JPS604952A - Electrophotographic method and electrophotographic sensitive body - Google Patents

Electrophotographic method and electrophotographic sensitive body

Info

Publication number
JPS604952A
JPS604952A JP11344383A JP11344383A JPS604952A JP S604952 A JPS604952 A JP S604952A JP 11344383 A JP11344383 A JP 11344383A JP 11344383 A JP11344383 A JP 11344383A JP S604952 A JPS604952 A JP S604952A
Authority
JP
Japan
Prior art keywords
image
layer
photoconductive layer
electrophotographic
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11344383A
Other languages
Japanese (ja)
Inventor
Mineo Yamauchi
山内 峰雄
Masanori Akata
正典 赤田
Hiroyuki Obata
小幡 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP11344383A priority Critical patent/JPS604952A/en
Publication of JPS604952A publication Critical patent/JPS604952A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material

Abstract

PURPOSE:To stably reproduce a superior continuous gradation image by imagewise exposing the photoconductive layer of an electrophotographic sensitive body obtained by successively laminating a transparent electrically conductive layer and the photoconductive layer on a contact screen film, uniformly exposing said body from the nonscreen film side, developing it with a toner, then transferring the image and fixing it. CONSTITUTION:The surface of the photoconductive layer 5 of an electrophotographic sensitive body 1 is uniformly charged electrostatically by an ordinary method, and a light emitted from a light source 8 is transmitted through a light transmitting original 7 and projected through a lens 9 on the layer 5 from its side to imagewise expose it and form an electrostatic latent image. Then, the base 6 of a contact screen 2a of the body 7 is uniformly exposed from its side using a light source 11. The light transmitted through the screen 2 is converted into a light and dark pattern by this uniform exposure and reaches the layer 5, and converts the electrostatic latent image formed on the surface of the layer 5 into dots in such sizes corresponding to the height of the charged potential. After the double exposures, the image is developed by the electrophotographic developing method to form a toner image. It is transferred to a transfer sheet and fixed to form a permanent image.

Description

【発明の詳細な説明】 (技術分野) 本発明は階調再現性のすぐれた電子写真方法及び、これ
に用いるのに適した電子写真感光体に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an electrophotographic method with excellent gradation reproducibility and an electrophotographic photoreceptor suitable for use therein.

(光行技術) 一般に電子写真用の感光体は、少なくとも表面が導電性
を有する支持体上に、光導電層を設けた構造をとってお
り、帯電後、光導電層側から像露光を行なうことにより
静電層像を形成−i−る。形成後の静電潜像はそのまま
トナーを用いて現像してもよいし、又、一旦、別の油な
どに転写してから現像してもよい。なお、感光体として
は光導電層の上にさらに絶縁層を設け、潜像を絶縁層上
に形成¥る構造のものも知られている。
(Photographic technology) Photoreceptors for electrophotography generally have a structure in which a photoconductive layer is provided on a support whose surface at least has conductivity, and after charging, image exposure is performed from the photoconductive layer side. By this, an electrostatic layer image is formed. After being formed, the electrostatic latent image may be developed as it is using toner, or it may be transferred to another oil or the like and then developed. Incidentally, as a photoreceptor, there is also known a structure in which an insulating layer is further provided on the photoconductive layer and a latent image is formed on the insulating layer.

このような電子写真方法によって得ら几る画像の品質は
、光導電層の種類、帯電方式、露光方式、現像方式、転
写方式、定着方式、現像剤の種類、温度湿度などの環境
条件等、種々の要因に影響されるが、特に連続階調の再
現性に影響を与える因子としては、トナーの粒径、トナ
ーの電荷量、感光体の表面電位、現像方法、露光方法が
挙げられている。
The quality of images obtained by such electrophotographic methods depends on factors such as the type of photoconductive layer, charging method, exposure method, development method, transfer method, fixing method, type of developer, and environmental conditions such as temperature and humidity. Although it is influenced by various factors, the factors that particularly affect continuous tone reproducibility include the particle size of the toner, the amount of charge of the toner, the surface potential of the photoreceptor, the development method, and the exposure method. .

上記因子において、感光材料の表面電位は光導電層の種
類によっても異なるが、一般に階調再現可能濃度域は狭
いものが多く、比較的広いとされているポリビニルカル
バゾール等の有機11/、、導体、硫化カドミウム、酸
化亜鉛等の光導電性粉体を]耐脂中に分散せしめた無機
系感光材料、硫化カドミウム等をスパッタリング等によ
り薄i1M形成した感光体においてさえ銀塩感光材料と
比較すると、階調再現可能濃度域は不充分である。
Regarding the above factors, the surface potential of the photosensitive material differs depending on the type of photoconductive layer, but in general, the density range in which gradation can be reproduced is often narrow, and organic conductors such as polyvinylcarbazole, which are said to have a relatively wide density range, Even in an inorganic photosensitive material in which photoconductive powder such as cadmium sulfide, zinc oxide, etc. is dispersed in a grease-proofing material, or a photoconductor made of cadmium sulfide, etc., formed into a thin film of 1M by sputtering, etc., when compared with a silver salt photosensitive material, The density range in which gradations can be reproduced is insufficient.

階調P]すL可能濃度域の狭い電子写真感光体を用いて
の連続階調再現の試みはトナー材料も含めた現像方法の
検討と露光方法の検討とに大別される。
Attempts to reproduce continuous gradations using an electrophotographic photoreceptor with a narrow gradation range can be broadly divided into studies on developing methods including toner materials and studies on exposure methods.

前者の現像方法の研死によると液体現像剤乞使用した湿
式現1象方式が優れた連続階調再現を示すことが知られ
ている。湿式現像剤においてはトナー粒子径がlμ以下
の微細粒子であるため、連続階調再現性が優れているの
である。しかしながら、湿式現像剤中には絶縁性溶媒を
含むため臭気により作業環境を悪(する上、被転写体と
して耐溶剤性の高いものが必要であり、又、完全ドライ
システムにならない欠点を有している。
In terms of the former development method, it is known that a wet development method using a liquid developer exhibits excellent continuous tone reproduction. In a wet developer, since the toner particles are fine particles with a diameter of lμ or less, continuous tone reproducibility is excellent. However, since the wet developer contains an insulating solvent, it creates a bad working environment due to the odor (in addition, it requires a material with high solvent resistance as the transfer material, and it also has the disadvantage that it cannot be a completely dry system. ing.

粉体の現像剤を使用づ−る乾式現像方式では使われてい
るトナー粒径が通猟2〜35μ程度と比較的太きいため
に、一般には、連続階調再現性が良(ないが、−成分現
像剤を使用する加圧現像法−?、極めて微細な粉体トナ
ーを空気をキャリア気流にのせて運ぶパウダークラウド
現像法などが連続階調再現性に優れた乾式現像方法とし
て挙げられる。しかしながら、加圧現像方法では、ブレ
ードで平らにしたトナ一層衣面に直接コロナ帯電を行な
うためトナーの劣化が激しく、トナー粒子の凝集、ケー
キ化を生じ易いという欠点を有する上、階調再現性は現
像電、陰の電圧により変化しやすく、安定した現像は困
難である。又、パウダークラウド現像法は、トナー粒子
の飛散防止が困難であること、および現像速度が遅いな
どの欠点を有する5、一方、リソグラフィーで用いられ
る通常のハーフトーン分解法を用いて連続階調を再現す
る方法も周知の事実である。これは、電子写真感光体料
に静電潜像画像を形成せしめる際、コンタクトスクリー
ンや、ガラススクリーンを介して露光′1−ろことによ
り原稿の階調に対応した太ざさの網点を形成して優れた
階調性を得ようとする方法である。
In the dry development method that uses a powder developer, the toner particle size used is relatively large, approximately 2 to 35 microns, so continuous tone reproducibility is generally good (although not very good). Examples of dry developing methods with excellent continuous tone reproducibility include -pressure development method using component developers-?, powder cloud development method in which extremely fine powder toner is carried in a carrier air stream, and the like. However, in the pressure development method, corona charging is performed directly on the surface of the toner layer flattened by a blade, which causes severe toner deterioration, and has the drawback that toner particles tend to aggregate and become caked, and gradation reproducibility is poor. It is difficult to perform stable development because it is easy to change depending on the development voltage and negative voltage.In addition, the powder cloud development method has disadvantages such as difficulty in preventing scattering of toner particles and slow development speed. On the other hand, it is well known that continuous tone can be reproduced using the normal halftone decomposition method used in lithography. This method attempts to obtain excellent gradation by forming halftone dots with a width corresponding to the gradation of the original document by exposure through a screen or a glass screen.

しかしながら、コンタク)・スクリーンを介して露光を
行う方法を電子写真方法に適用すると電子写真感光体に
コンタクトスクリーン乞密着させることが必要であるが
、コンタクトスクリーンのゼラチン面を電子写真感光体
の表面に密着させろことから、ゼラチンの吸湿性が電子
写真感光体の電気特性に与える影響が太き(なるという
欠点を生じろ。さらに、帯電済の電子写真感光体にコン
タクトスクリーンを密着させて露光を行なった後に感光
体からコンタクトスクリーンを剥離する際に放電破壊等
による静電潜像破壊を生じゃ1−い欠点がある。
However, when applying the method of exposing through a contact screen to an electrophotographic method, it is necessary to bring the contact screen into close contact with the electrophotographic photoreceptor. Because of the close contact, the hygroscopicity of gelatin has a strong influence on the electrical properties of the electrophotographic photoreceptor.Furthermore, exposure is performed with the contact screen in close contact with the charged electrophotographic photoreceptor. One drawback is that when the contact screen is peeled off from the photoreceptor after the contact screen is removed, the electrostatic latent image may be destroyed due to discharge destruction or the like.

さらに、感光体とコンタクトスクリーンを充分に密着さ
せろための装置が複雑になるという欠点も生じる。又、
現像前にコンタクトスクリーンをとI)はずす必要があ
るため作業が填雑であろ欠点がある。
Furthermore, there is a disadvantage that the apparatus for bringing the photoreceptor and the contact screen into sufficient contact with each other becomes complicated. or,
It is necessary to remove the contact screen before development, which has the disadvantage of tedious work.

一方、ガラススクリーンを介して露光を行う場合、通常
、感光体の上にスクリーン距離と称1−る間隙を設けて
ガラススクリーンを固定し、レンズ系を用いて像露光を
行うが、スクリーン距離やレンズ絞りによって階調特性
が変化し、それらの関係は経験によって決めなければな
らない。又、この方法は高価な製版カメラを必要とし、
簡便性、操作性の点でも大きな欠点を有すると言わざる
を得ない。
On the other hand, when exposure is performed through a glass screen, the glass screen is usually fixed with a gap called the screen distance above the photoreceptor, and image exposure is performed using a lens system. The gradation characteristics change depending on the lens aperture, and the relationship between them must be determined through experience. Additionally, this method requires an expensive prepress camera;
It must be said that this method has major drawbacks in terms of simplicity and operability.

また、コンタクトスクリーン、ガラススクリーンを用い
る方法に共通の欠点としては、両スクリーンを透過した
光が電子写真感光体に露光されるため、両スクリーンに
おけろ光量損失により露光時間の増大、露光に用いろ光
強度の増大をともなうことであり経済的、装置的に太ざ
な制約となる。さらに詳しく言えば露光時間の増大は、
感光体表面電位の自然減衰の要因により、静電潜像全体
の消滅という事態を惹起しがちであり、大ぎな問題であ
る。
In addition, a common disadvantage of methods using contact screens and glass screens is that since the light transmitted through both screens is exposed to the electrophotographic photoreceptor, the amount of light is lost in both screens, resulting in an increase in exposure time and an increase in exposure time. This is accompanied by an increase in the intensity of the colored light, which poses severe economical and equipment constraints. More specifically, the increase in exposure time is
Due to the natural attenuation of the photoreceptor surface potential, the entire electrostatic latent image tends to disappear, which is a serious problem.

上記の如(、電子写真感光材料を用いて連続階調を再現
せしめろ従来のプロセスは、一般に普及しているプロセ
スとは異なる特別な現像剤、現像方法、露光方法を必要
としているという太ぎな欠点を有するのである。
As mentioned above, the conventional process for reproducing continuous gradations using electrophotographic materials has the disadvantage of requiring special developers, development methods, and exposure methods that are different from those in general use. It has its drawbacks.

(目的) 本発明の目的は、電子写真方法を使用し、特別な現像剤
及び現像方式を利用することな(簡便な露光方法により
、優れた連続階σ1画像を安定的に再現J−ろことにあ
る。
(Objective) The object of the present invention is to stably reproduce excellent continuous-level σ1 images by using an electrophotographic method and without using any special developer or developing method (by using a simple exposure method). It is in.

本発明は、コンタクトスクリーンの膜面上に透明導電層
及び光導電層を順次積層しである電子写真感光体を準備
し、前記電子写真感光体の光導電層側より像露光を行な
う工程と、コンタクトスクリーンの非膜面側より全面に
露光する工程のλつの露光工程を行ない、次いでトナー
を用いて現像し、その後、転写し、しかる後、定着J−
ることを特徴とする電子写真方法に関するものである。
The present invention includes the steps of: preparing an electrophotographic photoreceptor in which a transparent conductive layer and a photoconductive layer are sequentially laminated on a film surface of a contact screen, and performing imagewise exposure from the photoconductive layer side of the electrophotographic photoreceptor; λ exposure steps of exposing the entire surface of the contact screen from the non-film side are performed, followed by development using toner, transfer, and then fixing.
The present invention relates to an electrophotographic method characterized by:

又、本発明はコンタクトスクリーンの膜面上に透明導電
層及び光導電層を順次積層しである電子写真感光体に関
するものである。
The present invention also relates to an electrophotographic photoreceptor in which a transparent conductive layer and a photoconductive layer are sequentially laminated on the film surface of a contact screen.

(構成) 以下、図面を用いながら本発明の詳細な説明する。(composition) Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明において用い7:1電子写真感光体の構
造を示す断面図である。第1図において電子写真感光体
lはコンタクトスクリーンコの膜面3上に透明導電層グ
及び光導電層5が順次積層された構造となっている。第
1図中符号6はコンタクトスクリーンの暴利を示してい
る。
FIG. 1 is a sectional view showing the structure of a 7:1 electrophotographic photoreceptor used in the present invention. In FIG. 1, the electrophotographic photoreceptor 1 has a structure in which a transparent conductive layer and a photoconductive layer 5 are sequentially laminated on a film surface 3 of a contact screen. Reference numeral 6 in FIG. 1 indicates the profiteering of the contact screen.

コンタクトスクリーンコとしては、印刷版製版時に一般
に使用さオ′シている全てのコンタクトスクリーンが使
用可能である。透明導電層コとしては、金属、酸化錫、
酸化インジウムあるいは沃化銀を蒸着することによって
形成されろか、あるいは導電体微粒子をポリマーに分散
した溶液をコンタクトスクリーンコの膜面3」二に塗布
することによって形成されろ。
As the contact screen, all contact screens commonly used in printing plate making can be used. As the transparent conductive layer, metal, tin oxide,
It can be formed by vapor depositing indium oxide or silver iodide, or by applying a solution in which conductive particles are dispersed in a polymer to the membrane surface 3'' of a contact screen.

前記導電層ヶ上には光導電層5が形成されてイロ。光導
電層5としてはポリビニルカルバゾール等の有機光導電
性材料からなるものや光導電性粉体(酸化亜鉛、硫化亜
鉛、酸化チタン、硫化カドミウム、フタロシアニン銅、
セレン等)を透明樹脂中に分散せしめた樹脂分散型のも
の、非晶質セレン非晶質シリコン等の無機光導性月利、
多層構造をした機能分離型のものなど光導電性を示し、
公知の電子写真用感光体に用いるものであればいずれの
ものも使用することができ、層5の設置方法としては公
知の方法疋従えばよい。ここで酸化亜鉛等の光導電性粉
体を樹脂中に分散せしめた樹脂分散型光導電層等は、ポ
リビニルカルバゾール等の有機光導電層と比較して透明
度が低いのでコンタクトスクリーンの基制j 1ill
から露光を行なっても光導電層グの表面に静電潜像を形
成させることは不可能であるか、もしくは可能であって
も光感度の低下を伴なうと考えられたが、実験の結果、
光感度の低下を生じることな(静電潜像形成が可能であ
ることが確かめられた。
A photoconductive layer 5 is formed on the conductive layer. The photoconductive layer 5 may be made of an organic photoconductive material such as polyvinyl carbazole or a photoconductive powder (zinc oxide, zinc sulfide, titanium oxide, cadmium sulfide, copper phthalocyanine,
Resin-dispersed type in which selenium, etc.) is dispersed in transparent resin, inorganic photoconductive materials such as amorphous selenium and amorphous silicon,
They exhibit photoconductivity, such as functionally separated types with multilayer structures.
Any material used in known electrophotographic photoreceptors can be used, and the layer 5 may be provided by any known method. Here, a resin-dispersed photoconductive layer in which photoconductive powder such as zinc oxide is dispersed in a resin has lower transparency than an organic photoconductive layer such as polyvinyl carbazole, so it cannot be used as a basis for a contact screen.
It was thought that it would be impossible to form an electrostatic latent image on the surface of the photoconductive layer even if exposed to light, or even if it was possible, it would be accompanied by a decrease in photosensitivity. ,
It was confirmed that electrostatic latent image formation was possible without causing a decrease in photosensitivity.

光導電層Sの厚みとしては!;−100μ711が好ま
しい。本発明においては電子写真感光体/のコンタクト
スクリーン2側からも露光するため、光導電層Sの厚み
が過大であると、コンタクトスクリーン2側からの露光
によって発生し、光導電層50表表面位を消滅させろキ
ャリア(電荷担体)の発生箇所が、光導電層S中での露
光光の拡散によりぼけてしまい、解像度を損なうからで
ある。光導電層5の厚みが100μmを越えると通常の
印刷物の線数であるioo線/インチの解像度の確保が
内錐になる。
As for the thickness of the photoconductive layer S! ;-100μ711 is preferred. In the present invention, since exposure is also performed from the contact screen 2 side of the electrophotographic photoreceptor, if the thickness of the photoconductive layer S is too large, exposure to light from the contact screen 2 side may cause light to appear on the surface of the photoconductive layer 50. This is because the location where carriers (charge carriers) are generated becomes blurred due to the diffusion of exposure light in the photoconductive layer S, impairing resolution. When the thickness of the photoconductive layer 5 exceeds 100 .mu.m, it becomes impossible to ensure the resolution of 100 lines/inch, which is the number of lines for ordinary printed matter.

光導電層Sの表面は第1図に示したようにそのまま露出
していてもよいが、必要に応じ保護層、易剥離層を設け
ても良い。
The surface of the photoconductive layer S may be exposed as it is as shown in FIG. 1, but a protective layer or an easily peelable layer may be provided as necessary.

次に、以上説明した電子写真感光体lを用いた画像形成
方法について説明する。説明の匣宜上帯電極性を負とし
て示すが、この極性は使用する光導電性材料の種類によ
って決まることは言うまでもない。
Next, an image forming method using the electrophotographic photoreceptor l described above will be described. For the sake of explanation, the charge polarity is shown as negative, but it goes without saying that this polarity is determined by the type of photoconductive material used.

第2図は電子写真感光体lに階調のある透過原稿7を使
用し露光を行なう工程を示1″断面図である。
FIG. 2 is a 1'' cross-sectional view showing the process of exposing an electrophotographic photoreceptor 1 to light using a transparent original 7 having gradations.

り透過原稿7からの透過投影像をレンズ9を介して光導
電層5側から照射することにより露光を行い、静電潜像
を形成せしめろ。ここで、静電潜像の形成方法としては
、第3図に示すような反射光源g’と反射原稿7fを用
いろ方法、ファイバーオプチカルチューブや発光ダイオ
ードアレイケ使用1−る方法、レーザ書き込み方法、等
公知のいずれの静電a像形成方法でも良い。
Exposure is performed by irradiating a transmission projection image from the transmission original 7 from the photoconductive layer 5 side through the lens 9 to form an electrostatic latent image. Here, methods for forming the electrostatic latent image include a method using a reflective light source g' and a reflective original 7f as shown in FIG. 3, a method using a fiber optical tube or a light emitting diode array, and a laser writing method. Any known electrostatic a-image forming method such as , etc. may be used.

次に、電子写真感光体7のコンタクトスクリーン20基
月乙イ11すから光源//により全面露光を行う。この
全面露光てより、コンタクトスクリーンコを透過した光
は、コンタクトスクリーンの作用により明暗のパターン
となつ又光導電層5に到達し、光導電層夕の表面に形成
されている静電潜像を、その帯電電位の高低に応じた大
ぎさの網点に変換させる。
Next, the entire surface of the contact screen 20 of the electrophotographic photoreceptor 7 is exposed to light using a light source. Due to this whole surface exposure, the light transmitted through the contact screen becomes a bright and dark pattern due to the action of the contact screen, and also reaches the photoconductive layer 5, causing an electrostatic latent image formed on the surface of the photoconductive layer. , the dots are converted into halftone dots whose size corresponds to the height of the charged potential.

すなわち、得られる静電潜像は、原稿の濃淡に比例した
電子写真感光体lの表面電位の減少度変化だけではな(
、網点の大小も規制されろことにより階調性7増すので
ある。
In other words, the electrostatic latent image obtained is not only caused by changes in the degree of decrease in the surface potential of the electrophotographic photoreceptor l that is proportional to the density of the original (
By regulating the size of halftone dots, the gradation increases by 7.

ここで全面露光の露光量は、電子写真感光体lの光導電
層5の材4Fによっても異なるが、露光量が多すぎろと
静電潜像のベタ部に網点状の抜けを生じたり解像性の低
下を起こ1−こと力・ら、静電潜像のベタ部が網点状パ
ターンにならない程度の露光量が適切である。
Here, the amount of exposure for the entire surface exposure varies depending on the material 4F of the photoconductive layer 5 of the electrophotographic photoreceptor 1, but if the amount of exposure is too large, halftone dots may appear in the solid portion of the electrostatic latent image. The appropriate exposure amount is such that the solid portion of the electrostatic latent image does not become a halftone pattern, since this may cause a decrease in resolution.

なお、光導電層夕べの像露光とコンタクトスクリーン2
の基材6側からの全面露光の両露光の順序は電子写真感
光体/を帯電させた後であればどちらが先でもよ(、同
時に両露光を行うことも可能である。
In addition, the image exposure of the photoconductive layer and the contact screen 2
The order of both exposures of the entire surface from the base material 6 side may be carried out first as long as the electrophotographic photoreceptor is charged (although it is also possible to carry out both exposures at the same time).

両露光後の静電潜像は、公知のいずオ′(の電子写真現
像方法によっても顕像化J−ろことカミ4能であり、例
えば乾式トナーによる磁気ブラシ現像法、パウダークラ
ウド現像法、加圧現像法等、や湿式トナーによる液体現
像法等が例示でざる。
The electrostatic latent image after both exposures can also be visualized by a known electrophotographic development method, such as a magnetic brush development method using dry toner or a powder cloud development method. , a pressure development method, and a liquid development method using a wet toner.

現像後得られた画像は、トナー付着量の変化及び網点の
大小で形成された優れた連続階調を示す。
The image obtained after development shows excellent continuous gradation created by variations in toner coverage and the size of halftone dots.

現像によって顕像化されたトナー画1象は被転写体に転
写し定着して永久側1象とする。転写及び定着の方法は
公知のいずれの方法も使用することが可能であり、転写
方法としては静電転写、粘着転写、圧力転写等が例示で
き、定着方法としては、力1] Qによる融着、溶媒蒸
気による融着、透明樹脂コーティングによる定着等が例
示できる。
A toner image visualized by development is transferred and fixed onto a transfer object to form a permanent image. Any known method can be used for transfer and fixing, and examples of transfer methods include electrostatic transfer, adhesive transfer, pressure transfer, etc., and fixing methods include fusion using force 1]Q. Examples include fusion using solvent vapor, fixing using transparent resin coating, and the like.

(効果〕 以上の本発明によれば、以下のような諸効果がある。(effect〕 According to the present invention described above, there are the following effects.

(イ)コンタクトスクリーンを介して階調画[象露光が
行われることから、形成画像の濃淡が網点の大小及びト
ナー付着量の変化で形成されるため、階調再現可能a度
域の狭い電子写真感光体を使用したとしても、極めて優
れた連続階調再現性を得ることができる。
(b) Gradation image [image exposure is performed through a contact screen, so the shading of the formed image is formed by changes in the size of halftone dots and the amount of toner adhesion, so the range of gradation reproducibility is narrow. Even if an electrophotographic photoreceptor is used, extremely excellent continuous tone reproducibility can be obtained.

仲)コンタクトスクリーンを電子写真感光体に密着せし
める装置及び工程、及び露光終了時に該感光月利からコ
ンタクトスクリーンを剥離せしめる装置及び工程乞、省
くことができるため、装置の簡便化及び処理時間の短縮
化が図れる。
Naka) The equipment and process for bringing the contact screen into close contact with the electrophotographic photoreceptor and the equipment and process for peeling the contact screen from the photosensitive material at the end of exposure can be omitted, simplifying the equipment and shortening processing time. can be achieved.

(・→従来コンタクトスクリーン膜面がゼラチン層であ
ることから吸湿等、雰囲気の影響を受けや゛す(、この
ようなコンタクトスクリーンを帯電済の電子写真感光体
表面に密着する際、リーク等による潜像破壊を生じJP
す(、装置等の除湿が問題であったが、本発明において
は膜面がコンタクトスクリーン基拐と光導電層に狭まれ
ていることにより、ゼラチン層に由来する悪影響をうけ
ない。
(・→Since the conventional contact screen film surface is a gelatin layer, it is susceptible to atmospheric influences such as moisture absorption.) JP causing latent image destruction
However, in the present invention, since the film surface is narrowed between the contact screen base and the photoconductive layer, there is no adverse effect caused by the gelatin layer.

に)露光時に、帯電せしめた電子写真感光体表面にコン
タクトスクリーン等を密着せしめろ必要がないことから
、密着、剥離操作により生じる放電破壊等の問題が解決
さλ′シる。
b) Since there is no need to bring a contact screen or the like into close contact with the surface of the charged electrophotographic photoreceptor during exposure, problems such as discharge damage caused by contact and peeling operations are solved.

(ホ)電子写真感光体を円筒形もしくはベルト状にし、
内側に光源7設けろことにより、現在普及している全て
の電子写真装置に適用用能であり、格別の新機構付加に
よる装置の大型化を招くことな(階調画像の再現が可能
である。
(e) The electrophotographic photoreceptor is made into a cylindrical or belt shape,
By providing the light source 7 inside, it can be applied to all currently popular electrophotographic devices, and it is possible to reproduce gradation images without increasing the size of the device by adding a special new mechanism.

(伺コンタクトスクリーン露光と原稿露光を別尤路にて
行なうため原稿に網点写真があった場合に該感光材料の
コンタクトスクリーンと、この網点写真の干渉によって
生ずるモアレを、選択的にコンタクトスクリーンの基月
面からの全面露光を停止することによって簡便に防止で
さ、又、原稿に連続階調を有する画像が無い場合1テ選
択的rコンタクトスクリーンの基月面からの全面露光を
停止することによって動作時間の短縮が可能であるとい
う大ぎな利点がある。
(Since contact screen exposure and document exposure are performed in separate paths, if there is a halftone photograph on the document, moiré caused by interference between the contact screen of the photosensitive material and this halftone photograph can be selectively removed using the contact screen. This can be easily prevented by stopping the entire exposure from the base surface of the contact screen.Also, if there is no image with continuous gradation in the original, stop the full exposure from the base surface of the contact screen. This has the great advantage that operating time can be shortened.

以下に本発明をより具体的に示すための実施例を挙げる
Examples are given below to more specifically illustrate the present invention.

実施例/ コンタクトスクリーン(大日本スクリーン製グレイコン
タクトスクリーン、スクエアー、13Q線/インチ)の
膜面上に蒸着法によりIn203N (t o o o
 X厚) ヲ形成シタ。
Example/ In203N (t o o o
X thickness) wo formation.

次に、ローズベンガル。3重量%を吸着させたZnO粉
体を用い、下記組成の液を調整した。
Next, Rose Bengal. A liquid having the following composition was prepared using ZnO powder adsorbed with 3% by weight.

(θ3係ローズベンガル含有)ZnO・・・・・・・g
5重量部シリコーン樹脂KR−、)O5<信越化学工栗
製)・・・コ。 〃エチルセロンルブアセテート・・・
・・・0@・ss 〃他剤としてインシアネート(コロ
ネートコ。3/。
(Contains θ3 rose bengal) ZnO...g
5 parts by weight silicone resin KR-,)O5<manufactured by Shin-Etsu Chemical Co., Ltd.)...Co. 〃Ethylseron rub acetate...
...0@・ss 〃Incyanate (Coronate Co. 3/.

日本ポリウレタン製)2乙重量部添加し、よ(混合した
。得られた溶液乞上記コンタクトスクリーン上のIn2
O3層に重ねて回転塗布法によりlSμηL厚に塗布し
光導電層とした。
2 parts by weight (manufactured by Nippon Polyurethane) were added and mixed.
It was applied over the O3 layer to a thickness of 1 SμηL by a spin coating method to form a photoconductive layer.

その後、100℃の温度で2時間オーブン中で加熱して
電子写真感光体を得た。
Thereafter, it was heated in an oven at a temperature of 100° C. for 2 hours to obtain an electrophotographic photoreceptor.

上記で得られた電子写真感光体を用いろ電子写真方法は
次のようにして行なった。まず、電子写真感光体の光導
電層表面に通常のプロセスで負帯電させた。帯電後の電
子写真感光体の表面電位は一5oo■であった。次に、
この帯電断の電子写真感光体を使用し、第2図で示すよ
うな方式で、光導電層50表面に、連続階調2有する透
過原稿のかわりにステップタブレット(富士写真フィル
ム製、フジPsステップガイド)を用い投影露光した。
The electrophotographic method using the electrophotographic photoreceptor obtained above was carried out as follows. First, the surface of the photoconductive layer of the electrophotographic photoreceptor was negatively charged by a normal process. The surface potential of the electrophotographic photoreceptor after charging was -5oo. next,
Using this charge-stopping electrophotographic photoreceptor, a step tablet (manufactured by Fuji Photo Film Co., Ltd., Fuji Ps Step Projection exposure was performed using a guide).

投影露光用の光源としてはタングステン光を使用し、該
光導電層表面におけるステップタブレットのベース相当
部分の露光量を50 luxで2秒間とした。その後、
電子写真感光体の基材側からタングステン光ビ用い、基
材面での露光量が/ 00 luxで10秒間となるよ
うに全面露光を行なった。露光終了後、電子写真感光体
の光導電層の表面を通常の磁気ブラシ現像法により現像
した後、上質紙に静電転写し、熱オーブンで加熱するこ
とにより定着した。この時、現像剤としては東京インキ
製乾式l・ナーを使用した。
Tungsten light was used as a light source for projection exposure, and the exposure amount of the portion corresponding to the base of the step tablet on the surface of the photoconductive layer was 50 lux for 2 seconds. after that,
The entire surface of the electrophotographic photoreceptor was exposed using a tungsten light beam from the substrate side so that the exposure amount on the substrate surface was /00 lux for 10 seconds. After exposure, the surface of the photoconductive layer of the electrophotographic photoreceptor was developed by a conventional magnetic brush development method, and then electrostatically transferred onto high-quality paper and fixed by heating in a thermal oven. At this time, a dry type l-ner manufactured by Tokyo Ink was used as a developer.

ここで得らJ’した画像は第9図中の曲線aに示す如く
、連続階調再現性の優れたハーフトーン画質であった、 実施例コ 実施例1で使用したのと同じ電子写真感光体を使用し、
実施例/と同様に光導電層表面に負帯電せしめた後、第
2図で示すような方法で最初に電子写真感光体の基材側
からタングステン光を用い、基材面での露光量が700
 luxでio秒間となるように全面露光を行った。そ
の後、光導1a層Sの表面に、実施例/と同様にステッ
プタブレットを用い投影露光を行った。露光終了後、実
施例1と同様に現像、転写、定着した結果、得られた画
1象は実施例/と同様の優れたハーフトーン画質であっ
た。
The J' image obtained here had halftone image quality with excellent continuous tone reproducibility, as shown by curve a in FIG. 9. use your body,
After the surface of the photoconductive layer was negatively charged in the same manner as in Example 2, tungsten light was first applied from the base material side of the electrophotographic photoreceptor using the method shown in FIG. 700
The entire surface was exposed to light for io seconds at lux. Thereafter, projection exposure was performed on the surface of the light guide 1a layer S using a step tablet in the same manner as in Example. After exposure, development, transfer, and fixing were carried out in the same manner as in Example 1, and the resulting image had excellent halftone image quality similar to that in Example.

実施例3 実施例1で使用したのと同じ電子写真感光体を使用し、
実施例1と同様に光導電層表面に負帯電せしめた後、第
3図で示すような方式で光導電層表面に連続階調を有す
る反射IJj、稿の反射投影像を露光した。反射原稿と
しては実施例/で使用したステップタブレットを返し返
し焼きした銀塩印画紙を使用した。露光光源としては螢
光灯を使用し、光導電層表面での露光量を501uxで
2秒間とした。さらに、実施例1と同様な条件でコンタ
クトスクリーンの基(Δ側力・ら全面露光した後、実施
例1と同様に現像、転写、定着を行った結果、得られた
画像の画質は実施例/と同様の優れた連続階調再現性を
示した。
Example 3 Using the same electrophotographic photoreceptor as used in Example 1,
After the surface of the photoconductive layer was negatively charged in the same manner as in Example 1, the surface of the photoconductive layer was exposed to a continuous gradation reflection IJj, a reflection projection image, as shown in FIG. As the reflective original, silver halide photographic paper obtained by reprinting the step tablet used in Example 1 was used. A fluorescent lamp was used as the exposure light source, and the exposure amount on the surface of the photoconductive layer was 501 ux for 2 seconds. Furthermore, after exposing the entire surface of the contact screen under the same conditions as in Example 1, development, transfer, and fixing were performed in the same manner as in Example 1. / showed excellent continuous tone reproducibility.

実施例グ 実施例/と同様に感光体を作製し、帯電後、光導電層側
からのf象露光と感光体基拐側からの全面露光を実施例
/と同じ露光量で同時に露光した結果、実施例1と同様
の階調性を有するハーフトーン画像が得られた。
Example G A photoconductor was prepared in the same manner as in Example/, and after charging, the f-quadrant exposure from the photoconductive layer side and the entire surface exposure from the photoconductor substrate side were performed simultaneously at the same exposure amount as in Example/. A halftone image having the same gradation as in Example 1 was obtained.

比較例/ 電子′!J真感光感光体ンタクトスクリーン基材側から
の全面露光を省く以外は、全て実施例1と同様に行った
結果、得られた画質は、第り図中曲線すに示すごとく、
連続階調再現濃度域の狭い硬調な画像であった。
Comparative example/Electron′! The process was carried out in the same manner as in Example 1, except that the entire surface exposure from the photoreceptor contact screen substrate side was omitted, and the obtained image quality was as shown by the curve in the diagram.
It was a high-contrast image with a narrow continuous tone reproduction density range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いる電子写真感光体の構造を
示す断面図、第2図及び第3図はいずれも本発明の電子
写真方法における露光の方式を示づ−だめの模式図、第
7図は本発明の実施例及び比較例において得られる画像
の階調再現性を説明するだめのグラフである。 !・・・・・・・・・・・電子写真感光体コ ・・・・
・・・・・・・コンタクトスクリーン3 ・・拳・・・
−拳・−・コンタクトスクリーンの膜面グ・・・・・・
・・・・・透明導電層 S ・・・・・・・・・・・光 導 電 層6 ・・・
・・・・・・・・コンタクトスクリーンの基材7 ・・
・・・・・・・・・透 過 原 稿71・・・・・・・
・・・・反 射 原 稿g、gζI/−−−−−’光 
源 9・舎・・・・拳・・・eし ン ズ 矛1図 牙2図 牙 8 図
FIG. 1 is a sectional view showing the structure of the electrophotographic photoreceptor used in the present invention, FIGS. 2 and 3 are schematic diagrams showing the exposure method in the electrophotographic method of the present invention, and FIG. The figure is a graph for explaining the gradation reproducibility of images obtained in Examples and Comparative Examples of the present invention. !・・・・・・・・・・・・Electrophotographic photoreceptor ・・・・
...Contact screen 3 ...Fist...
−Fist・−・Contact screen film surface・・・・・
...Transparent conductive layer S ...Photoconductive layer 6 ...
...Base material 7 of contact screen...
......Transparent manuscript 71...
...Reflection original g, gζI/----' light
Source 9・Sha...Fist...E Shinzu Spear 1 Illustration Fang 2 Fang 8 Illustration

Claims (2)

【特許請求の範囲】[Claims] (1)コンタクI・スクリーンの膜面上に透明導電層及
び光導電層を順次積層しである電子写真感光体を準備し
、前記電子写真感光体の光導電層側より1象露光を行な
う工程と、コンタクトスクリ−/の非膜面側より全面に
露光を行なう工程の2つの露光工程を行ない、次いでト
ナーを用いて現像し、その後、転写し、しかる後、定着
づ−ることを特徴とする電子写真方法。
(1) A step of preparing an electrophotographic photoreceptor in which a transparent conductive layer and a photoconductive layer are successively laminated on the film surface of a contact I/screen, and performing one-image exposure from the photoconductive layer side of the electrophotographic photoreceptor. The contact screen is characterized by performing two exposure steps: exposing the entire surface from the non-film side of the contact screen, then developing with toner, then transferring, and then fixing. electrophotographic method.
(2)コンタクトスクリーンの膜面上に透明導電層及び
光導電層を順次積層しである電子写真感光体。
(2) An electrophotographic photoreceptor in which a transparent conductive layer and a photoconductive layer are sequentially laminated on the film surface of a contact screen.
JP11344383A 1983-06-23 1983-06-23 Electrophotographic method and electrophotographic sensitive body Pending JPS604952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11344383A JPS604952A (en) 1983-06-23 1983-06-23 Electrophotographic method and electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11344383A JPS604952A (en) 1983-06-23 1983-06-23 Electrophotographic method and electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS604952A true JPS604952A (en) 1985-01-11

Family

ID=14612351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11344383A Pending JPS604952A (en) 1983-06-23 1983-06-23 Electrophotographic method and electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS604952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258251A (en) * 1985-09-09 1987-03-13 Dainippon Printing Co Ltd Image forming method
JPH0228582A (en) * 1988-07-18 1990-01-30 Tech Res & Dev Inst Of Japan Def Agency Radar device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258251A (en) * 1985-09-09 1987-03-13 Dainippon Printing Co Ltd Image forming method
JPH0228582A (en) * 1988-07-18 1990-01-30 Tech Res & Dev Inst Of Japan Def Agency Radar device

Similar Documents

Publication Publication Date Title
US2917385A (en) Reflex xerography
US4335194A (en) Two color electrophotographic process and material
US4869982A (en) Electrophotographic photoreceptor containing a toner release material
US4883731A (en) Imaging system
US2968552A (en) Xerographic apparatus and method
US3719481A (en) Electrostatographic imaging process
US3335003A (en) Reflex xerographic process
GB2095416A (en) Electrophotographic process and photosensitive member for use in said process
US4757345A (en) Electrophotographic system
CA1332118C (en) Imaging system
US4033687A (en) Cathode ray tube pickup device
EP0430703A2 (en) Xeroprinting process
US4286032A (en) Electrophotographic process and apparatus therefor
US4524117A (en) Electrophotographic method for the formation of two-colored images
JPS604952A (en) Electrophotographic method and electrophotographic sensitive body
US3794418A (en) Imaging system
GB1595463A (en) Electrophotographic process
US4226929A (en) Flexible multi-layer photoreceptor of electrophotography
JPS604959A (en) Electrophotographic method
US3682677A (en) Background removal
JPS604963A (en) Image forming method
JPS5938585B2 (en) electrophotography
JPS6023348B2 (en) Two-color electrophotographic copying method
JPS6064364A (en) Method and device for image formation
US3756811A (en) Fferent dynamic ranges electrophotographic process employing photoconductive materials of di