JPS604949B2 - Storage battery overdischarge detection device - Google Patents

Storage battery overdischarge detection device

Info

Publication number
JPS604949B2
JPS604949B2 JP53043715A JP4371578A JPS604949B2 JP S604949 B2 JPS604949 B2 JP S604949B2 JP 53043715 A JP53043715 A JP 53043715A JP 4371578 A JP4371578 A JP 4371578A JP S604949 B2 JPS604949 B2 JP S604949B2
Authority
JP
Japan
Prior art keywords
storage battery
voltage
load current
overdischarge
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53043715A
Other languages
Japanese (ja)
Other versions
JPS54135323A (en
Inventor
哲夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCM Corp
Original Assignee
Toyo Umpanki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Umpanki Co Ltd filed Critical Toyo Umpanki Co Ltd
Priority to JP53043715A priority Critical patent/JPS604949B2/en
Publication of JPS54135323A publication Critical patent/JPS54135323A/en
Publication of JPS604949B2 publication Critical patent/JPS604949B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)

Description

【発明の詳細な説明】 この発明は、蓄電池の過放電検出装置に関する。[Detailed description of the invention] The present invention relates to an overdischarge detection device for a storage battery.

蓄電池は、蓄電池式フオークリフトなどの電動車の動力
源として、その他多くの分野で広範に使用されているが
、蓄電池の過放電は常に注視しなければならない課題で
あり、蓄電池の性能を低下させ、寿命を縮めることから
、極力避けなければならない。
Storage batteries are widely used in many other fields, including as a power source for electric vehicles such as battery-powered forklifts, but over-discharging of storage batteries is an issue that must be constantly monitored, as it can degrade the performance of storage batteries. , should be avoided as much as possible as it shortens lifespan.

蓄電池の放電状態を知るためには、電解液比重を測定す
ることが最も確実なやり方であるが、通常の電動車など
では運転を停止して行なわなければならないし、手間が
かかるから、■ 電圧計による蓄電池の端子電圧の監視
■ 端子電圧がある設定された電圧レベルを下回ると、
電源を遮断したり、警報を発する装置の装備などによっ
て過放電の防止が図られている。
The most reliable way to determine the discharge status of a storage battery is to measure the specific gravity of the electrolyte, but in normal electric vehicles, this requires stopping operation and is time-consuming.■ Voltage Monitoring the terminal voltage of a storage battery using a meter■ If the terminal voltage falls below a certain set voltage level,
Efforts are made to prevent overdischarge by cutting off the power supply and installing devices that issue alarms.

ところで、蓄電池は一般に、放電の進行とともにそのみ
かけの内部抵抗RBが第1図に示すようにしだいに増大
する。また、放電率Qの増大にともない無負荷電圧も低
下するので、負荷(出力)電流に対する端子(出力)電
圧の変化は第2図のようになる。ここで、内部抵抗RB
は、各放電率Qに対して、端子電圧の変化分△VBを負
荷電流の変化分△田で除した値で表わされる。RB=△
会溝‐‐‐……。
Incidentally, in general, the apparent internal resistance RB of a storage battery gradually increases as discharge progresses, as shown in FIG. Further, as the discharge rate Q increases, the no-load voltage also decreases, so the change in terminal (output) voltage with respect to the load (output) current is as shown in FIG. Here, internal resistance RB
is expressed as a value obtained by dividing the terminal voltage change ΔVB by the load current change ΔD for each discharge rate Q. RB=△
Kaizo------.

’このように、負荷電流IBの値によって端子電圧VB
が変化するので、上記@の電圧計による監視では、運転
者が経験的に放電を停止させるべき状態を知っておかな
ければならず、熟練を要していた。
'In this way, depending on the value of load current IB, terminal voltage VB
Since the voltage changes, the above-mentioned monitoring using the voltmeter requires the driver to know from experience the state in which the discharge should be stopped, which requires skill.

また、上記■の基準レベルVT(第2図参照)との比較
によるものでは、基準電圧レベルVTを高い値に設定す
ると、まだ十分に放電可能な状態でも、短時間の大きな
負荷電流により動作することがあり、逆に低い値に設定
すると、大きな負荷電流のときにしか動作しないので、
必ずしも蓄電池を保護するという目的を果し得ない。従
来のやり方はいずれも蓄電池の過放電を防止するために
適切なものとはいいがたい面がある。この発明は上記実
情に鑑みてなされたものであって、負荷電流の大きさに
かかわらず的確に過放電状態を検知することのできる蓄
電池の過放電検出装置を提供するものである。以下第3
図ないし第5図を参照してこの発明の実施例について詳
しく説明する。
In addition, based on the comparison with the reference level VT (see Figure 2) in (2) above, if the reference voltage level VT is set to a high value, even if it is still possible to discharge sufficiently, it will operate with a large load current for a short time. On the other hand, if you set it to a low value, it will only operate when the load current is large, so
It does not necessarily serve the purpose of protecting the storage battery. None of the conventional methods can be said to be suitable for preventing over-discharge of storage batteries. The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide an overdischarge detection device for a storage battery that can accurately detect an overdischarge state regardless of the magnitude of the load current. 3rd below
Embodiments of the present invention will be described in detail with reference to the drawings to FIG.

第3図および第4図において、減算器1の1つの入力と
して、所要の無負荷電圧VIが与えられる。
In FIGS. 3 and 4, the required no-load voltage VI is applied as one input of the subtracter 1.

この電圧VIとしては、第2図中のたとえば放電率Q=
100(%)のときの無負荷電圧が選ばれる。他方減算
器1のもう1つの入力としては、負荷7に流入する負荷
電流IBに比例する電圧V2が、電流検出器2からの増
幅器5を介して与えられる。V2=K・IB
………【2)係数Kは電流検出器2と増幅
器5との総合利得である。
As this voltage VI, for example, the discharge rate Q=
The no-load voltage at 100(%) is selected. On the other hand, as another input to the subtractor 1, a voltage V2 proportional to the load current IB flowing into the load 7 is provided from the current detector 2 via the amplifier 5. V2=K・IB
[2] The coefficient K is the total gain of the current detector 2 and the amplifier 5.

ここで、無負荷電圧がVIのときの蓄電池6の内部抵抗
RBに等しくなるよう利得Kを設定すると、第2}式は
V2;RB・田 ・・…・‘3
}となる。
Here, if the gain K is set to be equal to the internal resistance RB of the storage battery 6 when the no-load voltage is VI, then the second equation becomes V2;RB・Ta...'3
} becomes.

すなわち、V2は内部抵抗RBによる降下電圧に相当す
る。これら2つの入力V1,V2を受けて、減算器1か
らはV3=VI−V2=VI−RB・IB・・・・・・
・・・【41なる電圧が基準電圧として比較器3に送ら
れる。
That is, V2 corresponds to the voltage drop due to the internal resistance RB. Upon receiving these two inputs V1 and V2, subtracter 1 outputs V3=VI-V2=VI-RB・IB...
. . . A voltage of 41 is sent to the comparator 3 as a reference voltage.

比較器3は、減算器1から与えられる基準電圧V3と蓄
電池6の端子電圧VBとを常時比較し、V3>VB……
・・・{51となったときに出力信号を発生して電源遮
断器あるいは警報器4などを作動させる。
The comparator 3 constantly compares the reference voltage V3 given from the subtracter 1 and the terminal voltage VB of the storage battery 6, and determines that V3>VB...
...{51, an output signal is generated to activate a power circuit breaker or alarm 4, etc.

減算器1の入力であるV1およびV2の組合せは、個々
の蓄電池の放電特性に応じて任意に設定することができ
る。
The combination of V1 and V2 that are input to the subtracter 1 can be arbitrarily set depending on the discharge characteristics of each storage battery.

また、蓄電池のどのような放電状態において動作させる
かの設定も任意であり、たとえば蓄電池式電動車におい
て、作業場所と充電場所とが離れているような場合には
、100%よりもいくぶん低い放電率の特性にあわせる
ということも可能である。電源遮断器あるいは警報器4
としては、蓄電池の使用状態に応じて種々のものを適用
できることはいうまでもない。第3図の回路の具体的構
成の1例が第5図に示されている。
In addition, it is also possible to set the discharge state of the storage battery at which it is operated. For example, in a storage battery-powered electric vehicle, if the work place and the charging place are far apart, the discharge state that is somewhat lower than 100% may be set. It is also possible to match the characteristics of the rate. Power circuit breaker or alarm 4
Needless to say, various methods can be applied depending on the usage condition of the storage battery. An example of a specific configuration of the circuit shown in FIG. 3 is shown in FIG.

蓄電池6の負荷電流IBの変化は、負荷7と直列に接続
された分流器21を介して演算増幅器51に入力され適
当なしベルに増幅される。幅器51の出力電圧E2は演
算増幅器11の逆相入力となる。他方、増幅器11の正
相入力として、R13 EI=雨刃再門・Vcc・・……・‘6}なる一定電圧
が与えられている。
Changes in the load current IB of the storage battery 6 are input to the operational amplifier 51 via the shunt 21 connected in series with the load 7 and amplified to an appropriate level. The output voltage E2 of the amplifier 51 becomes an anti-phase input to the operational amplifier 11. On the other hand, a constant voltage of R13 EI = Amehaba Amon Vcc .

増中器11のこの2つの入力EIおよびE2が、それぞ
れ蓄電池6の所定の放電状態における無負荷電圧VIお
よび内部抵抗RBによる電圧降下V2に対応するもので
ある。増幅器11の増幅率および第■式の分圧比によっ
て、各入力電圧E1,E2のレベルがそれぞれ調整され
ている。増幅器11は差動増幅器として作用し、E3=
器(EI−E2)・….・‘7’ なる演算を行なう。
These two inputs EI and E2 of the multiplier 11 correspond to the no-load voltage VI and the voltage drop V2 due to the internal resistance RB in a predetermined discharge state of the storage battery 6, respectively. The level of each input voltage E1, E2 is adjusted by the amplification factor of the amplifier 11 and the voltage division ratio of equation (2). Amplifier 11 acts as a differential amplifier, E3=
Equipment (EI-E2)...・Perform the operation '7'.

増幅器11の出力E3は、演算増幅器31の正相入力と
なるが、これは基準電圧V3に対応するものである。増
中器31には、逆相入力として蓄電池6の端子電圧VB
が、R3384ニR32十R粉・VB・・・・・・・・
・{8)なる値に分圧されて与えられている。
The output E3 of the amplifier 11 becomes the positive phase input of the operational amplifier 31, which corresponds to the reference voltage V3. The multiplier 31 receives the terminal voltage VB of the storage battery 6 as a negative phase input.
However, R3384-R320R powder/VB...
・The pressure is divided into {8) and given.

この分圧比は電圧83のレベルに対応して決定される。
したがって、E4が基準電圧E3を下回ると、すなわち
E3>E4 ・・…・・・
・側となると、増中器31の出力が得えられ、トランジ
スタ42がオンとなって、警報ランプ41が点灯する。
This voltage division ratio is determined according to the level of voltage 83.
Therefore, when E4 is lower than the reference voltage E3, that is, E3>E4...
- side, the output of the intensifier 31 is obtained, the transistor 42 is turned on, and the alarm lamp 41 is lit.

なお、R12,R13,R14,R15,R32および
R33は抵抗12,13,14,15,32、および3
3の低抗値をそれぞれ示している。また、第5図の回路
では警報器としてランプ41が用いられているが、これ
をランプ点滅器、ブザー、あるいは電源遮断器などに変
えることは容易にできる。以上のように、本願発明によ
る蓄電池の過放電検出装置は、蓄電池の負荷電流を検出
する負荷電流検出器と、過放電とみなすべき放電率にお
ける蓄電池のあらかじめ設定された内部抵抗値と検出さ
れた負荷電流との積を表わす電圧を出力する乗算回路と
、過放電とみなすべき放電率における蓄電池のあらかじ
設定された無負荷電圧から、乗算回路の出力電圧を減算
して基準電圧を出力する減算回路とを有しているから、
過放電とみなすべき放電率における蓄電池の端子電圧と
等しい基準亀圧、すなわち使用可能な範囲の蓄電池の端
子電圧の下限値を表わす基準電圧を負荷電流に応じて得
ることができる。
Note that R12, R13, R14, R15, R32, and R33 are resistors 12, 13, 14, 15, 32, and 3
3, respectively. Further, in the circuit shown in FIG. 5, a lamp 41 is used as an alarm, but this can be easily changed to a lamp flasher, a buzzer, or a power circuit breaker. As described above, the storage battery overdischarge detection device according to the present invention includes a load current detector that detects the load current of the storage battery, and a preset internal resistance value of the storage battery at a discharge rate that should be considered as overdischarge. A multiplier circuit that outputs a voltage representing the product of the load current and a subtraction circuit that subtracts the output voltage of the multiplier circuit from the preset no-load voltage of the storage battery at a discharge rate that should be considered overdischarge and outputs a reference voltage. Because it has a circuit,
A reference voltage equal to the terminal voltage of the storage battery at a discharge rate that is considered to be overdischarge, that is, a reference voltage representing the lower limit of the terminal voltage of the storage battery within a usable range, can be obtained in accordance with the load current.

そして比較回路によって、上記基準電圧と蓄電池の端子
電圧とが比較され、端子電圧が基準電圧よりも低くなっ
たときに過放電検出信号が出力されているから、負荷電
流の大きさにかかわらず、蓄電池の過放電状態を的確に
検知することができる。
Then, the comparison circuit compares the reference voltage with the terminal voltage of the storage battery, and when the terminal voltage becomes lower than the reference voltage, an overdischarge detection signal is output, so regardless of the magnitude of the load current, It is possible to accurately detect the over-discharge state of the storage battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放電率と内部抵抗との関係を示すグラフ、第2
図は負荷電流と端子電圧との関係を示すグラフ、第3図
はこの発明の実施例を示すブロック図、第4図は第3図
に示す回路の作動を説明するためのグラフ、第5図は第
3図に示すブロック図の具体的構成の1例を示す回路図
である。 1…・・・減算器、2・・・・・・負荷電流検出器、3
・・・…比較器、6・・・・・・蓄電池、7・・・…負
荷。 第1図第2図 第3図 第4図 第5図
Figure 1 is a graph showing the relationship between discharge rate and internal resistance, Figure 2 is a graph showing the relationship between discharge rate and internal resistance.
The figure is a graph showing the relationship between load current and terminal voltage, Figure 3 is a block diagram showing an embodiment of the invention, Figure 4 is a graph explaining the operation of the circuit shown in Figure 3, and Figure 5 is a graph showing the relationship between load current and terminal voltage. 4 is a circuit diagram showing an example of a specific configuration of the block diagram shown in FIG. 3. FIG. 1...Subtractor, 2...Load current detector, 3
... Comparator, 6 ... Storage battery, 7 ... Load. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 蓄電池の負荷電流を検出する負荷電流検出器、過放
電とみなすべき放電率における蓄電池のあらかじめ設定
された内部抵抗値と検出された負荷電流との積を表わす
電圧を出力する乗算回路、過放電とみなすべき放電率に
おける蓄電池のあらかじめ設定された無負荷電圧から、
乗算回路の出力電圧を減算して基準電圧を出力する減算
回路、および減算回路から出力される基準電圧と蓄電池
の端子電圧とを比較して端子電圧が基準電圧よりも低く
なったときに過放電検出信号を出力する比較回路、を備
えて蓄電池の過放電検出装置。
1. A load current detector that detects the load current of a storage battery, a multiplier circuit that outputs a voltage representing the product of the detected load current and a preset internal resistance value of the storage battery at a discharge rate that should be considered overdischarge, and an overdischarge. From the preset no-load voltage of the storage battery at the discharge rate that should be considered as
A subtraction circuit that subtracts the output voltage of the multiplier circuit to output a reference voltage, and a comparison between the reference voltage output from the subtraction circuit and the terminal voltage of the storage battery, and overdischarge occurs when the terminal voltage becomes lower than the reference voltage. A storage battery overdischarge detection device comprising a comparison circuit that outputs a detection signal.
JP53043715A 1978-04-12 1978-04-12 Storage battery overdischarge detection device Expired JPS604949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53043715A JPS604949B2 (en) 1978-04-12 1978-04-12 Storage battery overdischarge detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53043715A JPS604949B2 (en) 1978-04-12 1978-04-12 Storage battery overdischarge detection device

Publications (2)

Publication Number Publication Date
JPS54135323A JPS54135323A (en) 1979-10-20
JPS604949B2 true JPS604949B2 (en) 1985-02-07

Family

ID=12671494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53043715A Expired JPS604949B2 (en) 1978-04-12 1978-04-12 Storage battery overdischarge detection device

Country Status (1)

Country Link
JP (1) JPS604949B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296724A (en) * 1986-06-16 1987-12-24 富士電機株式会社 Fuel cell electric source
JPH02261022A (en) * 1989-03-29 1990-10-23 Matsushita Electric Ind Co Ltd Electric power supply controller

Also Published As

Publication number Publication date
JPS54135323A (en) 1979-10-20

Similar Documents

Publication Publication Date Title
US4180770A (en) Method and apparatus for determining the capacity of lead acid storage batteries
US5325041A (en) Automatic rechargeable battery monitoring system
US5557189A (en) Method and apparatus including a current detector and a power source control circuit for charging a number of batteries
US4849700A (en) Device for detecting residual capacity of battery
US8779784B2 (en) Insulation resistance measuring circuit free from influence of battery voltage
US20100156356A1 (en) Method of quick charging lithium-based secondary battery and electronic device using same
KR19980027321A (en) Secondary battery charger
US6163132A (en) Battery charging status indicator apparatus
US4320334A (en) Battery state-of-charge indicator
US20070170892A1 (en) Method and apparatus for estimating remaining capacity of electric storage
US20040257044A1 (en) Backup battery and discharging control apparatus therefor
US7602150B2 (en) Battery device for electronic apparatus with rechargeable secondary battery, fuel cell and run time computing unit
US6232746B1 (en) Battery charging apparatus and full-charging detecting method
JPS604949B2 (en) Storage battery overdischarge detection device
JP4259768B2 (en) Battery remaining capacity calculation method
JPS5927870B2 (en) Storage battery deterioration determination device
JP3182248B2 (en) Battery pack and charger
JPH05299123A (en) Short-circuit protective circuit of rechargeable secondary battery pack with remaining capacity display function
JP3317184B2 (en) Power supply device and method for detecting deterioration of power supply device
JPH04150727A (en) Battery pack
JP2833361B2 (en) Battery level detection circuit
JP3135442B2 (en) Battery life detector
JP3109071B2 (en) Battery remaining capacity measurement device
JPH03108679A (en) Discharge capacity control circuit
JP2002186187A (en) Protection method for secondary battery and circuit therefor