JPS6049220A - Wavelength multiplex type optical position sensor - Google Patents

Wavelength multiplex type optical position sensor

Info

Publication number
JPS6049220A
JPS6049220A JP15839783A JP15839783A JPS6049220A JP S6049220 A JPS6049220 A JP S6049220A JP 15839783 A JP15839783 A JP 15839783A JP 15839783 A JP15839783 A JP 15839783A JP S6049220 A JPS6049220 A JP S6049220A
Authority
JP
Japan
Prior art keywords
lens
position sensor
rod lens
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15839783A
Other languages
Japanese (ja)
Inventor
Takahiro Fujiwara
孝洋 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP15839783A priority Critical patent/JPS6049220A/en
Publication of JPS6049220A publication Critical patent/JPS6049220A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To reduce the overall size of a sensor greatly by providing an optical position sensor with a spectral means, code plate, and condenser lens in one body. CONSTITUTION:The optical position sensor is provided with the rod lens 22, and an optical fiber 13 for input is fitted to one end surface of the rod lens in the 1st area. Incident light transmitted through the optical fiber 13 is radiated into the rod lens 22 from the 1st area 12. Then, a diffraction grating 14 as the spectral means is provided integrally near the other end surface of the rod lens 22. This constitution reduces the overall size of the sensor greatly.

Description

【発明の詳細な説明】 この発明はθ(長り;Φ式の光位置センサ;/(−関す
るもし・)である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a θ (length; Φ-type optical position sensor; / (-).

iル’ 1ttl定i+J動体の位置を本−II・←:
 K ill’l定づ−る21こ、め(′こ尤・・1)
及1、!を便II した、いわゆる71* Jミ多屯式
の光位置(′ンナが従来っ・らイ・)・川されている。
i le' 1ttl constant i+J position of moving object Book-II・←:
K ill'l determined 21, me ('koy...1)
1,! The light position of the so-called 71* J Miton type light position ('nna is conventional) and river is used.

第1堅l ’1lJiφ71ぐ1・J・;11されてい
るこの神の先位:1゛1センナの(1作成金示ず)県浬
)゛ス1て、入射光1,1か;rす()・目・こ人1′
1・1さj+、、ブリズ、=1.1において入射光Li
+寸ぞれ〜、(−れ(’D ’、伎1<”1〜7(nの
尤に各屈411泣置にうす光さJ[、こ:?’Lら+’
r (”−L ’i<の光かそバーεn対し15する屈
i’l+’ i−)“1・置((二配、1悶、\J1て
いるファイバ2−1.2−2・・・・2− n (・Q
](射t57する。ファイバ2−1〜2−nのが10′
l−1へはL〉、14.パ・・7)1゛3に取イー1け
られ、との送fへ−\ット3に(ri −+= ン−j
 −タブレート4が図の矢印A、 ilC示−J″よ5
 K 3 ;ツノ′−fバ2−1.2−2・・・・2−
11に中l白U′こ桟1:□b 11白に取付けられる
。エン−1−ダブl/−1・・l&こ(,1,各11↓
こ1、λ、〜λ1.(℃対1−C1し7てJLに31・
1J(l仁配設され7K、フープ’ ・fバ2 1.2
 2・・・・2・−!]の1台間シ(’−:I’−7’
I −9ブレート4の移動方向にL1′に中iNこ、ソ
アイノ・21.2−2・・・・2−!〕よジ(1、」′
1さ、11ろ尤か−でれそれIli’j 1lJ)I−
する。l二うてl!Ii’t+二の長さのスリットか耳
、6I戊されている5、 又エンコータプレー 1・4の移動(+ン;1゛・’I
: l’tZえ・11心して各、・ノジ長21〜,11
.にx・Jむして形成zNれ、らこね、らスリットの組
合せ7つ・異なる。l:うにぞれそ、11−のスリノ1
長う・設定さFしている。従−pでエンニJ−り一ル−
1−4の移動位置(lこ74応して、エンコーダプレー
ト4かしその位置での各スリットをユmじて取り出され
ろ光の波長の組合せが対応付けられる。このよう(℃し
てエンコーダプレー1・4からその位置に対応付けて取
り出された各波長の受1言光は受信ヘッド5に供給され
る。この受信ヘッド5にはそれぞれの波長に対応する位
置にそれぞれ光ファイバ6−1〜6−t〕が取付けられ
ている。
The first position of this god is 1. Su()・eyes・this person 1'
The incident light Li
+ Dimension ~, (-re('D', 似1<"1~7(n, but each 411 position has a faint light J[, ko:?'L et al+'
r ("-L 'i < optical fiber 2-1.2-2...・・2−n (・Q
] (shot t57. Fibers 2-1 to 2-n are 10'
L> to l-1, 14. Pa...7) 1゛3 takes E1 and sends it to f -\to3 (ri -+= n-j
- Tablet 4 is indicated by arrow A in the figure, ilC is indicated - J'' 5
K 3 ; horn'-f bar 2-1.2-2...2-
11 is attached to the middle white U' crosspiece 1: □b 11 white. en-1-dub l/-1...l&ko(,1, each 11↓
This1, λ, ~λ1. (℃ vs. 1-C1 and 7 to JL 31・
1J (l-ren arranged 7K, hoop'・f bar 2 1.2
2...2...! ] between one machine ('-:I'-7'
I-9 In the direction of movement of plate 4, in L1', Soaino・21.2-2...2-! ] Yoji (1,'''
1sa, 11ro?
do. l2 ute l! Ii't + two long slits or ears, 6I omitted 5, and encoder play 1 and 4 movements (+n; 1゛・'I
: l'tZe・11 cores each,・Noge length 21~,11
.. There are 7 different combinations of slits formed by zN, rakone, and r. l: Unizoreso, 11- no Surino 1
It's long/set F. Enni J-Riichi Ru- in J-p
Accordingly, the combinations of wavelengths of the light extracted from the encoder plate 4 through each slit at that position are associated. The received light of each wavelength extracted from 1 and 4 in correspondence with its position is supplied to the receiving head 5.The receiving head 5 has optical fibers 6-1 to 6-1 at positions corresponding to the respective wavelengths. 6-t] is installed.

図示していないが彼測定町動体の移動に対応して工/コ
ーダプレ−1・4が移動し、彼4(す’;jl ”J動
体の位置に対応してエンコーダプレー1・4の位置が、
’lJ応付けられるような構成となっている。従って1
7−j’イバ6−1〜6−1]には、エンコーダプレー
 1・4の移動位置に対むした位置におけゐ0支1しの
611合せの光信号が得られる。この光信号によってj
−ンローダプレート4の位置、即し彼測定用動体の位置
を測定することができる。
Although not shown, the encoder plays 1 and 4 move in response to the movement of the measuring moving object, and the positions of encoder plays 1 and 4 change in response to the position of the moving object. ,
'lJ is configured so that it can be attached. Therefore 1
7-j' 6-1 to 6-1], optical signals of 611 combinations of 0 and 1 are obtained at positions opposite to the moving positions of the encoder plates 1 and 4. By this optical signal
- The position of the loader plate 4, ie the position of the measuring moving object, can be measured.

第2図(lこ同一部分に対して同一イで1号を伺してそ
の構成を示したのは、従来使用されているこの神の元位
置センサの(1口の構成例を示すもので、プリズム1で
分光された入射光Liか直接エンコーダプレート4に供
給される。エフ′J−ダゾレ−1・4の各波長位置に対
応する位置に形成さjtたスリットからの出力光は集光
レンズ7で(1−尤さ117、−eの(f、点位置に受
光側の光ファイバ8が設けらt’l−;<)、、この構
成のものにおいても、rル測定τIJ動トドのムシ置に
対応するエンコーダプレー1・4の位置Qこ鴫、(−2
だ波長の組合せの受射光が光ファイバs vc 貨しシ
れ、彼r則定弓動体の位置を測定することができる。
Figure 2 shows the configuration of the conventionally used original position sensor (1), with the same part being referred to as No. 1. , the incident light Li separated by the prism 1 is directly supplied to the encoder plate 4.The output light from the slits formed at positions corresponding to each wavelength position of the F'J-dazolets 1 and 4 is condensed. With the lens 7 (1-likelihood 117, -e (f), the optical fiber 8 on the receiving side is provided at the point position t'l-; The position Q of encoder plays 1 and 4 corresponding to the position of the head is (-2
When the received light with a combination of different wavelengths is transmitted through the optical fiber svc, the position of the arcuate moving object can be measured.

このように1π来使用されでいる光位置−し・ンザ(:
[プリズムコード板、集光レンズがそれぞれ独立jli
ri造を有し、これらが組合されてtf’; I或され
るためVこ全体が大型化するという欠点がある1、又動
作−4−5も外部振動などの影響全受は易く、光位置七
ン−すとして必要な重粘度動作が実現されないことか5
ちる1゜この発明は従来のこの神の光位置センダーに、
1・・IrJる欠点を解決し、分光手段、コード板、集
光レンズを一体に組イ」けた構成として全体を太幅しこ
小)11す化すると共に、光ファイバ;を使用した構成
として光位置センサを電気部分からげ絶保し、夕i部卸
旨の影響を受けることのない構造としたρU長多I式光
位置センサを提供するものである。
In this way, the optical position that has been used since 1π (:
[Prism code plate and condensing lens are independent]
ri structure, and these are combined to form a tf'; Is it possible that the heavy viscosity operation required for the position 7 seat is not achieved?
Chiru1゜This invention replaces the conventional God's light position sender.
1. Solving the drawbacks of IrJ, the spectroscopic means, code plate, and condensing lens are integrated into a single structure, making the entire structure wide and small.In addition, the structure uses optical fibers. To provide an optical position sensor of the ρU long type I, which has a structure in which the optical position sensor is completely protected from electrical parts and is not affected by the influence of the external circuit.

この発明ではロッドレンズの一嬬ai1の第1の領域に
人力用光ファイバがe、伺けられ、このロッドレンズの
池端面近傍には一体K例えばグし/−テングなどの分光
手段が設けられる。一方「ロッドレンズの一端而、!j
傍にロッドレンズの光軸に直角に移動自在にコード板が
取付けられ、第1領域以外のロッドレンズの一端面に集
光レンズが設けられ、この集光レンズの焦点位置に出力
用光ファイバが取付けられている。
In this invention, an optical fiber for human power is installed in the first region of the rod lens, and a spectroscopic means such as a splitter is provided near the end surface of the rod lens. . On the other hand, ``A part of the rod lens!
A code plate is attached to the side of the rod lens so as to be movable at right angles to the optical axis of the rod lens, a condenser lens is provided on one end surface of the rod lens other than the first area, and an output optical fiber is placed at the focal point of this condenser lens. installed.

す、ドこの発明の波長多重式光位置センサ2その実施例
に、111づき図1Tiiを使用して詳和1に説明する
An embodiment of the wavelength multiplexed optical position sensor 2 of the present invention will be explained in detail using FIG.

第:3図tまこの発明の波長多重式光位置センサの実施
例の構成を示す図でロッドレンズ11が設けられ、この
L7ツドレンズ11の一☆;l+i面の第1の1ill
l」・・(にZJ Lで人力用光ファイバ13が++y
伺けらfl−る。
Figure 3 shows the configuration of an embodiment of the wavelength multiplexed optical position sensor of the present invention, in which a rod lens 11 is provided, and the first 1 ill of the L7 rod lens 11 is
l''...(ni ZJ L and the optical fiber 13 for human power is ++y
I'll ask you fl-ru.

人力111元ノアイバ13全通して1′辷送される入射
光を12、この第1の領域12からロッドレンズ11内
ε′CI攻射すれる。ロッドレンズ11の曲偏1而h 
btに分光手段として実施例では回折!’i’i j’
 L 4が−イトに設けられている。
The incident light 12, which is transmitted by 1' through the entire Novaiba 13 using human power, is struck from this first area 12 to the inside of the rod lens 11 by ε'CI. Curvature of rod lens 11
In this example, diffraction is used as a spectroscopic means for bt! 'i'i j'
L4 is provided at the -ite.

従ってロッドレンズ11内Vこ放11・jさj)だIJ
(射尾はロッドレンズ11内で屈折され、はぼ十fl 
)YL 、1:してこの回折格子14に入射する。即ち
IJツドレ・ンズ11の光軸方向においてロット゛レン
ズの焦点距離ノ。の近傍(/こ回折格子14が設けられ
た構成とされている。回折格子14による回4八光に1
、IJソドレンズ11の光軸に直角な方向においてそれ
・されの波長に対Eして所定部!4(l:17i+f位
した荀il′・I″に回イ)1する。
Therefore, the V inside the rod lens 11 is radiated 11.j).
(The firing tail is refracted within the rod lens 11, and approximately 10 fl
)YL, 1: and enters this diffraction grating 14. That is, in the optical axis direction of the IJ lens 11, the focal length of the lens. The configuration is such that a diffraction grating 14 is provided in the vicinity of the diffraction grating 14.
, in the direction perpendicular to the optical axis of the IJ sodolens 11, a predetermined portion E for that wavelength! 4 (Turn to the position 17i+f) 1.

ロン1゛レンズ11の回析格イl 41ltllと対向
する側の一端面近1帝に、ロッドレンズの光+Iq1+
 ir+二的角Vこその1戊板側から切17f)1.5
が形成される。このL7す’h’(+15に対して切溝
15に沿ってロッドレンズ11の光軸に直角に移動自在
にコード板1GがIB! (1けられる。コード4反1
6は’JJ 1711i 15VClidイ:1けられ
/(−状態で板面の長手方向に直角な方向が回イii′
格−ri4による回折光の11,1位方向に一致するJ
二うに((IJ il’1“j15位置でロッドレンズ
11にズ・1して数個けられろ、。
Rod lens light +Iq1+
Cut ir + two angles V from the 1st plate side 17f) 1.5
is formed. The code plate 1G is movably moved perpendicular to the optical axis of the rod lens 11 along the kerf 15 against this L7su'h' (+15).
6 is 'JJ 1711i 15VClid A: 1 vignetting/(In the - state, the direction perpendicular to the longitudinal direction of the plate surface is rotated ii'
J that corresponds to the 11,1 direction of the diffracted light due to case-ri4
Two sea urchins ((IJ il'1"j1) Z-1 the rod lens 11 at the 15th position and hit it several times.

ス第・1区it:点線で示すようにコード板16のヒ’
J r、’η15に/はっての移動は、彼iii!l定
ijJ動体20の矢印Xで示ず多動シζ対1=、するよ
うな構成となっている。
1st section it: As shown by the dotted line, the cord plate 16 is
J r, 'η15/crawling move is he iii! The configuration is such that the hyperactivity ζ vs. 1=, as shown by the arrow X of the moving object 20, is constant.

丁J−11反1Gに(は第5図に示すように長手移動方
向い二重−イ]にスリンl−21−1,21−2・・・
・・。
To the J-11 side 1G (as shown in Fig. 5, the longitudinal movement direction is double-A), the sulin l-21-1, 21-2...
....

22−1.21−2・・・・、25 1.25−2・・
・・が形成されている。スリン)21−1.21−2 
・・(・よ回折格子14での波長λ1の回折光位置に同
一間隔で形成される。スリンl−22−1、22−2・
・・・は回折格子14での波長)20回折光位置に同一
間隔−ご形成される。同様にしてスリット23−1.2
3−2・・−・、 24−1 、24−2・・・・。
22-1.21-2..., 25 1.25-2...
... is formed. Surin) 21-1.21-2
(...) are formed at the same intervals at the diffracted light position of wavelength λ1 on the diffraction grating 14. Surin l-22-1, 22-2
. . . are wavelengths at the diffraction grating 14) formed at the same intervals at 20 diffracted light positions. Similarly, slit 23-1.2
3-2..., 24-1, 24-2...

25−1はそれぞれ回折格子14での波長λ3.λ4及
びλ5、の回折光位置に形成される。
25-1 are the wavelengths λ3. They are formed at the diffracted light positions of λ4 and λ5.

父波長vrc対応するスリットのコード板1Gの1〉1
ツノ向の1.lJり始め位置はそろえられる。波長λ2
のスリンl−22−1,22−2・・・・・はθシ畏λ
1のスリンl□21−1.21−2・・・−の連、涜す
る2個に対し1−1して1個か形成され、長手方向にお
いてそのL!Jすbfiめ位置が連)・、“Lする2個
の波長λ、のスリットの最初のものと一致するように形
成され、71* Jい72・・′)スリットの切り7終
り位置は波長・ン、の7(リットの19ぐに連続するも
のの切り始め位置と一致さ龜る。、同様に波長λ3のス
リット23−1 .23−2・・・・(1波長λ2のス
リット22−1 .22−2・・・・・の連続する2個
に対[1sシて1個が形成され、長「、方向においてそ
の(りり始め位置が連続する2個の波長λ2のスリット
の最初のものと一致するように形成され、波長λ3のス
リットの1υり終り位置は波JQλ2のスリットの次に
連続するものの切り始め位置と一致される。波長λ4.
λ5のスリットについても全く同様にスリット24−1
.24−2・・・・・、25−1・−・・の長さが設定
される。
Father wavelength vrc corresponding slit code plate 1G 1〉1
1 towards the horn. The lJ starting positions are aligned. Wavelength λ2
The Surin l-22-1, 22-2... are θ and λ
1 Surin l □21-1.21-2...-, one is formed by 1-1 for each two, and its L! in the longitudinal direction! It is formed so that the position of the slit coincides with the first of the two slits with the wavelength λ, and the end position of the slit is the wavelength.・N, No. 7 (This coincides with the cutting start position of the 19th consecutive lit.Similarly, the slits 23-1, 23-2, with wavelength λ3, 22-1, 23-2, etc., with wavelength λ2, 23-2, 22-1, 23-2, 1 wavelength, λ2, etc.). 22-2..., one slit is formed every 1s for two consecutive slits, and the starting position of the slit in the long direction is the first of the two successive slits of wavelength λ2. The end position of the slit of wavelength λ3 after 1υ coincides with the starting position of the next successive slit of wave JQλ2.
The slit 24-1 is exactly the same for the slit λ5.
.. The lengths of 24-2..., 25-1... are set.

なおこのコード板16はJ、(本的な一例であって、例
えばグレーコードを使+1’lJ したコ−ド(段を用
いることもできる。
Note that this code plate 16 is a J, (this is just one example, and for example, a +1'lJ code (stage) using a gray code may also be used.

第1の領域12以夕1のロッドレンズ11の一端面に集
光レンズ3oが設けられている。1)lJ述の、J二う
にコート′(及16は[jッドレンズ11の一台;へ1
曲)J1傍に設けられ、図示していない受光スリンi・
丁12によりコード板16上においてその移動方向の一
点に/]応する位置で移動方向に直角な線上の光のみが
集光レンズ30に入光されるように構成されているので
、コード板16により各波長に対応してスリットから取
り出されるコード板16の位置に対応する各波長成分の
受信光の中心光軸tit、集光レンズ30内には3平行
光として入射される。
A condenser lens 3o is provided on one end surface of the rod lens 11 in the first region 12. 1) J2 sea urchin coat' (and 16 is one of [jd lens 11;
song) A light-receiving system installed near J1 and not shown in the figure.
Since the code plate 16 is configured such that only light on a line perpendicular to the moving direction is incident on the condenser lens 30 at a position corresponding to a point on the code plate 16 in the moving direction, the code plate 16 Accordingly, the central optical axis tit of the received light of each wavelength component corresponding to the position of the code plate 16 taken out from the slit corresponding to each wavelength is incident on the condenser lens 30 as three parallel lights.

す、光レンズ30の光軸方向の長さQまは′・焦点距:
jjljJ11(設定され、この焦点位置に出力用光フ
ァイバ:31がl■付けられている。
Length Q or' in the optical axis direction of the optical lens 30 Focal length:
jjjljJ11 (set, and an output optical fiber: 31 is attached to this focal position.

従ってコード板16のスリットを通4・いして集光レン
ズ30内に入射する受13光は、この出力用J)′Lツ
ノ′・イバ31位置に集光することになり、出力用毘フ
ァイバ31から出力受信光としてljl、、り出さhる
Therefore, the received light 13 that passes through the slit of the code plate 16 and enters the condensing lens 30 is condensed at the output J)'L horn' fiber 31 position, and the output beam fiber is 31 as output reception light.

肢?則定弓動体20の位置に対応してコード板16」ゾ
C(+1J弁」は第5図のA −A’ vc対応する位
置の光が1i−丸レンズ30に上り集光された場合(〆
(は、波長がλ1.λ4及びλ5の光の多重元が光ノア
rハ:31すこ出]J受信元として得られるので、光位
置セー′ザの入射光(1)と出力受信光(2)と・すl
皮1〈閏(−jl、’J’、’E ;t> 6 j(1
に示すような構成となり、この吃1合Qこ6−j: l
: )J i:、ニー f、、光に対応するデ・fジク
ル符刊は1. l O(]1とな、・ao、このように
して彼1ii11定111動体のl>’I置に灯1□1
゛1、して設定されるコード板16の各イ装置しこ対[
7て、;51シ:CIt異なる彼畏の糺1合せの出力受
1.−8′尤か帽らIし、この出力受信光にそれぞれデ
ィジタル1、iY′Jか利L5..1・1けられるので
コード板16の光検出位置ににl巳、して波測定用動体
の位置をれ1J密に測定することか一〇きる。
Limbs? Corresponding to the position of the fixed arc moving body 20, the code plate 16 ``C (+1J valve)'' will be used when the light at the position corresponding to A-A' vc in FIG. (The multiplex source of light with wavelengths λ1, λ4, and λ5 is obtained as the optical Noah r:31) J receiving source, so the incident light (1) of the optical position laser and the output received light (2 ) and sl
skin 1〈leap (-jl, 'J', 'E;t> 6 j (1
The configuration is as shown in , and this 吃1go Qko6-j: l
: ) J i:, Knee f,, the de f zicle marking corresponding to light is 1. l O(]1,・ao, in this way he 1ii11 constant 111 the light 1□1 at l>'I position of the moving object
゛1, Each device of the code plate 16 set as [
7, ;51: CIt different outputs of the same combination 1. -8' output from the cap, and digital 1, iY'J and L5. .. Since 1.1 is lost, the position of the moving object for wave measurement can be precisely measured by 1 J at the light detection position of the code plate 16.

ロッドレンズ11に対17て分光1没と(2ての回折!
h子14、コード板]6及び東)′(、レンズ30かコ
ンパクトに一体化され/こ構成を(l’L、、分光■ビ
ン、集光レンズを内蔵シ7、光ファイバも人力、帛力倶
(にそ江それ1本設けれはよく、センサ全11・盆大幅
に小(1,す化することがiiJ能である1、動イ’l
十’IL: ”、:i的1.1号(を便INせず、光信
号のみ☆−[lソ扱うのでプロ位置トノ−!7−に〉体
か電気的6・こ分離きれiL 47’j成と々゛つてい
るので外部性)−1の影i”lうを受けることか/Cく
、安′、i−,−C且つ高精度動作が実現されろ。
The rod lens 11 has a pair of 17 spectra with 1 reflection and (2 diffraction!
h 14, code plate] 6 and east)' (, lens 30 is compactly integrated / this configuration (l'L,, spectroscopy bottle, built-in condensing lens) 7, optical fiber is also manually operated, It is good to have one sensor, and it is possible to reduce the number of sensors to 11.
10'IL: ``,: i's No. 1.1 (I don't carry it in, only the optical signal ☆-[I handle it so I put it in the pro position! 7-) I can separate the body and the electrical 6-this iL 47 Since the structure of 'j' is very large, it is not affected by the externality (i'1), and high-precision operation can be realized.

わ、上、1−翁)1に説明したよう(・てこの究明によ
ると、1・体の414逓が堅固であり、Hつ太幅(・こ
その小型(ヒか月1(い]jjであって、使用」−便利
で小1.(jj 、ンバクE :’l’、 j+4成と
することができ、さらに外部J%f(;1の影i’l’
を受け43、その倹1」寵111度が優れ、動作か友5
1Lまた(皮長多市式光位置センサを提供することがj
j」能となる。
As I explained to 1, (・According to Leko's investigation, the 414th scale of 1. body is solid, and the small size of 1. , use '-convenient and small 1.(jj, mbakE :'l', j+4 composition, and further external J%f(;1's shadow i'l'
Uke 43, its thrift 1" favor 111 degree is excellent, action or friend 5
1L also provides (Hinagataichi type optical position sensor)
j” becomes Noh.

【図面の簡単な説明】[Brief explanation of drawings]

第」図及び第2図はそれぞれ従来使用されている成長多
・R式九位ii!+′セノザの構成を示ず図、第;3I
イ1tまこの発明のjJI−長多市式光位置センザの実
施汐11の構成を示す!仇面1↓;L卯図、第4図は(
−の発明の波1(多・11式光位置センサの実施例の構
成を示す斜視1ハ1、第5図(はこの発明の波長多屯式
光代置センヅ゛に用いるコード板16の構成を示す[ヌ
1、第6図はこの発明にも・ける人力光と出力光の関係
4〜示す図である。 11 : LJツドンンズ、13:入力用光ファイバ、
14 :1リロF1格子、 16 :コード板、 20
 :被、’、1t1j定I+■動体、21−1.21−
2・・・・、22−1゜22−2 ・・ ・・ 、2:
3−1.23−2 ・・ 、 2 ・1−1.24−1
 ・ ・・ 、25 = 1.25−2 ・−・・:ス
ソツト、30:束゛・1−レンズ゛、31 : +b 
11月]光ファイバ。 特許出願人 日本航空i[j子丁業林式会ン1代 理 
人 <、’1: ζ:1: 、tri丼 1 図 弓 7 1、し5、、 オ 3 口 1
Figures 1 and 2 are respectively the conventionally used growth multi-R formula 9th place ii! +'Diagram showing the composition of Cenoza, No. 3I
Illustrating the configuration of the implementation of the jJI-Nagata city type optical position sensor of this invention! Enemy side 1 ↓; L map, Figure 4 is (
Wave 1 of the invention (a perspective view 1 showing the configuration of an embodiment of a multi-wavelength type optical position sensor) and Fig. 5 (showing the configuration of the code plate 16 used in the wavelength multi-type optical position sensor of this invention) Figure 6 is a diagram showing the relationship between human power light and output light that can also be used in this invention. 11: LJ Tsudonens, 13: Input optical fiber,
14: 1 lilo F1 grid, 16: code board, 20
: Covered, ', 1t1j constant I+■ moving object, 21-1.21-
2..., 22-1゜22-2..., 2:
3-1.23-2... , 2 ・1-1.24-1
・・・・25 = 1.25−2 ・−・・: Soot, 30: Bundle ゛・1-lens゛, 31: +b
November] Optical fiber. Patent Applicant: Japan Airlines I
Person <, '1: ζ:1: , tri bowl 1 figure bow 7 1, shi 5,, o 3 mouth 1

Claims (1)

【特許請求の範囲】[Claims] (1) ロンドレンズの一端面の第1の11′1域1・
こ人力用遁L7j′てバ、つ・tH又ベイ−jけられ、
111B己[1ツIJレンズの(l入U:fA IGI
近(・力に一体に二分光手段か設けられ、前記1ゴツト
レンズの−<1i11ftl近傍K 1jij記【Jツ
1゛レンズの光・Ibンこ【内角に1多動白イJ:にコ
ード4反がIf!/ (Iけらノシ、1円1.己第1の
1偵域り、夕)の1)す1□Q、 lコツトレンズの−
Q::、: 1fllに(J、イ、レンズか没けられ、
この集光レレズリ焦点位置(/こ1′1;力用光−・・
ア1′バカ1取(1けられてなることを′(1fI′:
:’<とするlル長多小式光位置センサ。
(1) First 11'1 area 1 of one end surface of Rondo lens
This person's power is L7j' Teba, Tsu・tH Matabai-j Kerare,
111B self [1 IJ lens (1 U: fA IGI
A bipolarizing means is integrally provided in the near (force), and the -<1i11ftl vicinity of the 1 Gottle lens is set to 1. The opposite is If!/ (I Keranoshi, 1 yen 1. Self's first reconnaissance area, evening)'s 1) Su1□Q, l Kottorenzu's -
Q::,: 1fl (J, I, the lens disappeared,
This condensing lens focal position (/ko1'1; force light...
A1' Idiot 1'(1fI':
:'< L length multi-small type optical position sensor.
JP15839783A 1983-08-29 1983-08-29 Wavelength multiplex type optical position sensor Pending JPS6049220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15839783A JPS6049220A (en) 1983-08-29 1983-08-29 Wavelength multiplex type optical position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15839783A JPS6049220A (en) 1983-08-29 1983-08-29 Wavelength multiplex type optical position sensor

Publications (1)

Publication Number Publication Date
JPS6049220A true JPS6049220A (en) 1985-03-18

Family

ID=15670844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15839783A Pending JPS6049220A (en) 1983-08-29 1983-08-29 Wavelength multiplex type optical position sensor

Country Status (1)

Country Link
JP (1) JPS6049220A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202679A (en) * 1988-02-08 1989-08-15 Teijin Seiki Co Ltd Optical sensor
JPH01202621A (en) * 1988-02-08 1989-08-15 Teijin Seiki Co Ltd Optical encoder
US6592046B2 (en) 2000-04-28 2003-07-15 Nippon Thermostat Co., Ltd. Thermostat device
JP2008261745A (en) * 2007-04-12 2008-10-30 Ojima Shisaku Kenkyusho:Kk Detection part for encoder, and encoder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202679A (en) * 1988-02-08 1989-08-15 Teijin Seiki Co Ltd Optical sensor
JPH01202621A (en) * 1988-02-08 1989-08-15 Teijin Seiki Co Ltd Optical encoder
US6592046B2 (en) 2000-04-28 2003-07-15 Nippon Thermostat Co., Ltd. Thermostat device
JP2008261745A (en) * 2007-04-12 2008-10-30 Ojima Shisaku Kenkyusho:Kk Detection part for encoder, and encoder

Similar Documents

Publication Publication Date Title
GB1434556A (en) Endoscopes
FR2454107B1 (en) CHROMATIC FILTER OPERATING BY DIFFRACTION
DE69512252T2 (en) OPTICAL DIRECTIONAL COUPLERS TUNABLE WAVELENGTH FILTERS OR. RECEIVER
GB1565377A (en) Spectographs
JPS6049220A (en) Wavelength multiplex type optical position sensor
JP2003114402A (en) Optical multiplexer/demultiplexer and its adjusting method
GB1545048A (en) Simplified diffractive colour filtering technique
JPS5640804A (en) Optical branching filter
JPS5637527A (en) Spectrophotometer
Mahlein A high performance edge filter for wavelength-division multi-demultiplexer units
JPS5723906A (en) Broad-band optical branching filter
JPS60173510A (en) Diffraction grating demultiplexer
SU794287A1 (en) Condensate discharger
JPS59599Y2 (en) spectrophotometer
SU119698A1 (en) Shadow device for simultaneous registration of two shadow patterns
McAlister Overview of Multiple–Aperture Interferometry Binary Star Results from the Northern Hemisphere
JPS56112136A (en) Light wave length multiplex transmission system
JPH0690366B2 (en) Grating type optical demultiplexer
SU558242A1 (en) Autocollimation method of quality control of reflective replicas of diffraction gratings
JPS561331A (en) Analyzing mode of optical fiber
JPS56137117A (en) Slit for spectroscope
Platzeck et al. Focal grating photometer for the determination of the difference of magnitude in double stars
JPS60230608A (en) Optical demultiplexer and multiplexer
JP4882377B2 (en) Wavelength measuring device
JPS5473065A (en) Interferometer