JPS6049314A - Optical path dividing and color separating device for color image readout optical system - Google Patents

Optical path dividing and color separating device for color image readout optical system

Info

Publication number
JPS6049314A
JPS6049314A JP58157116A JP15711683A JPS6049314A JP S6049314 A JPS6049314 A JP S6049314A JP 58157116 A JP58157116 A JP 58157116A JP 15711683 A JP15711683 A JP 15711683A JP S6049314 A JPS6049314 A JP S6049314A
Authority
JP
Japan
Prior art keywords
light
roof
incident
color
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58157116A
Other languages
Japanese (ja)
Inventor
Toyokazu Satomi
里見 豊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP58157116A priority Critical patent/JPS6049314A/en
Publication of JPS6049314A publication Critical patent/JPS6049314A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Color Image Communication Systems (AREA)

Abstract

PURPOSE:To reduce a decrease in the quantity of light by arranging a roof prism so that two pieces of luminous flux from a lens strike two roof surfaces respectively, and providing a means which separates luminous flux projected from the roof prism into color-separated light beams in different colors and photodetection sensors on which the color-separated pieces of luminous flux are incident. CONSTITUTION:Two reflected pieces of luminous flux projected from an original O in slightly different directions are incident on the lens 7 as optical-axis light and slanting light. The two projected pieces of luminous flux from the lens are incident on two roof surfaces of the roof prism 8. The roof surfaces 8A and 8B are dichroic reflecting surfaces which have different spectral reflection factors, and only light beams in their specific wavelength bands are reflected to form images on the 1st sensor 10 and the 3rd sensor 12 respectively. Luminous flux which is split by the roof surface 8B and projected from the 3rd surface 8C forms an image on the 2nd sensor 11. Consequently, there is no decrease in the quantity of light on the optical path before the light is projected from the lens 7, the quantity of incident light on the 1st sensor 10 is 100%, and the luminous flux is split into two by the roof surface as the dichroic surface, so the quantities of incident light on the 2nd sensor 11 and the 3rd sensor 12 are each 50%.

Description

【発明の詳細な説明】 技術分野 この発明は、カラー画像を2つ以上の色分解された光束
に分割してCOD等の受光センサで読取るカラー画像読
取り光学系の光路分割及び色分解装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an optical path division and color separation device for a color image reading optical system that divides a color image into two or more color-separated light beams and reads them with a light receiving sensor such as a COD.

従来技術 カラー画像を1個の結像レンズを使用し、2色以上の色
に分解してCOD等の受光センサで読取る装置としては
、例えば接触面を夫々ダイクロイックミラー等のカラー
フィルタとした3個のプリズムを互いに面接触させて形
成した三色分解光学系の一つの面にレンズより出射され
た光を入射させ各プリズム間の接触面で反射させた2つ
の光束と透過した1つの光束の結像面に夫々受光センサ
を設けた装置が使用されている。
Conventional technology A device that uses one imaging lens to separate a color image into two or more colors and read them with a light receiving sensor such as a COD includes, for example, three devices each with a color filter such as a dichroic mirror on the contact surface. The light emitted from the lens is incident on one surface of the three-color separation optical system formed by bringing the prisms into surface contact with each other, and the result is the result of two light beams reflected at the contact surface between each prism and one light beam transmitted. A device is used in which a light receiving sensor is provided on each image plane.

しかし、この構成では3つの光束のうち2つの光束はカ
ラーフィルタを2回透過するため、これらの光束では受
光センサに達する光量がl/4 に低下し、又レンズの
後方に3個のプリズムよりなる三色分解光学系が入るた
め、バックフォーカスが長くなり、又プリズムによる像
の劣化を防止するようにした特別のレンズを特徴とする
特開昭54−154348号公報には上記の欠点を改良
するものとして1個のレンズの手前に台形プリズムを設
け、その3つの入射面にカラーフィルターを設け、原稿
から出た3つの光束を互いに異る3色に分解した後互い
に異る入射角でレンズを透過させ、同一基板上に作成し
た3つのラインセンサ上に夫々結像するようにし、駆動
回路の簡略化を測った装置が提案されているが、この場
合は3つの光束は1つのレンズの別の部分を使用して結
像するので光量は概ねl/3 に低下し、更Ic同一4
板[3つのラインセンサを作るので製造が難しく、歩留
りが悪くなり、コスト上昇を招く欠点を有する。
However, in this configuration, two of the three light fluxes pass through the color filter twice, so the amount of light reaching the light receiving sensor for these light fluxes is reduced to 1/4, and there are three prisms behind the lens. Japanese Patent Laid-Open No. 154348/1983 features a special lens that has a long back focus and prevents image deterioration due to the prism, which improves the above drawbacks. In order to do this, a trapezoidal prism is installed in front of one lens, and color filters are installed on the three incident surfaces of the trapezoidal prism, and the three light beams emitted from the document are separated into three different colors, and then the three light beams are separated into three different colors and then passed through the lens at different incident angles. A device has been proposed in which the drive circuit is simplified by transmitting the light beam and forming images on three line sensors fabricated on the same substrate, but in this case, the three light beams are transmitted through one lens. Since the image is formed using a different part, the light intensity is reduced to approximately 1/3, and the Ic is the same as 4.
Plate [Since three line sensors are made, manufacturing is difficult, yield is low, and costs increase.

又、本発明者は、先にコンタクトガラス上に静置された
原稿をスリット照射し僅かに異る方向に出射された2つ
の光束を2;lの速度比で走行する第1ミラーと第2ミ
ラ一群により走査し、1個の結像レンズに異る入射角で
入射させ、その後方でグイクロイックミラーで光路分割
と色分解とを行ない、3個の受光センサで読取るように
したカラー画像読取り装置の光学系を提案した。この構
成により、光量低下はl/2 で済み、且つ通常のレン
ズの使用が可能になったが、最近のセンサではビット間
隔(ピッチ)が狭く、3個のセンサの配置が困難になる
問題点がちることが判った。
In addition, the inventor first slit-irradiated an original placed on a contact glass, and transmitted two light beams emitted in slightly different directions to a first mirror and a second mirror, which travel at a speed ratio of 2;l. A color image scanned by a group of mirrors, incident on a single imaging lens at different angles of incidence, followed by optical path splitting and color separation using a gicroic mirror, and read by three light receiving sensors. The optical system of the reader was proposed. This configuration reduces the amount of light by 1/2 and makes it possible to use a normal lens. However, recent sensors have a narrow bit interval (pitch), making it difficult to arrange three sensors. It turned out that it was cold.

目 的 この発明は、従来使用され、提案されているカラー画像
読取り光学系の上述の問題点にかんがみ、光量低下が少
なく、特別設計のレンズを必要とせずコスト上昇を招か
ず、又センサのピッチが小さくなった場合にもセンサの
配置が容易で装置の小型化に役立つ光路分割及び色分解
装置を提供することを目的とする。
Purpose: In view of the above-mentioned problems of conventionally used and proposed color image reading optical systems, the present invention has been made to reduce the decrease in light intensity, do not require a specially designed lens, and does not cause an increase in cost, and the pitch of the sensor. It is an object of the present invention to provide an optical path splitting and color separation device that facilitates the arrangement of sensors even when the size of the device is small and is useful for downsizing the device.

1−」L 以下、本発明を図面に示す実施例に基いて詳細に説明す
る。
1-''L Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第1図は本発明を1つのレンズと3個のCODとを有し
、主走査をCODの自己走査によって行ない副走査をミ
ラーの走査移動によって行なう方式のカラー画像読取り
光学系に適用した実施例を示す図である。
FIG. 1 shows an embodiment in which the present invention is applied to a color image reading optical system having one lens and three CODs, in which the main scanning is performed by the self-scanning of the COD and the sub-scanning is performed by the scanning movement of a mirror. FIG.

原稿0は装置ケーシングの頂面に固定されたコンタクト
ガラスl上に静置され、螢光燈等の白色ランプ2で照明
される。ランプ2と一体的に第1走行ミラー3が図示せ
ぬ第1走行体に担持され図中に矢印で示す原稿に平行な
副走査方向に一定の速度■で走査移動し、又3枚のミラ
ー4,5.6は、図示せぬ第2走行体に担持され、第1
走行ミラー3と同期して同方向にV/2 の速度で走行
移動し、原稿の副走査を行なう。原稿0から僅かに互い
に異る方向に出射された2つの反射光束は第1走行ミラ
ー3で反射し、一方の光束はレンズ56を経てレンズ7
に光軸光として入射し、他方の光束はミラー4で反射し
、同じレンズ7に斜光線として入射する。レンズ7の出
射側には上記2つの出射光束が夫々2つのダハ面に入射
する如くダハプリズム8が設けられている。第2図に拡
大して示す如くその2つのダハ面8A 、8Bは分光反
射率の互いに異なるダイクロイック反射面とされており
、夫々所定の波長帯域の光のみが反射され夫々第1七ン
サlO1第3センサ12上に結像する。ダハ面8Bのダ
イクロイック反射面で分割されプリズム8内を透過し、
第3の面8C工り出射した光束は第2センサ11上に結
像するようになっている。
The document 0 is placed on a contact glass l fixed to the top surface of the device casing, and is illuminated with a white lamp 2 such as a fluorescent light. A first traveling mirror 3 is carried by a first traveling body (not shown) integrally with the lamp 2, and scans and moves at a constant speed in the sub-scanning direction parallel to the document shown by the arrow in the figure. 4, 5.6 are carried by a second traveling body (not shown), and the first
It travels in synchronization with the traveling mirror 3 in the same direction at a speed of V/2 to perform sub-scanning of the document. Two reflected light beams emitted from the original 0 in slightly different directions are reflected by the first traveling mirror 3, and one light beam passes through the lens 56 and then enters the lens 7.
The other beam is reflected by the mirror 4 and enters the same lens 7 as an oblique ray. A roof prism 8 is provided on the exit side of the lens 7 so that the two output beams enter the two roof surfaces, respectively. As shown in an enlarged view in FIG. 2, the two roof surfaces 8A and 8B are dichroic reflecting surfaces with different spectral reflectances, and only light in a predetermined wavelength band is reflected, respectively. 3 images are formed on the sensor 12. It is divided by the dichroic reflection surface of the roof surface 8B and passes through the prism 8,
The light beam emitted from the third surface 8C is designed to form an image on the second sensor 11.

この光学系は以上の如く構成されているので、レンズ7
を出る迄の光路での光量低下はなく、従って、第1セン
サlOへの入射光量は100%である。ダハ面8Bのダ
イクロイック面では光束は2つに分割されるので第2セ
ンサ11.第3七ンサ12への入射光量は夫々50チず
つとなる。
Since this optical system is configured as described above, the lens 7
There is no reduction in the amount of light on the optical path until it exits, and therefore the amount of light incident on the first sensor IO is 100%. Since the light beam is split into two on the dichroic surface of the roof surface 8B, the second sensor 11. The amount of light incident on the 37th sensor 12 is 50 inches each.

以上の如く、本実施例の構成によれば、センサーIO,
,11,12に達する光量は、従来の装置の如くl/4
 にも低下するようなことはなく、更にレンズ7も特別
なレンズを用いる必要がなく、通常のレンズを使用する
ことができる。
As described above, according to the configuration of this embodiment, the sensor IO,
, 11, 12 is 1/4 like the conventional device.
Moreover, there is no need to use a special lens as the lens 7, and a normal lens can be used.

第1図で2本の光束のレンズ7への入射光のなす角度θ
は装置全体の設計によって決められる。
In Figure 1, the angle θ formed by the two beams of light incident on the lens 7
is determined by the overall device design.

ダハプリズム8がない場合の2本の光束の結像点を夫々
Q、Rとし、この2点間の長さiLとすると、 m=bX−θ ・・・・・・(1) 但し、bは像距離である。
If the imaging points of the two beams without the roof prism 8 are Q and R, respectively, and the length between these two points is iL, m = bX - θ (1) However, b is It is the image distance.

センサの外形寸法の幅をDとするとき、L≧Dであれば
、R点にもセンサを設けることができるが、一般的には
次の実例の如(L<Dとなる。
When the width of the external dimension of the sensor is D, if L≧D, a sensor can also be provided at point R, but generally, as shown in the following example (L<D).

投影倍率m1読取り密度d、センサのピッチをPルンズ
の焦点距離をfとすると、 m=dXp ・・・・・・(2) b二(1+m)f・・・・・・(3) (2)、(3)式をまとめて(1)式に代入すると、 m= (1+d2X p) f Xtanθ−−(4)
が得られる。
If the projection magnification m1 is the reading density d, the pitch of the sensor is P, and the focal length of the lenses is f, then m=dXp...(2) b2(1+m)f...(3) (2 ), by substituting equations (3) into equation (1), m= (1+d2X p) f Xtanθ−−(4)
is obtained.

実例として、d = 12dot /闘、p = 0.
014間、f = 35 M、θ=lO°とすると、(
4)式よりI、= (1−1−12X0.014)35
刈anlo=7,2iaセンサの幅はメーカーによって
異るが1)=lO。
As an illustration, d = 12dots/contact, p = 0.
014, f = 35 M, θ = lO°, (
4) From the formula, I, = (1-1-12X0.014)35
The width of the sensor varies depending on the manufacturer, but it is 1) = lO.

前後のものが多い。以上よりD)Lとなり、同一平面上
に2個のセンサを置くことはできない。更に最近のセン
サはpが微細化の方向にあり、pが0−007 ruの
ものも製造されていて、式(4)よりLは小さくなる傾
向にある。
There are many things before and after. From the above, it becomes D)L, and two sensors cannot be placed on the same plane. Furthermore, in recent sensors, p is becoming smaller, and sensors with p of 0-007 ru are also manufactured, and L tends to become smaller according to equation (4).

しかし、本発明にエルば、センサio、ti。However, according to the present invention, sensors io, ti.

12は夫々ダハプリズム803つの面に対向する位置に
設けられるので、センサのピッチが微細化してもセンサ
の配置が容易である。
12 are provided at positions facing the three surfaces of the roof prisms 80, so that even if the pitch of the sensors becomes finer, the sensors can be easily arranged.

なおダハプリズム8のダハ面8A、8Bは概ね直交し、
その稜線はミラー走行体の走行方向に直角(即ちセンサ
の自己走査方向に平行)に配置される。ダハ面8A、8
Bのダイクロイック反射面の分光反射率(又は透過率)
は各センサの受持ち波長帯域に合せて決められる。
Note that the roof surfaces 8A and 8B of the roof prism 8 are approximately perpendicular to each other,
The ridge line is arranged at right angles to the running direction of the mirror running body (ie parallel to the self-scanning direction of the sensor). Roof surface 8A, 8
Spectral reflectance (or transmittance) of the dichroic reflective surface of B
is determined according to the assigned wavelength band of each sensor.

ダイクロイック反射面は、透明な非金属材料、例えば弗
化マグネシウム等を多層に重ね、光の干渉を利用して、
可視光域の一部を選択的に反射し、残りを透過させる多
層膜反射面の一種であり、材料の選択と膜厚制御に工す
反射させる波長帯域を任意に決めることができる。
Dichroic reflective surfaces are made of multiple layers of transparent non-metallic materials, such as magnesium fluoride, and utilize light interference.
It is a type of multilayer reflective surface that selectively reflects part of the visible light range and transmits the rest, and the wavelength band to be reflected can be arbitrarily determined by selecting the material and controlling the film thickness.

なお、ダハミラー8のダハ面8Aは必しもダイクロイッ
ク反射面にする必要はない。この面では反射光のみを利
用するので波長分割の必要はなく波長に無関係に一様に
反射する単層膜反射面にしてもよく、その場合は第1図
、第2図中に破線で示す如く、この面と第1センサlO
との間の光路に色分解フィルタ9を挿入する。単層膜反
射面はアルミの蒸着で簡単に作ることができ、色分解フ
ィルタ9を入れても、ダイクロイック反射面より安価に
できる。
Note that the roof surface 8A of the roof mirror 8 does not necessarily have to be a dichroic reflective surface. Since this surface uses only reflected light, there is no need for wavelength division, and a single-layer reflective surface that reflects uniformly regardless of wavelength may be used. In this case, this is shown by the broken line in Figures 1 and 2. As shown, this surface and the first sensor lO
A color separation filter 9 is inserted in the optical path between the two. A single-layer reflective surface can be easily made by vapor deposition of aluminum, and even if a color separation filter 9 is included, it can be made cheaper than a dichroic reflective surface.

効果 以上の如く、本発明によれば、センサに達する光束の光
量低下が少なく、又特別設計のレンズを必要とせず、更
にセンサのピッチが小さくなった場合にもセンサの配置
が容易で、装置の小型化、コスト低減に効果が得られる
Effects As described above, according to the present invention, there is little reduction in the amount of light that reaches the sensor, there is no need for a specially designed lens, and even when the sensor pitch becomes small, the sensor arrangement is easy, and the device It is effective in downsizing and cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の縦断面図、第2図はそのダハ
プリズム近傍の詳細を示す拡大断面図である。 0・・・原稿 1・・コンタクトガラス2・・・白色光
源 3・・・第1走行ミラー4.5.6・・・第2走行
ミラ一群 7・・・レンズ 8・・・ダハプリズム8A、8B・・
・ダハ面9・・・色分解フィルタ10.11.12・・
・受光センサ
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is an enlarged sectional view showing details of the vicinity of the roof prism. 0... Original document 1... Contact glass 2... White light source 3... First traveling mirror 4.5.6... Second traveling mirror group 7... Lens 8... Roof prism 8A, 8B・・・
・Dach surface 9...Color separation filter 10.11.12...
・Light receiving sensor

Claims (3)

【特許請求の範囲】[Claims] (1) 平面コンタクトガラス上に静置された原稿を白
色光でスリット照射し、互いに僅かに異る2つの方向に
反射する反射光束を一定速度で移動可能な第1走行ミラ
ーと、その172 の速度で同一方向に同期して移動可
能な第2走行ミラ一群とを偏見ζ各介して互いに異る入
射角で単一のレンズに入射させるようにしたカラー画像
読取り光学系の光路分割及び色分解装置において、上記
のレンズからの2つの出射光束が夫々2つのダハ面に入
射する如くダハプリズムを配置し、上記ダハプリズムの
2つのダハ面からの反射光束及び必要により1つのダハ
面から入射し第3の面から出射する光束を夫々互いに異
なる色の色分解光とする手段と、該手段により所定の色
に色分解だされた各光束が入射する如く配置された受光
センサとを設けたことを特徴とする光路分割及び色分解
装置。
(1) A first traveling mirror that is movable at a constant speed and that 172 Optical path division and color separation of a color image reading optical system in which a group of second traveling mirrors movable synchronously in the same direction at speed are incident on a single lens at different angles of incidence through biases ζ. In the apparatus, a roof prism is arranged so that two beams of light emitted from the above lens are incident on two roof surfaces, respectively, and a beam of light reflected from the two roof surfaces of the roof prism and, if necessary, incident from one roof surface, is arranged so that the beams of light emitted from the above lens are incident on two roof surfaces, respectively. It is characterized by providing a means for converting the light beams emitted from the surface into color-separated lights of different colors, and a light-receiving sensor arranged so that the light beams separated into predetermined colors by the means are incident thereon. Optical path splitting and color separation device.
(2)上記の各光束を互いに異る色に色分解する手段が
上記のダハプリズムの2つのダハ面を構成する面を分光
反射率の異るダイクロイック反射面とした構成であるこ
とを特徴とする特許請求の範囲第1項に記載の装置。
(2) The means for color-separating each of the light beams into different colors is characterized in that the surfaces constituting the two roof surfaces of the roof prism are dichroic reflective surfaces having different spectral reflectances. Apparatus according to claim 1.
(3)上記の各光束を互いに異なる色に色分解する手段
が上記のダハプリズムのダハ面を構成する面の少くとも
1つを単層膜反射面とし、この面とこれに対応する受光
センサとの間に色分解フィルターを設けてなることを特
徴とする特許請求の範囲第1項に記載の装置。
(3) The means for color-separating each of the above luminous fluxes into mutually different colors uses at least one of the surfaces constituting the roof surface of the roof prism as a single-layer reflective surface, and connects this surface and the corresponding light receiving sensor. 2. The apparatus according to claim 1, further comprising a color separation filter provided between the apparatus.
JP58157116A 1983-08-30 1983-08-30 Optical path dividing and color separating device for color image readout optical system Pending JPS6049314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157116A JPS6049314A (en) 1983-08-30 1983-08-30 Optical path dividing and color separating device for color image readout optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157116A JPS6049314A (en) 1983-08-30 1983-08-30 Optical path dividing and color separating device for color image readout optical system

Publications (1)

Publication Number Publication Date
JPS6049314A true JPS6049314A (en) 1985-03-18

Family

ID=15642564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157116A Pending JPS6049314A (en) 1983-08-30 1983-08-30 Optical path dividing and color separating device for color image readout optical system

Country Status (1)

Country Link
JP (1) JPS6049314A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667404A1 (en) * 1990-09-28 1992-04-03 Thomson Csf DEVICE FOR GENERATING MULTIPLE LIGHT BEAMS.
JPH04112384U (en) * 1991-03-18 1992-09-30 株式会社ワコール Sewing machine auxiliary tools for overlapping stitching work
US5697712A (en) * 1991-12-26 1997-12-16 Ricoh Company, Ltd. Image processing method and apparatus
US11446670B2 (en) 2017-08-17 2022-09-20 Leica Biosystems Imaging, Inc. Adjustable slide stage for differently sized slides

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667404A1 (en) * 1990-09-28 1992-04-03 Thomson Csf DEVICE FOR GENERATING MULTIPLE LIGHT BEAMS.
US5151825A (en) * 1990-09-28 1992-09-29 Thomson-Csf Device for the generation of several beams of light including a light splitter
JPH04112384U (en) * 1991-03-18 1992-09-30 株式会社ワコール Sewing machine auxiliary tools for overlapping stitching work
US5697712A (en) * 1991-12-26 1997-12-16 Ricoh Company, Ltd. Image processing method and apparatus
US11446670B2 (en) 2017-08-17 2022-09-20 Leica Biosystems Imaging, Inc. Adjustable slide stage for differently sized slides

Similar Documents

Publication Publication Date Title
EP0677755B1 (en) Dichroic mirror for separating/synthesizing light with a plurality of wavelengths and optical apparatus and detecting method using the same
JP4471903B2 (en) Illumination unit and image projection apparatus employing the same
JP2524569B2 (en) Color image reading device
JP3622391B2 (en) Color separation optical device
JPS6049314A (en) Optical path dividing and color separating device for color image readout optical system
US6429975B1 (en) Illumination optical system and projector using same
JPH067658B2 (en) Color image reading device
JP3398163B2 (en) Image reading device
JPH0546139B2 (en)
JPS5955674A (en) Reader for color original
US6486459B1 (en) Color beam splitter using air-spaced prisms
JP3120433B2 (en) Reader
JPH03179868A (en) Color picture reader
JPS58163915A (en) Unmagnification multicolor read optical system
JPS61182367A (en) Color picture reader
JPH0342686A (en) Color image reader
JPS601971A (en) Optical instrument for reading color picture
JPH05328035A (en) Lamp unit for reflection and transmission reading and lamp unit for reflection reading
JPH07105861B2 (en) Color image reader
JPS5957562A (en) Original reader
JPS63109640A (en) Picture reader
JP2000244711A (en) Image reader
JPS6017415A (en) Camera provided with range finder optical system placed in ttl finder
JP2005106947A (en) Image display device
JP2000349963A (en) Color image reader