JPS6049605B2 - Double pipe for high temperature pyrolysis of hydrocarbon-containing materials - Google Patents

Double pipe for high temperature pyrolysis of hydrocarbon-containing materials

Info

Publication number
JPS6049605B2
JPS6049605B2 JP6437681A JP6437681A JPS6049605B2 JP S6049605 B2 JPS6049605 B2 JP S6049605B2 JP 6437681 A JP6437681 A JP 6437681A JP 6437681 A JP6437681 A JP 6437681A JP S6049605 B2 JPS6049605 B2 JP S6049605B2
Authority
JP
Japan
Prior art keywords
tube
pipe
walled
thin
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6437681A
Other languages
Japanese (ja)
Other versions
JPS57181784A (en
Inventor
新 好光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP6437681A priority Critical patent/JPS6049605B2/en
Publication of JPS57181784A publication Critical patent/JPS57181784A/en
Publication of JPS6049605B2 publication Critical patent/JPS6049605B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は炭化水素の熱分解、改質用に供する反応器用等
の二重管の提供に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the provision of a double pipe for a reactor used for thermal decomposition and reforming of hydrocarbons.

液状またはガス状の炭化水素を、高温、高圧下て触媒を
用いあるいは触媒を用いす熱分解または改質の化学反応
を行わしめると、固形炭素の析出現象が起り、この析出
固形炭素が反応器を構成する管の化学反応を行わしめる
側(内面側の場合を例にして説明して行く)に蓄積され
ることが知られている。
When liquid or gaseous hydrocarbons are subjected to a chemical reaction of thermal decomposition or reforming using a catalyst at high temperature and high pressure, precipitation of solid carbon occurs, and this precipitated solid carbon is absorbed into the reactor. It is known that these substances accumulate on the side of the tubes that undergo chemical reactions (the inner side will be explained as an example).

この固形炭素の析出沈積を放置しておくと、炭化水素を
含む流体の流通を妨害し、同時に熱分解または改質の化
学反応を行わしめるために管の外表面側から反応熱を供
給しくは除去するさいに、総括伝熱系数の著しい低下を
来し、反応器の操業の継続が困難となる問題を生ずる。
従来この種反応器用として用いられている材料は、その
高温、高圧の操業条件に適応すべく−Ni)Crを多量
に含むところの、高温用装置材料として一般的ないわゆ
るFe−Cr−Ni系オーステナイト型耐熱鋼であり、
特に操業条件が高温化する程、その管用耐熱鋼材中のN
i量を高めるようにするのが通例であつた。ところが、
このFe−Cr−Ni系オーステナイト型耐熱鋼からな
るものを使用した場合では、その使用に伴い管内面に不
可避に析出固形炭素の付着現象を生じ、これがため連続
操業を原則とする反応装置も一時的に操業中止し、各種
の方法によりこの析出炭素の除去作業(いわゆるデコー
キング)を定期的に実施することが余儀なくされている
If this solid carbon precipitation is left unattended, it will obstruct the flow of fluid containing hydrocarbons, and at the same time, it will be necessary to supply reaction heat from the outer surface of the tube to carry out the chemical reaction of thermal decomposition or reforming. When removed, the overall heat transfer coefficient decreases significantly, creating a problem that makes it difficult to continue operating the reactor.
The materials conventionally used for this type of reactor are the so-called Fe-Cr-Ni system, which is common as a material for high-temperature equipment and contains a large amount of -Ni)Cr in order to adapt to the high temperature and high pressure operating conditions. It is an austenitic heat-resistant steel,
In particular, as the operating conditions become higher, the amount of N in the heat-resistant steel for pipes increases.
It was customary to increase the amount of i. However,
When this Fe-Cr-Ni austenitic heat-resistant steel is used, solid carbon deposits inevitably adhere to the inner surface of the tube, and as a result, reactors that are designed for continuous operation cannot be used for a period of time. The plant has no choice but to stop its operation and periodically carry out work to remove this precipitated carbon (so-called decoking) using various methods.

そして、この傾向は鋼材中にNiを多く含有するもの程
顕著に現われ、その場合には管内面に短時間で固形炭素
が析出し、固形炭素の沈積量が一層急激に増加すること
が知られ、上記除去作業の必要頻度が更に増大する問題
がみられた。しかして、本発明者はこの固形炭素の析出
現象について鋭意研究考察した結果、反応器管を構成し
ているFe−Cr−Ni系オーステナイト型耐熱鋼材中
のNi含有量と固形炭素の析出沈積量とに相関関係があ
ることを知見し、更には鋼材中のNi(管内表面に存在
するNi)が触媒作用を果し、炭化水素からの固形炭素
の析出を促進していることを見出すに至つた。このよう
な技術的考察に基づけば、この種反応器用管の使用時に
おける固形炭素の析出付着現象を防止するためには、管
の炭化水素含有物と接触する内面側をNiを含まないも
しくはNi含有量の少ない別種の耐熱材料をもつて被覆
し、反応器用管本体を構成するFe−Cr−Ni系耐熱
鋼材質を炭化水素との接触を遮断することが有効な対策
手段となり得ることが知られている。
It is known that this tendency becomes more pronounced as the steel contains more Ni, and in that case, solid carbon precipitates on the inner surface of the tube in a short period of time, and the amount of solid carbon deposited increases even more rapidly. , there was a problem that the frequency with which the above-mentioned removal work was required further increased. As a result of intensive research and consideration regarding this solid carbon precipitation phenomenon, the present inventor found that the Ni content in the Fe-Cr-Ni austenitic heat-resistant steel material constituting the reactor tube and the amount of solid carbon precipitated are They discovered that there is a correlation between the Ivy. Based on such technical considerations, in order to prevent the precipitation and adhesion of solid carbon when using this type of reactor tube, it is necessary to coat the inner surface of the tube, which comes into contact with hydrocarbon-containing materials, with a Ni-free or Ni-containing material. It is known that an effective countermeasure can be to coat the Fe-Cr-Ni heat-resistant steel material that makes up the reactor tube body with a different type of heat-resistant material with a lower content to prevent it from coming into contact with hydrocarbons. It is being

すなわち、この種反応器用の用途には管本体の構成材料
としてFe−Cr−Nj系オーステナイト型耐熱鋼を使
用すると共に、炭化水素と接触する内面側はN1を含ま
ないFe−Cr−Ni系鋼のような別種の材料を被覆し
た二重管を用いるのが適していると言える。このような
目的用途に対応するものとしては、最も簡単には遠心力
鋳造によつて造られる二重管を利用することが考えられ
る。しかし乍ら、遠心力鋳造品の場合では、その製造上
、その内外層の溶着性の問題及び長手方向の部分におけ
る溶着の不均一の問題があり、ノロカミ等の接合部にお
ける欠陥のおそれも大である。また遠心力鋳造法による
場合では、その溶着性を確実ならしめようとすると、い
きおい外層内面の溶着が過度になり易く、これがため外
層に上記耐熱鋼を用いる場合には、その本来の特性が変
化してしまう危険が大である。そして又、内層の鋳造時
には外層との溶着並びにその鋳造性を考慮しなければな
らず、これは内層鋳込溶湯量の下限即ち内層の薄肉化に
限界があることを意味し、加えて遠心力鋳造による場合
では、内層の最内面には鋳造欠点を生じこの部分を旋削
除去しなければならない歩留り、コスト上の難点もある
。このような問題点に鑑み、本発明は炭化水素含有物の
高温熱分解、改質用に供する管(いわゆるクラツキング
チユーブ、リフオーマーチユーブ)について、上記遠心
力鋳造二重管に代わり、内外層の均一かつ一体化が保証
され、その外層管もしくは内層管の薄肉化も自由になし
得、更には歩留によくかつ安価に製造し得る新規構成か
らなる二重管を提供せんとするものであり、その特徴と
す.る処は、Fe−Cr−Ni系オーステナイト型耐熱
鋼からなる素管と、Fe−Cr系鋼からなる薄肉素管と
を、一方を内層管とし他方の外層管に挿入して同心状に
重合せしめると共に(前者を外層管とし後者を内層管と
する場合と、前者を内層管とし後・者を外層管とする場
合がある)、両者の間に熱伝導性に優れかつ塑性加工容
易な金属粉末もしくは金属箔を介在せしめて圧着一体化
してなる点にある。
That is, for this type of reactor application, Fe-Cr-Nj type austenitic heat-resistant steel is used as the constituent material of the tube body, and the inner surface that comes into contact with hydrocarbons is made of Fe-Cr-Ni type steel that does not contain N1. It can be said that it is suitable to use a double pipe coated with a different type of material such as. The easiest way to meet this purpose would be to use a double-walled pipe made by centrifugal casting. However, in the case of centrifugal cast products, there are problems in the weldability of the inner and outer layers and non-uniformity of welding in the longitudinal direction, and there is also a high risk of defects such as slags at the joints. It is. In addition, when using the centrifugal force casting method, if we try to ensure weldability, welding tends to be excessive on the inner surface of the outer layer.As a result, when the heat-resistant steel mentioned above is used for the outer layer, its original characteristics change. There is a great risk of doing so. Furthermore, when casting the inner layer, consideration must be given to the welding with the outer layer and its castability. In the case of casting, a casting defect occurs on the innermost surface of the inner layer, and this portion must be removed by turning, which is a disadvantage in terms of yield and cost. In view of these problems, the present invention provides a tube (so-called cracking tube, reflow march tube) used for high-temperature pyrolysis and reforming of hydrocarbon-containing materials, in place of the centrifugally cast double tube, To provide a double-walled pipe having a new configuration that guarantees uniformity and integration of the inner and outer layers, allows the outer layer or inner layer to be made thinner, and can be manufactured at a high yield and at low cost. It is a thing and its characteristics. In this process, a raw tube made of Fe-Cr-Ni austenitic heat-resistant steel and a thin-walled raw tube made of Fe-Cr steel are concentrically polymerized by inserting one tube into the inner tube and the other outer tube. (in some cases, the former is an outer layer tube and the latter is an inner layer tube, and in some cases, the former is an inner layer tube and the latter is an outer layer tube), and a metal with excellent thermal conductivity and easy plastic processing is used between the two. The main feature is that it is integrated by pressure bonding with powder or metal foil interposed therebetween.

以下本発明の二重管をその製造方法と共に説明する。The double pipe of the present invention will be explained below along with its manufacturing method.

そこで先ず、第1図に示すようなFe−Cr−Ni系オ
ーステナイト型耐熱鋼からなる素管1を外層管とし、F
e−Cr−Ni系鋼からなる薄肉素管2を内層管として
、両者を圧着一体化して構成される二重管の例について
から述べる。このような目的二重管を得るに当つては、
まず所定の形状寸法に成形したFe−Cr−Ni系オー
ステナイト型耐熱鋼の素管1とFe−Cr系鋼の薄肉・
素管2とを準備する。
Therefore, first, a base pipe 1 made of Fe-Cr-Ni austenitic heat-resistant steel as shown in Fig. 1 is used as an outer layer pipe, and F
An example of a double-walled tube constructed by integrally bonding the thin-walled tube 2 made of e-Cr-Ni steel as an inner layer tube will be described below. In order to obtain such a double pipe,
First, a raw tube 1 of Fe-Cr-Ni austenitic heat-resistant steel is formed into a predetermined shape and dimensions, and a thin-walled tube 1 of Fe-Cr steel
Prepare the base tube 2.

このさい、素管1には通常遠心力鋳鋼管を内面機械加工
により仕上げたものを利用するのか好適てあり、一方薄
肉素管2には、例えば18Cr128Cr系鋼の引抜管
の内面仕上げしたものを利用するのが好適てある。しか
して、上記素管1の内面には、第2図に示す如く、Cu
金属粉末やAI粉末のように熱伝導性に優れかつ塑性変
形容易な金属粉末3の1種又は2種以上を混合したもの
をコーティングし、その内面に上記薄肉素管2を挿入し
て、第3図に示す如く、金属粉末3を介在せしめた状態
で薄肉素管2を素管1内に同心状に重合せしめる。
In this case, it is preferable to use a normal centrifugally cast steel pipe with an inner surface machined finish for the base pipe 1, while for the thin wall base pipe 2, for example, a drawn pipe of 18Cr128Cr steel with a finished inner surface. It is suitable for use. As shown in FIG. 2, the inner surface of the raw tube 1 has Cu
A mixture of one or more metal powders 3 with excellent thermal conductivity and easy plastic deformation such as metal powder or AI powder is coated, and the thin-walled blank tube 2 is inserted into the inner surface of the coating. As shown in FIG. 3, the thin-walled blank tube 2 is concentrically superimposed within the blank tube 1 with the metal powder 3 interposed therebetween.

なお上記の例ては金属粉末3を使用する場合を説明した
が、熱伝導性に優れかつ塑性変形容易な特性を具備する
ものてあれは、金属粉末に代えて金属箔を使用しても同
効てある。また、金属粉末(もしくは該金属箔)3は、
第3図に示す如く素管1と薄肉素管2とを同心状に重合
せしめた状態で両者の間に介在されればよく、従つて予
め第2図のように素管1の内面にコーティングする場合
の他、挿入される薄肉素管2の外面にコーティング(も
しくは巻き付けて)使用することも自由てある。上記の
如く、金属粉末(もしくは金属箔)3を介在せしめて素
管1内に薄肉素管2を同心状に重合したものは、プラグ
引抜き加工、爆発圧接等により、内層管をなす薄肉素管
2を拡管せしめて、金属粉末(もしくは金属箔)3を介
し素管1に圧着一体化される。第4図はプラグ引抜き加
工による場合の例を示し、上記重合された加工素管は一
端よりプラグ4が挿入保持5されると共に、他端はチャ
ッキング8に締着されて図示矢印方向に引かれ、プラグ
4により拡管加工を受けて圧着一体化される。このさい
、外層管をなす素管1の変形を防止するため、プラグ4
による拡管位置に当る素管1の外面をローラ7,7て保
持規制するのが好適てある。かくして、第1図に示した
ところFe−Cr−Ni系オーステナイト型耐熱鋼の素
管1を外層管としFe−Cr−Nj系鋼の薄肉素管2を
内層管とし金属粉末(もしくは金属箔)3を介して両者
を圧着一体化した二重管が得られる。
Although the above example describes the use of metal powder 3, metal foil may be used instead of metal powder as long as it has excellent thermal conductivity and is easily plastically deformable. It's working. Further, the metal powder (or the metal foil) 3 is
As shown in FIG. 3, it is only necessary to interpose the material tube 1 and the thin-walled material tube 2 in a concentrically superimposed state, and therefore, the inner surface of the material tube 1 is coated in advance as shown in FIG. In addition to this, it is also possible to coat (or wrap) the outer surface of the thin-walled tube 2 to be inserted. As mentioned above, the thin-walled raw tube 2 is concentrically superposed inside the raw tube 1 with the metal powder (or metal foil) 3 interposed therein, and the thin-walled raw tube that forms the inner layer tube is produced by plug drawing processing, explosive pressure welding, etc. 2 is expanded and integrated with the base tube 1 via metal powder (or metal foil) 3 by pressure bonding. FIG. 4 shows an example of plug drawing processing, in which a plug 4 is inserted and held 5 at one end of the polymerized raw pipe, and the other end is fastened to a chuck 8 and pulled in the direction of the arrow in the figure. The pipes are then expanded by the plug 4 and crimped and integrated. At this time, the plug 4 is
It is preferable to use rollers 7, 7 to hold and regulate the outer surface of the raw tube 1, which corresponds to the tube expansion position. Thus, as shown in FIG. 1, a raw tube 1 made of Fe-Cr-Ni type austenitic heat-resistant steel is used as an outer layer tube, a thin-walled raw tube 2 made of Fe-Cr-Nj type steel is used as an inner layer tube, and metal powder (or metal foil) is used. A double tube is obtained in which the two are crimped and integrated via 3.

ここで、二重管の構成材料について説明すると、二重管
の肉厚主体を構成する外層管として用いられるFe−C
r−Ni系オーステナイト型耐熱鋼としては、具体的に
は、Cr2O〜30%、Nil5〜40%、CO.2〜
0.6%、Si2.5%以下、Mn2.5%以下、NO
.3%以下(以上各重量%)、残部実質的にFelまた
はFeの一部をMO..W,.Nbのうち1種または2
種以上(総量8重量%以下)で置換した合金が例示でき
、または二重管の内面を被覆する内層管として用いられ
るFe−Cr−N1系鋼としては、具体的には、前記の
18Cr系、28Cr系のようなNiを含まないCr系
ステンレス鋼を例示することができ、特に塑性加工性の
見地からはC含有量の低いもの(CO.l%以下望まし
く0.01%以下のもの)が選ばれる。
Here, to explain the constituent material of the double tube, Fe-C is used as the outer layer tube that makes up the main wall thickness of the double tube.
Specifically, the r-Ni-based austenitic heat-resistant steel includes Cr2O to 30%, Nil 5 to 40%, CO. 2~
0.6%, Si2.5% or less, Mn2.5% or less, NO
.. 3% or less (each % by weight), the remainder being substantially Fe or a part of Fe in MO. .. W,. One or two of Nb
Examples of Fe-Cr-N1-based steels used as inner layer tubes that coat the inner surface of double-layered tubes include alloys substituted with 18Cr-type or more (total amount of 8% by weight or less). Examples include Cr-based stainless steels that do not contain Ni, such as 28Cr-based stainless steels, and in particular those with a low C content (less than CO.1%, preferably less than 0.01%) from the viewpoint of plastic workability. is selected.

すなわち、前者は反応器用管の操業条件に適応する耐熱
性の見地から、一方後者は固形炭素の析出現象を防止す
るためNiを含まないこと並びに塑性加工の容易性から
選定されるものである。従つて、これらは本発明の技術
目的を変更しない限りにおいて、上記成分範囲等の変動
を妨げるものではない。なお、外層管を構成する素管1
と内層管を構成する薄肉素管2との間に介在される金属
粉末もしくは金属箔)3は、後に述べるように外内層管
の圧着一体化に寄与すると共に、外内層管の熱伝達性の
改善に寄与するものであつて、かかる見地から特に熱伝
導性に優れかつ塑性加工容易なものであることが必要と
される。
That is, the former is selected from the viewpoint of heat resistance suitable for the operating conditions of the reactor tube, while the latter is selected because it does not contain Ni to prevent solid carbon precipitation and is easy to plastically work. Therefore, these do not preclude variations in the above-mentioned component ranges, etc., as long as the technical purpose of the present invention is not changed. In addition, the base pipe 1 constituting the outer layer pipe
The metal powder or metal foil (3) interposed between the thin-walled tube 2 constituting the inner layer tube contributes to the crimp integration of the outer and inner layer tubes as will be described later, and also improves the heat transfer properties of the outer and inner layer tubes. From this point of view, it is necessary to have particularly excellent thermal conductivity and easy plastic working.

このような構成からなる二重管にあつては、その内面側
はN1を含まないFe−Cr系鋼の薄肉素管2で被覆さ
れているため、操業時においては炭化水素を含む流体か
らの固形炭素の析出現象を確実に抑制することができる
In the case of a double pipe with such a configuration, the inner surface is covered with a thin-walled raw pipe 2 made of Fe-Cr steel that does not contain N1, so during operation, it is protected from fluids containing hydrocarbons. The precipitation phenomenon of solid carbon can be reliably suppressed.

また内層管をなす薄肉素管2は展延性に優れるFe−C
r系鋼で形成されているため、これをプラグ引抜き加工
等で外層管をなす素管1に拡管密着せしめるさいには、
その肉厚を更に薄肉(イ).1〜5瓢程度の範囲で任意
に変更することが可能)のものにすることができ、これ
によつて従来の単層管とぼ同様の設計状態を維持するこ
とができる(これに対して、遠心力鋳造二重管を使用す
る場合では、内層の肉厚増大を余儀なくされるため、反
応速度を確保するために肉厚増加に応じて操業温度を高
める必要があり、これに伴い外層の耐熱鋼を更に高級材
に変更する必要も生じてくる)。また、外層管をなす素
管1と内層管をなす薄肉素管2とを直接圧着せしめる場
合では、通常のプラグ拡管加工による程度の加工度では
、冶金学的な密着(溶着)状態にまでは至らず、両者の
間にギャップを発生して熱伝達不良を起すことが考えら
れるが、上記の如く金属粉末(もしくは金属箔)3を介
在せしめた場合では、拡管加工後これが両者の間で圧縮
され、素管1と薄肉素管2とはこの圧縮された金属粉末
(もしくは金属箔)3を介して完全に圧着一体化される
In addition, the thin-walled tube 2 that forms the inner layer is made of Fe-C, which has excellent malleability.
Since it is made of R-series steel, when it is expanded and brought into close contact with the base pipe 1 that forms the outer layer pipe by plug-pulling processing, etc.
The wall thickness has been made even thinner (A). (can be changed arbitrarily within the range of about 1 to 5 gourds), thereby maintaining almost the same design state as conventional single-layer pipes (in contrast, When using a centrifugally cast double-walled tube, the thickness of the inner layer must be increased, so in order to ensure the reaction rate, the operating temperature must be increased in accordance with the increase in wall thickness. It will also be necessary to change the heat-resistant steel to a higher-grade material.) In addition, when directly crimping the raw pipe 1 forming the outer layer pipe and the thin-walled raw pipe 2 forming the inner layer pipe, it is difficult to reach a metallurgical adhesion (welding) state with the processing degree of normal plug pipe expansion processing. However, in the case where metal powder (or metal foil) 3 is interposed as described above, this may be compressed between the two after the tube expansion process. The raw pipe 1 and the thin-walled raw pipe 2 are completely crimped and integrated via the compressed metal powder (or metal foil) 3.

そして、金属粉末(もしくは金属箔)3にCrやA1の
ような低融点金属を使用すれば、拡管加工を高温状態で
実施することによりあるいは実操業時の高温状態におけ
る使用中に、素管1と薄肉素管2とはその金属粉末(も
しくは金属箔)3を媒体として実質的な冶金学的一体結
合状態を得ることができる。しかも金属粉末(もしくは
金属箔)3は熱伝導性に優れ、加えて内層管をなす薄肉
素管2は極く薄肉のものて形成することができるため、
結局単層管の場合と同等の総括伝熱係数を維持すること
ができる(従つて、この点でも設計変更の必要なく、外
層管の耐熱鋼の高級化及び操業温度の上昇の問題”が回
避できる)。次に、第5図に示すようなFe−Cr−N
i系オーステナイト型耐熱鋼からなる素管1を内層管と
し、Fe−Cr系鋼からなる薄肉素管2を外層管として
、両者を圧着一体化して構成される二重管の例について
述べる。
If a low melting point metal such as Cr or A1 is used for the metal powder (or metal foil) 3, the raw tube 1 can be The thin-walled tube 2 can be substantially metallurgically integrated using the metal powder (or metal foil) 3 as a medium. Moreover, the metal powder (or metal foil) 3 has excellent thermal conductivity, and in addition, the thin-walled tube 2 forming the inner layer tube can be formed with an extremely thin wall.
In the end, it is possible to maintain the same overall heat transfer coefficient as in the case of a single-layer pipe (therefore, there is no need to change the design in this respect either, and the problem of "high-grade heat-resistant steel for the outer layer pipe and increase in operating temperature" can be avoided. ).Next, as shown in Fig. 5, Fe-Cr-N
An example of a double-walled pipe constructed by integrally crimping a raw pipe 1 made of i-type austenitic heat-resistant steel as an inner layer pipe and a thin-walled raw pipe 2 made of Fe-Cr type steel as an outer layer tube will be described.

かかる外面側Fe−Cr系鋼で被覆するもの、すなわち
外面側での固形炭素の析出防止を図る二重管については
、今日の石油燃料の悪化傾向から、今後その用途需要が
益々拡張増加されるものと予想される。このような目的
二重管を得るに当つては、まず第6図のように素管1の
外面に金属粉末もしくは金属箔3をコーティングもしく
は巻き付け、これに薄肉素管2を嵌め込み(あるいは素
管1を薄肉素管2内に挿入し)、第7図に示す如く、金
属粉末もしくは金属箔3を介在せしめた状態で素管1を
薄肉素管2内に同心状に重合せしめる。
Due to today's deteriorating trend in petroleum fuel, the demand for such applications will continue to expand in the future for those whose outer surfaces are coated with Fe-Cr steel, that is, double pipes that prevent the precipitation of solid carbon on the outer surface. It is expected that To obtain such a double-walled pipe, first coat or wrap metal powder or metal foil 3 on the outer surface of the raw pipe 1 as shown in Fig. 6, and fit the thin-walled raw pipe 2 therein (or 1 into the thin-walled blank tube 2), and as shown in FIG. 7, the blank tube 1 is concentrically overlapped within the thin-walled blank tube 2 with metal powder or metal foil 3 interposed therebetween.

しかして、この重合した加工素管を、第8図に示す如く
、ダイス8,8もしくはロールを介して縮管加工すると
、第5図に示す所期の二重管が得られる。かくして得ら
れた二重管は、これと全く逆の構成を具備する前記二重
管の例の場合と、実質的には同様の効果を有するものと
なる。
Then, as shown in FIG. 8, this polymerized raw pipe is subjected to tube shrinking using dies 8, 8 or rolls, as shown in FIG. 8, to obtain the desired double-walled pipe shown in FIG. The double pipe thus obtained has substantially the same effect as the double pipe example described above, which has a completely opposite configuration.

以上に述べたように、本発明の二重管にあつては、管肉
厚の主体をなすFe−Cr−Nl系オーステナイト型耐
熱鋼からなる素管の必要な内面もしくは外面に、熱伝導
性に優れかつ塑性加工容易な金属粉末もしくは金属箔を
介在せしめて、Fe−Cr系鋼の薄肉素管を圧着一体化
してなるものであるため、その薄肉素管の被覆に基づき
、管内面もしくは外面での固形炭素の析出現象が確実に
防止されるものである。
As described above, in the double pipe of the present invention, the required inner or outer surface of the base pipe made of Fe-Cr-Nl austenitic heat-resistant steel, which constitutes the main part of the pipe wall thickness, has thermal conductivity. Because it is made by crimp-bonding a thin-walled Fe-Cr steel tube with a metal powder or metal foil that has excellent properties and is easy to plastically process, the inner or outer surface of the tube can be adjusted based on the coating of the thin-walled tube. The precipitation phenomenon of solid carbon is reliably prevented.

また、本発明に係る二重管ては、その被覆圧着する薄肉
素管の肉厚を極く薄いものにすることができ、かつ金属
粉末もしくは金属箔の介在によつてその一体性及び均一
性を確実にすることがてきるものであるため、この点塩
心力鋳造による二重管を用いる場合の問題点を一掃でき
、同時にその製造面及びコスト面での簡略低減が達成で
き、更にはその良好な密着性並びに介在物の良熱伝導性
によつて従来の単層管と同様の設計条件が確保される利
点を有するものである。
Further, in the double pipe according to the present invention, the thickness of the thin-walled pipe to be coated and crimped can be made extremely thin, and the integrity and uniformity of the pipe can be improved by interposing the metal powder or metal foil. Since it is possible to ensure the This has the advantage that design conditions similar to those of conventional single-layer pipes can be secured due to good adhesion and good thermal conductivity of the inclusions.

従つて、本発明に係る二重管は炭化水素含有物の高温熱
分解、改質用に供する反応器用管として、従来のFe−
Cr−Ni系単層管あるいは遠心力鋳造二重管に代わる
頗る優秀なものである。
Therefore, the double tube according to the present invention can be used as a reactor tube for high-temperature thermal decomposition and reforming of hydrocarbon-containing materials, instead of the conventional Fe-
This is an excellent alternative to Cr-Ni single layer tubes or centrifugally cast double tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の二重管の実施例を現わす断面図であり
、第2図、第3図、第4図はその製造工程を示す各断面
図てある。 第5図は本発明二重管の他の実施例を現わす断面図てあ
り、第6図、第7図、第8図はその製造工程を示す各断
面図である。1・・・・・・Fe−Cr−Ni系オース
テナイト型耐熱鋼よりなる素管、2・・・・・・Fe−
Cr系鋼からなる薄肉素管、3・・・・・・金属粉末も
しくは金属箔、4・・・・・・プラグ、5・・・・・・
保持棒、6・・・・・・チャッキング、7・・・・・・
ローラー、8・・・・・・ダイス。
FIG. 1 is a sectional view showing an embodiment of a double pipe according to the present invention, and FIGS. 2, 3, and 4 are sectional views showing the manufacturing process thereof. FIG. 5 is a sectional view showing another embodiment of the double pipe according to the present invention, and FIGS. 6, 7, and 8 are sectional views showing the manufacturing process thereof. 1...Main tube made of Fe-Cr-Ni austenitic heat-resistant steel, 2...Fe-
Thin-walled tube made of Cr-based steel, 3...Metal powder or metal foil, 4...Plug, 5...
Holding rod, 6...Chucking, 7...
Roller, 8...Dice.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe−Cr−Ni系オーステナイト型耐熱鋼からな
る素管と、Fe−Cr系鋼からなる薄肉素管とを、一方
を内層管とし他方の外層管に挿入して同心状に重合せし
めると共に、両者の間に熱伝導性に優れかつ塑性加工容
易な金属粉末もしくは金属箔を介在せしめて圧着一体化
してなることを特徴とする炭化水素含有物の高温熱分解
用二重管。
1 A raw tube made of Fe-Cr-Ni austenitic heat-resistant steel and a thin-walled raw tube made of Fe-Cr steel are concentrically overlapped by inserting one as an inner layer tube into the other outer layer tube, and A double pipe for high-temperature pyrolysis of hydrocarbon-containing materials, characterized in that the two are integrally crimped with a metal powder or metal foil having excellent thermal conductivity and easy plastic processing interposed therebetween.
JP6437681A 1981-04-28 1981-04-28 Double pipe for high temperature pyrolysis of hydrocarbon-containing materials Expired JPS6049605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6437681A JPS6049605B2 (en) 1981-04-28 1981-04-28 Double pipe for high temperature pyrolysis of hydrocarbon-containing materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6437681A JPS6049605B2 (en) 1981-04-28 1981-04-28 Double pipe for high temperature pyrolysis of hydrocarbon-containing materials

Publications (2)

Publication Number Publication Date
JPS57181784A JPS57181784A (en) 1982-11-09
JPS6049605B2 true JPS6049605B2 (en) 1985-11-02

Family

ID=13256515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6437681A Expired JPS6049605B2 (en) 1981-04-28 1981-04-28 Double pipe for high temperature pyrolysis of hydrocarbon-containing materials

Country Status (1)

Country Link
JP (1) JPS6049605B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199946A (en) * 1985-03-04 1986-09-04 日本鋼管株式会社 Billet for double pipe

Also Published As

Publication number Publication date
JPS57181784A (en) 1982-11-09

Similar Documents

Publication Publication Date Title
CN103769802B (en) Corrosion-resistant fluid conducting member, and apparatus and member replacement method using the same
EP1515075A2 (en) Composite tube for ethylene pyrolysis furnace and methods of manufacture and joining same
EP0283877A1 (en) Method of producing clad metal tubes.
CA1182420A (en) Tube for thermal cracking or reforming hydrocarbon
CN108637518A (en) A kind of welding groove and welding method of petroleum gas composite delivery pipeline
US5676176A (en) Bellows pipe
JPH02229616A (en) Manufacture of bimetal pipe and pipe produced thereby
US5139814A (en) Method of manufacturing metal pipes coated with tin or tin based alloys
ZA200506952B (en) Method of protecting equipment against corrosion at high temperature
JPS6049605B2 (en) Double pipe for high temperature pyrolysis of hydrocarbon-containing materials
US3426420A (en) Method of making brazed composite tubing for heat exchangers used in corrosive fluids
US6329079B1 (en) Lined alloy tubing and process for manufacturing the same
JPS6158756B2 (en)
US20150183047A9 (en) System for creating clad materials using resistance seam welding
JP6054533B2 (en) System for the production of clad materials using resistance seam welding
JPH09257392A (en) Heat exchanger
CA1123423A (en) Heat exchanger and method of making
JP2509960B2 (en) Manufacturing method of deformed tube by hot extrusion
JPH0452182B2 (en)
JPH0442024Y2 (en)
Swales Applications of centrifugally-cast alloy piping and pipe fittings in onshore and offshore oil and gas production
JPH05287319A (en) Hot isostatic pressing method
JPS61172667A (en) Production of seamless clad metallic pipe
JPH0146712B2 (en)
JPS61199946A (en) Billet for double pipe