なる2本の光導
波路を伝搬する光の位相の少なくとも一方に−階段状の
変化を付けることによつて、電気長の異なる2本の光導
波路を伝搬する光の位相差を分波周波数の中間において
急激に変化させることにより振幅の立上り特性を鋭くし
た点にある。次に図を参照して本発明の一実施例を詳細
に説つ明する。
The key point of the configuration of the present invention to achieve this object is to install a periodic delay circuit in at least one arbitrary position of two optical waveguides with different electrical lengths connected by a polarizer and an analyzer in an optical demultiplexer. By inserting a stepwise change in at least one of the phases of the light propagating through two optical waveguides with different electrical lengths, we can change the phase of the light propagating through two optical waveguides with different electrical lengths. The point is that the amplitude rise characteristic is sharpened by rapidly changing the phase difference in the middle of the demultiplexed frequency. Next, an embodiment of the present invention will be described in detail with reference to the drawings.

第3図A及びBは本発明の一実施例を示す概念図であつ
て、1は偏光子、2は検光子、3は複屈折結晶、4は入
射光導波路、5,6は出射光導波路、7は周期的遅延回
路てあり、周期的遅延回路7は複屈折結晶3の終端に複
屈折結晶3の7中を伝搬する常光線および異常光線の少
なくとも一方には有効に働くように設置される。他の構
成部品の配置は第1図に示した方向の光分波器と同じで
ある。以下に動作を説明する。
3A and 3B are conceptual diagrams showing one embodiment of the present invention, in which 1 is a polarizer, 2 is an analyzer, 3 is a birefringent crystal, 4 is an input optical waveguide, and 5 and 6 are output optical waveguides. , 7 are periodic delay circuits, and the periodic delay circuit 7 is installed at the end of the birefringent crystal 3 so as to effectively act on at least one of the ordinary ray and the extraordinary ray propagating through the birefringent crystal 3. Ru. The arrangement of other components is the same as that of the optical demultiplexer in the direction shown in FIG. The operation will be explained below.

入射光導波路4から中弓ら周波数Fl,f2,・・・F
2nを含む光が入射する際、その光の基本的な導波順序
および各構成回路の作用は第1図に示した従来の光分波
器と同じである。そこで、異なる点のみを述べる。基本
的に異なる点は、複屈折結晶3から出て周期的遅延回路
に入射した光の位相特性である。位相は周期的遅延回路
7で一定周期間隔で位相に遅延を生じ、周期的遅延回路
7が一方の光導波路にのみ作用する楊合には第4図Aの
ように、両方の導波路に作用する場合には第5図Aに示
すように光の位相に階段状の変化を受ける。このため、
2つの光導波路を伝搬した光の位相差は分波器の1チャ
ネル周波数間隔に第4図の場合は最大3回、第5図の場
合は最大5回πの整数倍になり、従来の光分波器が1回
のみπの整数倍になるのみであるのに比べて、位相差を
より広い周波数帯域にわたつて平担にπの値に近くでき
る。このため、検光子2で2つの光導波路を伝搬して来
た光を合成するとき同相または逆相になる周波数帯域が
さらに広くなり振幅特性は第4図B,又は第5図Bに示
すように極めて立上りの鋭いものとなる。第6図は第4
図および第5図の各場合について周波数応答の立上り特
性を計算して示したもので、本発明の場合には、従来に
比べて極めて立上り特性が鋭くなつていることが分かる
。なお第6図で実線は第5図の場合、点線は第4図の場
合、1点鎖線は第2図の場合を示す。第7図はコアが楕
円になつている光ファイバを、第3図に示した複屈折結
晶3の代りに用い、電気長の異なる2本の光導波路を形
成した場合を示している。
Frequencies Fl, f2,...F from the incident optical waveguide 4
When light containing 2n is incident, the basic waveguide order of the light and the operation of each component circuit are the same as in the conventional optical demultiplexer shown in FIG. Therefore, only the different points will be described. The fundamental difference is the phase characteristics of the light that exits the birefringent crystal 3 and enters the periodic delay circuit. The phase is delayed at regular intervals by the periodic delay circuit 7, and in cases where the periodic delay circuit 7 acts only on one optical waveguide, it acts on both waveguides as shown in Figure 4A. In this case, the phase of the light undergoes a stepwise change as shown in FIG. 5A. For this reason,
The phase difference between the light propagated through two optical waveguides is an integer multiple of π, which is a maximum of 3 times in the case of Figure 4 and a maximum of 5 times in the case of Figure 5, per channel frequency interval of the splitter. Compared to a duplexer that only sets the value to an integer multiple of π once, the phase difference can evenly approach the value of π over a wider frequency band. Therefore, when the analyzer 2 synthesizes the light propagating through the two optical waveguides, the frequency band in which the light is in phase or out of phase becomes wider, and the amplitude characteristics become as shown in Figure 4B or Figure 5B. It has an extremely sharp rise. Figure 6 is the 4th
The rise characteristics of the frequency response are calculated and shown for each of the cases shown in FIGS. In FIG. 6, the solid line indicates the case of FIG. 5, the dotted line indicates the case of FIG. 4, and the dashed line indicates the case of FIG. 2. FIG. 7 shows a case where an optical fiber having an elliptical core is used in place of the birefringent crystal 3 shown in FIG. 3 to form two optical waveguides with different electrical lengths.

第7図で8は楕円コアを持つファイバ、9は楕円コア、
10は楕円コアの長軸、11は楕円コアの短軸である。
第3図の偏光子1でP偏光された偏波面に対して楕円コ
ア9の長軸10をほぼ45偏になるように回転させて楕
円コアを持つファイバ8を設置すると、このP偏光は等
価的に長軸10と短軸11に平行な偏光を持つ2つの直
交偏光成分PS(5P′に分かれて楕円コアを持つファ
イバ8中を伝搬する。いま、この2つの直交偏光成分の
伝搬定数はコアの楕円率(長軸と短軸の比)に比例する
のて、Ps偏光成分とPe偏光成分では伝搬定数に差が
生じる。このため、楕円コアを持つファイバ8の出射端
では位相差が生じ第3図に示した複屈折結晶3と同様な
効果が得られる。第8図は第3図に示した周期的遅延回
路7のうちで電気長が異なる2本の光導波路の一方に周
期的遅延回路を付加する場合の一実施例である。
In Figure 7, 8 is a fiber with an elliptical core, 9 is an elliptical core,
10 is the long axis of the elliptical core, and 11 is the short axis of the elliptical core.
If the fiber 8 with an elliptical core is installed by rotating the long axis 10 of the elliptical core 9 so that it becomes approximately 45 polarized with respect to the polarization plane polarized by the polarizer 1 in Fig. 3, this P polarized light will be equivalent to The two orthogonal polarization components PS (5P') with polarization parallel to the long axis 10 and the short axis 11 are propagated in the fiber 8 having an elliptical core.Now, the propagation constants of these two orthogonal polarization components are There is a difference in the propagation constant between the Ps polarization component and the Pe polarization component because it is proportional to the ellipticity (ratio of major axis to minor axis) of the core.Therefore, at the output end of the fiber 8 having an elliptical core, there is a phase difference. As a result, the same effect as the birefringent crystal 3 shown in Fig. 3 can be obtained. This is an example in which a digital delay circuit is added.

12は偏光膜、13は単一または多層誘電体膜を用いた
共振器、14は全反射膜、15は入射光、16は出射光
てある。
12 is a polarizing film, 13 is a resonator using a single or multilayer dielectric film, 14 is a total reflection film, 15 is incident light, and 16 is output light.

偏光膜12は入射光16のうちPs偏光成分を完全反射
し、Pf偏光成分は全て通過するように配置する。共振
器13の共振器長は、その共振周波数の周期間隔が分波
器全体の分波周波数間隔に等しく選ぶ必要がある。また
、偏光膜12、共振器13全反射膜14は入射光15に
対してθ0傾けて設置される。いま、入射光15が入射
すると、入射光15のうちPs偏光成分は偏光膜12で
完全に反射され出射光16となる。一方、P′偏光成分
は偏光膜12を通過し共振器13で光分波器の分波周波
数間隔に等しい周期で共振現象を起こ(7、その共振点
で位相にπの遅延を生じるため、その位相特性は第4図
に実糾で示したような階段状の変化を示す。このPe化
2光成分は全反射膜15で全て反射され出射光16とな
る。以上から明らかなように第8図に示し13周期的遅
延回路は電気長の異なる2本の光導波硯の一方を伝搬す
る光の位相に周期的遅延を生じ?せるために用いられる
。 第9図は、第3図に示した周期的遅延回路7のうち
で電気長の異なる2本の光導波路の両方に周期的遅延回
路を付加する場合の一実施例である。
The polarizing film 12 is arranged so that the Ps polarized component of the incident light 16 is completely reflected, and all the Pf polarized component is transmitted. The resonator length of the resonator 13 must be selected such that the periodic interval of its resonant frequency is equal to the demultiplexing frequency interval of the entire duplexer. Further, the polarizing film 12, the resonator 13, and the total reflection film 14 are installed at an angle of θ0 with respect to the incident light 15. Now, when the incident light 15 enters, the Ps polarized component of the incident light 15 is completely reflected by the polarizing film 12 and becomes the output light 16. On the other hand, the P' polarized light component passes through the polarizing film 12 and causes a resonance phenomenon in the resonator 13 at a period equal to the demultiplexing frequency interval of the optical demultiplexer (7). Since the phase is delayed by π at the resonance point, Its phase characteristic exhibits a step-like change as shown in FIG. The 13 periodic delay circuits shown in Figure 8 are used to cause a periodic delay in the phase of light propagating through one of two optical waveguides with different electrical lengths. This is an example in which periodic delay circuits are added to both of two optical waveguides having different electrical lengths among the periodic delay circuits 7 shown.

構成および基本的な原理は第8図に示した周期的こ
遅延回路と同じであるので、異なる点のみを述べる。す
なわち、第8図に比べて偏光膜13がないため、Ps偏
光成分を共振器13に入射し、ここでその位相に周期的
遅延を生じ、全反射膜14で全て反射され出射光16と
なる。このため、Ple.,p,偏光成分の両者の位相
に第5図のような階段状の変化を生じることになる。こ
のとき、共振器13を構成する誘電体の誘電率と入射角
0を適当に選ぶとP′偏光成分に対してはブリユースタ
角が存在するため、Pe偏光成分はP,偏光成分に比べ
てより強く共振器13に結合する、このため、この結合
の度合を調整することにより、両者の位相に生じた階段
状の変化を、ある程度任意に設定することができる。こ
のことを利用すると、1チャネル周波数間隔の任意の周
波数で位相゛差をπの整数倍とすることができ第5図に
示すような位相関係を設定できる。 以上説明したよう
に、この発明によれば電気長の異なる2本の光導波路の
少なくとも一方に周期的に遅延を生じる回路を挿入する
ことにより、27本の光導波路を伝搬してきた光の少な
くとも一方の位相特性に階段状の変化を付けて、1チャ
ネル周波数間隔中でそれらの位相差がπの整数倍となる
周波数の位置を任意に設定し、かつその回数を増加させ
ることができるため、周波数応答の立上θり特性を鋭す
ることができるという利点がある。
The configuration and basic principle are as shown in Figure 8.
Since this is the same as the delay circuit, only the differences will be described. That is, since there is no polarizing film 13 compared to FIG. . For this reason, Ple. , p, and the phase of both the polarized light components undergoes a stepwise change as shown in FIG. At this time, if the permittivity of the dielectric material constituting the resonator 13 and the incident angle 0 are appropriately selected, a Brieuster angle exists for the P' polarized light component, so the Pe polarized light component is smaller than the P, polarized light component. It is strongly coupled to the resonator 13. Therefore, by adjusting the degree of this coupling, the step-like change that occurs in the phase of both can be set arbitrarily to some extent. By utilizing this fact, the phase difference can be made an integral multiple of π at any frequency within one channel frequency interval, and a phase relationship as shown in FIG. 5 can be set. As explained above, according to the present invention, by inserting a circuit that periodically causes a delay in at least one of two optical waveguides having different electrical lengths, at least one of the light propagated through the 27 optical waveguides can be By adding step-like changes to the phase characteristics of This has the advantage that the rise and fall characteristics of the response can be sharpened.

この利点を生かすと、光の周波数多重伝送において、
各チャネル間の間隔を狭くすることができるので、同一
の周波数帯域幅でも従来に比べてより多くのチャネル数
を取ることができ周波数帯域!5利用率を大きくするこ
とができる。
Taking advantage of this advantage, in optical frequency multiplexing transmission,
Since the spacing between each channel can be narrowed, even with the same frequency bandwidth, you can have more channels than before! 5. The utilization rate can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A及びBは従来の光分波器の構成概念図、第2
図A及びBは従来の光分波器の位相および振幅特性図、
第3図A及びBは本発明による光JO分波器の構成概念
図、第4図A及びBは本発明による光分波器の周期的遅
延回路を用いた場合の位相および振幅概念図、第5図A
及びBは本発明による光分波器における別の周期的遅延
回路を用いた場合の位相および振幅特性図、第6図は従
来および本発明による光分波器の振幅特性図、第7図は
本発明による楕円コアを持つファイバの説明図、第8図
は周期的遅延回路の1実施例、第9図は周期的遅延回路
の別の1実施例を示す図である。 1は偏光子、2は検光子、3は複屈折結晶、4は入射光
導波路、5,6は出射光導波路、7は周期的遅延回路、
8は楕円コアを持つファイバ、9は楕円コア、10は楕
円の長軸、11は楕円の短軸、12は偏光膜、13は共
振器、14は全反射膜、15は入射光、16は出射光で
ある。
Figures 1A and B are conceptual diagrams of the configuration of a conventional optical demultiplexer;
Figures A and B are phase and amplitude characteristic diagrams of a conventional optical demultiplexer.
3A and 3B are conceptual diagrams of the configuration of the optical JO demultiplexer according to the present invention, and FIGS. 4A and 4B are conceptual diagrams of the phase and amplitude when using the periodic delay circuit of the optical demultiplexer according to the present invention, Figure 5A
and B are phase and amplitude characteristic diagrams when another periodic delay circuit is used in the optical demultiplexer according to the present invention, FIG. 6 is an amplitude characteristic diagram of the conventional optical demultiplexer and the optical demultiplexer according to the present invention, and FIG. FIG. 8 is an explanatory diagram of a fiber having an elliptical core according to the present invention, FIG. 8 is a diagram showing one embodiment of a periodic delay circuit, and FIG. 9 is a diagram showing another embodiment of the periodic delay circuit. 1 is a polarizer, 2 is an analyzer, 3 is a birefringent crystal, 4 is an input optical waveguide, 5 and 6 are output optical waveguides, 7 is a periodic delay circuit,
8 is a fiber with an elliptical core, 9 is an elliptical core, 10 is the long axis of the ellipse, 11 is the short axis of the ellipse, 12 is a polarizing film, 13 is a resonator, 14 is a total reflection film, 15 is incident light, 16 is a This is the emitted light.

Claims (1)

【特許請求の範囲】 1 入射光導波路と常光線と異常光線に対し電気長の異
なる2本の光導波路を提供する複屈折結晶の入力端を、
両光線の強度がほぼ等しくなるような向きの偏光子をは
さんで接続し、前記複屈折結晶による2本の光導波路の
出力端と出射光導波路とを、検光子で接続して構成し、
前記2本の光導波路のうち少なくとも一方の光導波路に
、周波数軸上で交互に繰返される分波の周期とほぼ同じ
周期で遅延量の増減が繰返される周期的遅延回路を付加
したことを特徴とする光分波器。 2 前記周期的遅延回路として、前記電気長の異なる2
本の光導波路の伝搬軸に傾けて前記入射光導波路に近い
順に偏光子、単一または多層誘電体膜からなる共振器お
よび全反射膜を設置し、前記偏光子は前記電気長の異な
る2本の光導波路を伝搬する光の一方のみを、ほぼ完全
に反射し、他方をほぼ完全に透過するように設置する構
成を用いることを特徴とする特許請求の範囲第1項記載
の光分波器。 3 前記周期的遅延回路として、前記入射光導波路に近
い順に、単一または多層誘電体膜を用いた共振器、全反
射膜を設置し、両者を前記電気長の異なる2本の光導波
路の伝搬軸に、前記電気長の異なる2本の光導波路を伝
搬する2条の光と前記共振器との結合度が互いに異なる
ように傾けて設置する構成を用いることを特徴とする特
許請求の範囲第1項記載の光分波器。 4 入射光導波路と、常光線と異常光線に対し電気長の
異なる2本の光導波路を提供する楕円断面コアをもつ光
ファイバの入力端を、該光ファイバの長軸及び短軸の各
々に平行な偏波をもつ2本の光線に対し両光線の強度が
ほぼ等しくなるような向きの偏光子をはさんで接続し、
前記複屈折結晶による2本の光導波路の出力端と出射光
導波路とを、検光子で接続して構成し、前記2本の光導
波路のうち少なくとも一方の光導波路に、周波数軸上で
交互に繰返される分波の周期とほぼ同じ周期で遅延量の
増減が繰返される周期的遅延回路を付加したことを特徴
とする光分波器。
[Claims] 1. An input end of a birefringent crystal that provides two optical waveguides with different electrical lengths for the incident optical waveguide, the ordinary ray, and the extraordinary ray,
The output ends of the two optical waveguides made of the birefringent crystal and the output optical waveguide are connected by an analyzer, and the output ends of the two optical waveguides made of the birefringent crystal are connected by sandwiching polarizers oriented so that the intensities of both light beams are approximately equal.
A periodic delay circuit is added to at least one of the two optical waveguides, the delay amount of which increases and decreases repeatedly at approximately the same period as the demultiplexing period that is alternately repeated on the frequency axis. optical demultiplexer. 2. As the periodic delay circuit, the 2 circuits having different electrical lengths may be used.
A polarizer, a resonator made of a single or multilayer dielectric film, and a total reflection film are installed in the order of proximity to the incident optical waveguide, tilted to the propagation axis of the optical waveguide, and the polarizer includes two polarizers having different electrical lengths. The optical demultiplexer according to claim 1, characterized in that the optical demultiplexer is installed so that only one side of the light propagating through the optical waveguide is almost completely reflected and the other side is almost completely transmitted. . 3. As the periodic delay circuit, a resonator using a single or multilayer dielectric film and a total reflection film are installed in the order of proximity to the incident optical waveguide, and both are connected to the propagation of the two optical waveguides having different electrical lengths. Claim 1, characterized in that the optical waveguide is installed at an angle so that the degrees of coupling between the two beams propagating through the two optical waveguides having different electrical lengths and the resonator are different from each other. The optical demultiplexer according to item 1. 4. The input end of an optical fiber having an elliptical cross-section core that provides an input optical waveguide and two optical waveguides with different electrical lengths for ordinary and extraordinary rays is parallel to each of the long axis and short axis of the optical fiber. Two light beams with similar polarization are connected by sandwiching a polarizer oriented so that the intensity of both light beams is approximately equal,
The output end of the two optical waveguides made of the birefringent crystal and the output optical waveguide are connected by an analyzer, and at least one of the two optical waveguides is connected alternately on the frequency axis. An optical demultiplexer characterized in that a periodic delay circuit is added in which the amount of delay is repeatedly increased and decreased at approximately the same cycle as the repeated demultiplexing cycle.
JP54051473A 1979-04-27 1979-04-27 optical demultiplexer Expired JPS6049888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54051473A JPS6049888B2 (en) 1979-04-27 1979-04-27 optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54051473A JPS6049888B2 (en) 1979-04-27 1979-04-27 optical demultiplexer

Publications (2)

Publication Number Publication Date
JPS55143519A JPS55143519A (en) 1980-11-08
JPS6049888B2 true JPS6049888B2 (en) 1985-11-05

Family

ID=12887912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54051473A Expired JPS6049888B2 (en) 1979-04-27 1979-04-27 optical demultiplexer

Country Status (1)

Country Link
JP (1) JPS6049888B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138915U (en) * 1982-03-16 1983-09-19 日立電線株式会社 Fiber optic demultiplexer
JPS59155806A (en) * 1983-02-24 1984-09-05 Kokusai Denshin Denwa Co Ltd <Kdd> Non-polarization element
JPS6132030A (en) * 1984-07-23 1986-02-14 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexing method

Also Published As

Publication number Publication date
JPS55143519A (en) 1980-11-08

Similar Documents

Publication Publication Date Title
US4469397A (en) Fiber optic resonator
US4685773A (en) Birefringent optical multiplexer with flattened bandpass
JP2568487B2 (en) Optical device manufacturing method
US5907427A (en) Photonic band gap device and method using a periodicity defect region to increase photonic signal delay
US4341442A (en) Fiber optical transmission filter with double-refraction element
US6498680B1 (en) Compact tunable optical wavelength interleaver
JPS6173919A (en) Double refraction type optical wavelength multiplexer and demultiplexer
JPH0322961B2 (en)
GB2236605A (en) Ultra-fast optical logic devices
EP0191235A2 (en) Optical fibre coupler
US5974206A (en) Dispersion compensation with low polarization mode dispersion
US6233375B1 (en) Integrated optics component with polarization effect
Dimmick et al. Compact all-fiber acoustooptic tunable filters with small bandwidth-length product
US6694066B2 (en) Method and apparatus for an optical filter
US5455877A (en) Multi-channel wavelength-routing switch using acousto-optic polarization converters
US4027946A (en) Acousto-optic guided-light beam device
EP1520193B1 (en) Method and apparatus for an optical filter
EP1016884A2 (en) Interferometric optical device including an optical resonator
JPS6049888B2 (en) optical demultiplexer
US6535324B1 (en) Bi-directional wavelength-selective optical data apparatus
US6643063B2 (en) Deinterleaver with high isolation and dispersion compensation and 50/200GHz interleaver and deinterleaver
Dimmick et al. All-fiber acousto-optic tunable bandpass filter
JP2002511157A (en) Narrowband transmission filter using Bragg grating for mode conversion
JPH02114691A (en) External resonator of semiconductor laser
Panajotov Polarization properties of a fiber-to-asymmetric planar waveguide coupler