JPS604943B2 - Lightning arrester - Google Patents

Lightning arrester

Info

Publication number
JPS604943B2
JPS604943B2 JP11128678A JP11128678A JPS604943B2 JP S604943 B2 JPS604943 B2 JP S604943B2 JP 11128678 A JP11128678 A JP 11128678A JP 11128678 A JP11128678 A JP 11128678A JP S604943 B2 JPS604943 B2 JP S604943B2
Authority
JP
Japan
Prior art keywords
resistor
lightning arrester
leakage current
resistance
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11128678A
Other languages
Japanese (ja)
Other versions
JPS5538048A (en
Inventor
茂 高橋
厳 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11128678A priority Critical patent/JPS604943B2/en
Publication of JPS5538048A publication Critical patent/JPS5538048A/en
Publication of JPS604943B2 publication Critical patent/JPS604943B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 {aー 技術分野の説明 本発明は酸化亜鉛系非直線抵抗体を採用した避電器の特
性劣化の検出方法を改良した避電器に関するものである
DETAILED DESCRIPTION OF THE INVENTION {a- Description of the Technical Field The present invention relates to an earth arrester that has an improved method for detecting characteristic deterioration of an earth arrester that employs a zinc oxide nonlinear resistor.

【b} 従来技術の説明 従来の避雷器の特性要素はSIC系のものが採用されて
いたが、非直線性が十分でなかったため直列ギャップの
無い避電器とすることは不可能であつた。
[b} Description of the Prior Art Conventional lightning arresters have adopted SIC type characteristic elements, but because the nonlinearity was insufficient, it was impossible to create an arrester without a series gap.

しかしながら近年、非直線性の秀れた酸化亜鉛系非直線
抵抗体(以下商標登録されているTNRと称す)が開発
され、直列ギャップの無い避電器の実現が可能となって
いる。
However, in recent years, a zinc oxide nonlinear resistor (hereinafter referred to as a trademarked TNR) with excellent nonlinearity has been developed, and it has become possible to realize an earth arrester without a series gap.

その反面、TNRの果す役割は従来の特性要素に比較し
て極めて重要となってくる。例えば特性が劣化すると常
時のもれ電流が増加し、温度上昇を招き、ついてはTN
Rの熱暴走に至る可能性がある。従ってTNRの定期的
な性能チェックを行いその特性を把握することが望まし
い。
On the other hand, the role played by TNR becomes extremely important compared to conventional characteristic elements. For example, when the characteristics deteriorate, the constant leakage current increases, leading to a rise in temperature, and the TN
This may lead to thermal runaway of R. Therefore, it is desirable to periodically check the performance of TNR and understand its characteristics.

ところで通常避雷器の特性チェックは、第1図に示すよ
うに、直列ギャップGと特性要素RIからなる避雷器を
抵抗体rlにて接地し、この抵抗体rlの電圧降下を検
出することにより行なわれていた。
By the way, as shown in Figure 1, the characteristics of a lightning arrester are normally checked by grounding the arrester, which consists of a series gap G and a characteristic element RI, through a resistor rl, and detecting the voltage drop across this resistor rl. Ta.

しかしながら、TNRを採用した避電器においては、第
2図に示す如くTNRの定常時における電気的等価回路
は静電容量C2と非直線抵抗R2の並列接続となるため
、大地との間に挿入した抵抗体r2の電圧降下を検出す
る方法は有効といえない。
However, in the case of a TNR-based arrester, as shown in Figure 2, the electrical equivalent circuit of the TNR during steady state is a parallel connection of capacitance C2 and non-linear resistance R2, so a The method of detecting the voltage drop across the resistor r2 cannot be said to be effective.

すなわち、印加電圧eおよび前記静電容量C2非直線抵
抗R2を流れるもれ電流を夫々ic2,IR2とすると
、第3図に示す様な位相関係となる。
That is, if the applied voltage e and the leakage current flowing through the capacitance C2 and the nonlinear resistor R2 are respectively ic2 and IR2, a phase relationship as shown in FIG. 3 is obtained.

しかるに、ジュール熱を生じTNRの劣化を促進させる
基となるのは前記非直線抵抗R2のもれ電流iR2と考
えられるが、第3図に示すように容量分もれ電流ic2
と抵抗分もれ電流iR2の位相は90o異なるものの、
その波高値はic2》iR2の関係にある。従って、第
2図に示した抵抗体r2によりTNRのもれ電流を検出
しても、特性劣化の決め手となる抵抗分もれ電流iR2
は、容量分もれ電流ic2にマスクされてしまいこれを
知ることは難しい。
However, it is thought that it is the leakage current iR2 of the non-linear resistor R2 that generates Joule heat and accelerates the deterioration of the TNR, but as shown in FIG.
Although the phase of the resistance leakage current iR2 differs by 90o,
The peak value is in the relationship ic2》iR2. Therefore, even if the leakage current of the TNR is detected by the resistor r2 shown in FIG.
It is difficult to know this because it is masked by the capacitance leakage current ic2.

W発明の目的 本発明は上記問題点に鑑みなされたもので、TNRを採
用した避雷器の抵抗分もれ電流を知ることによりTNR
の劣化検出を可能とする検出装置を備えた避雷器を得る
ことを目的とする‘d’発明の構成 以下本発明の実施例を図面と共に説明する。
WObject of the Invention The present invention has been made in view of the above-mentioned problems.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

第4図は本発明になる電力用避電器の1実施例を示す。
酸化亜鉛系非直線抵抗体(TNR)1は「碍管2内に気
密状態で収納されている。前記碍管2は、高圧フランジ
3および接地架台4により閉塞されている。TNRIは
接地架台4とは電気的に絶縁されており、コンデンサー
5および非直線抵抗体6の並列回路を介して接地されて
いる。更に前記非直線抵抗体6と大地との間には、この
非道線抵抗体6のもれ電流を検出するための電流計7が
挿入されている。‘e} 発明の作用 前述のように、TNRIは電気回路的には静電容量と非
直線抵抗の並列回路として表わし得る。
FIG. 4 shows one embodiment of the power arrester according to the present invention.
A zinc oxide nonlinear resistor (TNR) 1 is housed in an airtight state inside an insulator tube 2. The insulator tube 2 is closed by a high-pressure flange 3 and a grounding frame 4. It is electrically insulated and grounded through a parallel circuit of a capacitor 5 and a non-linear resistor 6. Furthermore, between the non-linear resistor 6 and the ground, there is also a wire of this non-linear resistor 6. An ammeter 7 is inserted to detect the leakage current.'e} Function of the Invention As described above, the TNRI can be expressed as a parallel circuit of capacitance and non-linear resistance in terms of an electric circuit.

従って、第4図に示した実施例の避電器の電気的な等価
回路は第5図の如くなる。第5図に於て、C,およびR
,はTNRIの静電容量および非直線抵抗であり、C2
及びR2は前述の第4図に示した静電容量5および非直
線抵抗6に相当するものである。
Therefore, the electrical equivalent circuit of the earth arrester of the embodiment shown in FIG. 4 is as shown in FIG. In Figure 5, C, and R
, are the capacitance and nonlinear resistance of TNRI, and C2
and R2 correspond to the capacitance 5 and nonlinear resistance 6 shown in FIG. 4 described above.

ここで、C2,R2の値は常規対地電圧から定格電圧の
範囲内でC,R.=C2R2という関係が成り立つ様に
決められる。
Here, the values of C2 and R2 are within the range from the normal ground voltage to the rated voltage. = C2R2 is determined so that the relationship holds true.

非直線抵抗R,とR2は第6図に示す如く、非直線係数
Q(V=KIQ、V:電圧、1:電流、K:定数)は等
しいが、その定数K,とK2の間にはK,》K2の関係
がある。このように予め適切な値にC2,R2の値が選
択されると、第5図に示した非直線抵抗体R,,R2に
加わる電圧e,,e2およびそれらのもれ電流iR,,
iR2更に静電容量C,,C2の進相電流ic,,ic
2はほぼ第7図に示す様になる。すなわち、iR,=i
R2なる関係が得られるため、非道線抵抗体R2のもれ
電流iR2を検出すれば、TNRの抵抗R,の抵抗分も
れ電流iR,を知ることができ、信頼性の高い性能チェ
ックを行なうことができる。
As shown in Figure 6, the nonlinear resistances R and R2 have the same nonlinear coefficient Q (V = KIQ, V: voltage, 1: current, K: constant), but there is a difference between the constants K and K2. There is a relationship of K,》K2. When the values of C2 and R2 are selected in advance to appropriate values in this way, the voltages e, , e2 applied to the nonlinear resistors R, , R2 and their leakage currents iR, , shown in FIG.
iR2 and the advanced phase current ic, ic of capacitance C, , C2
2 becomes approximately as shown in FIG. That is, iR,=i
Since the relationship R2 is obtained, if the leakage current iR2 of the non-traffic line resistor R2 is detected, the leakage current iR of the resistance R of the TNR can be known, and a highly reliable performance check can be performed. be able to.

{fー 他の実施例 本発明は上記実施例に限定されるものではなく、以下の
構成を採用することができる。
{f- Other Embodiments The present invention is not limited to the above embodiments, and the following configurations can be adopted.

即ち第4図における非直線抵抗体6に代えて、可変抵抗
体61を使用した構成である。この場合の等価回路は第
8図で表わすことができる。第8図の如き構成の避雷器
に於てR2は可変抵抗体の抵抗値を示す。この様に構成
された避電器の線路端子Aに商用周波電圧が印加される
と、第8図に示す様に各素子にはiR,,ic,および
iR2,ic2という電流が流れるが、この時可変抵抗
体61を適切に選択することにより、C.・R,=C2
・R2とすることが可能である。
That is, this is a configuration in which a variable resistor 61 is used in place of the non-linear resistor 6 in FIG. The equivalent circuit in this case can be represented in FIG. In the lightning arrester constructed as shown in FIG. 8, R2 represents the resistance value of the variable resistor. When a commercial frequency voltage is applied to the line terminal A of the earth arrester constructed in this way, currents iR, ic, and iR2, ic2 flow through each element as shown in Figure 8. By appropriately selecting the variable resistor 61, C.・R,=C2
- It is possible to set it as R2.

このための具体的な方法としては、例えば線路端子Aと
中間端子Bとの電圧波形を観測し、両者の間に位相差が
生じない様に可変抵抗体の抵抗値R2の値を決定すれば
良い。
A specific method for this is, for example, by observing the voltage waveforms at line terminal A and intermediate terminal B, and determining the value of the resistance value R2 of the variable resistor so that there is no phase difference between them. good.

この様にして各素子に前述のC,R,=C2・R2とい
う関係を与えることは容易に行なうことができる。この
時の特性要素の抵抗分もれ電流iR,、可変抵抗体の電
流iR2および避雪器印加電圧eはほぼ第9図に示す様
になる。
In this way, it is easy to give each element the above-mentioned relationship C, R, =C2.R2. At this time, the resistance leakage current iR of the characteristic element, the current iR2 of the variable resistor, and the snow protector applied voltage e are approximately as shown in FIG.

iR,は非直線抵抗体のもれ電流であるのに対し、iR
2は直線抵抗体の電流であるために、印加電圧eのすべ
ての瞬時値において前述のCfR,=C2・R2という
関係を満たすことはできない。従って、第9図に示す如
く、電流波形iR3,iR2を同一とすることはできな
いが、夫々の波高値は完全に同一となる。すなわち、i
R,(波高値)=IR2(波高値)なる関係が容易に得
られるため、可変抵抗体R2のもれ電流iR2を検出す
ればTNRの抵抗R,の抵抗分もれ電流iR,を知るこ
とができ、信頼性の高い性能チェックを行なうことがで
きる。本発明の更に他の実施例を第10図を参照して説
明する。
iR, is the leakage current of the nonlinear resistor, whereas iR
Since 2 is the current of the linear resistor, the above-mentioned relationship CfR,=C2·R2 cannot be satisfied at all instantaneous values of the applied voltage e. Therefore, as shown in FIG. 9, although the current waveforms iR3 and iR2 cannot be made the same, their peak values are completely the same. That is, i
Since the relationship R, (peak value) = IR2 (peak value) can be easily obtained, by detecting the leakage current iR2 of the variable resistor R2, the leakage current iR, corresponding to the resistance of the TNR resistor R, can be found. This allows for highly reliable performance checks. Still another embodiment of the present invention will be described with reference to FIG.

この実施例ではTNRに直列に、可変コンデンサー51
と直線抵抗体62の並列回路を大地との間に接続した構
成である。この図に於てC,及びR,はTNRの静電容
量および非直線抵抗であり、C2,R2は可変コンデン
サー51および直線抵抗体62に相当するものである。
この構成に於て避雷器の線路端子Aに商用周波電圧が印
加されると、第10図に示すように各素子にはiR,,
ic2及びiR2,ic2の電流が流れる。このとき可
変コンデンサー51の値C2を適切に選択することによ
り、前記実施例と同様に,R,=C2R2とすることが
できるu この時の特性要素の抵抗分もれ電流iR,、
直線抵抗体62の電流iR2及び避雷器印加電圧eは前
記第9図の略同じになる。即ち電流波形iR,,jR2
と同一にすることはできないが夫々の波高値は同一にな
る。従ってiR,(波高値)=iR2(波高値)なる関
係を容易に得ることができるため、直線抵抗体のもれ電
流iR2を検出すれば非直線抵抗体R,の抵抗分もれ電
流iR,を知ることができる。g’ 総合的な効果 以上述べた如く本発明によれば、常時TNRの抵抗分も
れ電流を簡便にかつ精度良く検出できるため保守上極め
て有利な電力用避雷器とすることができる。
In this embodiment, a variable capacitor 51 is connected in series with the TNR.
This configuration has a parallel circuit of a linear resistor 62 connected to the ground. In this figure, C and R are the capacitance and non-linear resistance of the TNR, and C2 and R2 correspond to the variable capacitor 51 and the linear resistor 62.
In this configuration, when a commercial frequency voltage is applied to the line terminal A of the lightning arrester, each element has iR, ,
Currents ic2, iR2, and ic2 flow. At this time, by appropriately selecting the value C2 of the variable capacitor 51, it is possible to set R,=C2R2, as in the previous embodiment.U At this time, the resistance leakage current iR of the characteristic element,
The current iR2 of the linear resistor 62 and the voltage e applied to the arrester are approximately the same as those shown in FIG. 9 above. That is, the current waveforms iR,,jR2
cannot be made the same, but the respective peak values will be the same. Therefore, the relationship iR, (peak value) = iR2 (peak value) can be easily obtained, so if the leakage current iR2 of the linear resistor is detected, the leakage current iR, can be known. g' Overall effect As described above, according to the present invention, the resistance leakage current of the TNR can be detected easily and accurately at all times, so that a power surge arrester can be provided which is extremely advantageous in terms of maintenance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の劣化検出方法を示す等価回路
図、第3図は電流波形を説明する図、第4図及び第5図
は本発明になる避雷器の構成図、およびその電気的な説
明図、第6図、第7図は動作特性を示す図、第8図は本
発明の他の実施例の等価回路図、第9図は第8図の動作
特性を示す図、第10図は更に他の実施例の等価回路図
である。 1・・・・・・酸化亜鉛系非直線抵抗体、2・・・・・
・碍管、3・・・・・・高圧フランジ、4・・・・・・
接地架台、5・・・・・・コンデンサー、6…・・・非
直線抵抗、7・・・…電流計、51……可変コンデンサ
ー、61・・・・・・可変抵抗体、62…・・・直線抵
抗体。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図
Figures 1 and 2 are equivalent circuit diagrams showing the conventional deterioration detection method, Figure 3 is a diagram explaining current waveforms, and Figures 4 and 5 are block diagrams of the lightning arrester according to the present invention and its electrical FIG. 6 and FIG. 7 are diagrams showing operating characteristics, FIG. 8 is an equivalent circuit diagram of another embodiment of the present invention, and FIG. 9 is a diagram showing operating characteristics of FIG. FIG. 10 is an equivalent circuit diagram of still another embodiment. 1...Zinc oxide-based nonlinear resistor, 2...
・Insulator pipe, 3...High pressure flange, 4...
Grounding frame, 5... Capacitor, 6... Non-linear resistance, 7... Ammeter, 51... Variable capacitor, 61... Variable resistor, 62...・Linear resistor. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】 1 非直線性のすぐれた酸化亜鉛系の非直線抵抗体を積
重ねてなる特性要素を収納した避雷器において、前記特
性要素の静電容量と抵抗値との積に等しい値とし得るコ
ンデンサーと抵抗体の並列回路を、前記特性要素と大地
との間に接続してなり、前記特性要素の抵抗分もれ電流
を、並列回路の抵抗体のもれ電流を検出することにより
知るようにした避雷器。 2 抵抗体が非直線抵抗である特許請求の範囲第1項記
載の避雷器。 3 抵抗体が可変抵抗体である特許請求の範囲第1項記
載の避雷器。 4 コンデンサーが可変コンデンサーであり、抵抗体が
直線抵抗体である特許請求の範囲第1項記載の避雷器。
[Scope of Claims] 1. In a lightning arrester containing a characteristic element formed by stacking zinc oxide-based nonlinear resistors with excellent nonlinearity, a value equal to the product of the capacitance and the resistance value of the characteristic element. A parallel circuit of a capacitor and a resistor is connected between the characteristic element and the ground, and the leakage current of the resistance of the characteristic element is determined by detecting the leakage current of the resistor of the parallel circuit. Lightning arrester. 2. The lightning arrester according to claim 1, wherein the resistor is a non-linear resistor. 3. The lightning arrester according to claim 1, wherein the resistor is a variable resistor. 4. The lightning arrester according to claim 1, wherein the capacitor is a variable capacitor and the resistor is a linear resistor.
JP11128678A 1978-09-12 1978-09-12 Lightning arrester Expired JPS604943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11128678A JPS604943B2 (en) 1978-09-12 1978-09-12 Lightning arrester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11128678A JPS604943B2 (en) 1978-09-12 1978-09-12 Lightning arrester

Publications (2)

Publication Number Publication Date
JPS5538048A JPS5538048A (en) 1980-03-17
JPS604943B2 true JPS604943B2 (en) 1985-02-07

Family

ID=14557368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11128678A Expired JPS604943B2 (en) 1978-09-12 1978-09-12 Lightning arrester

Country Status (1)

Country Link
JP (1) JPS604943B2 (en)

Also Published As

Publication number Publication date
JPS5538048A (en) 1980-03-17

Similar Documents

Publication Publication Date Title
US3611044A (en) Surge protection apparatus with improved circuit for reliable sparkover
JPS6026467B2 (en) Lightning arrester characteristic deterioration detection device
JPH0230148B2 (en)
CA1218108A (en) Surge arrester equipped for monitoring functions and method of use
US4866393A (en) Method of diagnosing the deterioration of a zinc oxide type lightning arrester utilizing vector synthesis
JPS604943B2 (en) Lightning arrester
US5289335A (en) Compound lightning arrester for low voltage circuit
US4112418A (en) Lightning current responsive alarm
EP0071277B1 (en) Surge arrester with a bypass gap
JPS6029905B2 (en) Grounded tank type lightning arrester
JPS5928371Y2 (en) Gears press lightning arrester protection device
JPS6029074B2 (en) Lightning arrester deterioration detection method
US1658746A (en) Lightning arrester
JPS5922909B2 (en) Lightning arrester deterioration detection device
JP3569053B2 (en) Ground potential detection display
JPS6046663B2 (en) Grounded tank type lightning arrester
JP2657023B2 (en) Surge protection device for partial discharge meter
EP1376811A2 (en) Overvoltage protection circuit
GB1588893A (en) Arc quenching in surge arresters
JPS5825727Y2 (en) Gapless arrester abnormality detection device
JPS5928370Y2 (en) Gears press lightning arrester deterioration detection device
JPS6027159B2 (en) Lightning arrester
JPS62264586A (en) Method of detecting deterioration of arrestor for sheath protection
JPS5928372Y2 (en) Gapless lightning arrester deterioration detector
JPH0650330B2 (en) Deterioration diagnosis method for zinc oxide type arrester