JPS6049010A - Vapor-phase polymerization of vinyl chloride - Google Patents

Vapor-phase polymerization of vinyl chloride

Info

Publication number
JPS6049010A
JPS6049010A JP15630383A JP15630383A JPS6049010A JP S6049010 A JPS6049010 A JP S6049010A JP 15630383 A JP15630383 A JP 15630383A JP 15630383 A JP15630383 A JP 15630383A JP S6049010 A JPS6049010 A JP S6049010A
Authority
JP
Japan
Prior art keywords
polymerization
vinyl chloride
pressure
vcm
reactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15630383A
Other languages
Japanese (ja)
Other versions
JPH0581601B2 (en
Inventor
Mineo Nagano
永野 峰雄
Michio Saito
斉藤 道生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP15630383A priority Critical patent/JPS6049010A/en
Publication of JPS6049010A publication Critical patent/JPS6049010A/en
Publication of JPH0581601B2 publication Critical patent/JPH0581601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled high-quality polymer efficiently by polymerizing a vinyl chloride monomer, etc. in the presence of an initiator having high activity consisting of a diisopropyl peroxycarbonate and di-2-ethoxyethyl peroxycarbonate under a specific condition. CONSTITUTION:In vapor-phase polymerization of a vinyl chloride monomer or a monomer copolymerizable with it and the vinyl chloride monomer, when the polymerization is carried out at 55-65 deg.C polymerization temperature at a pressure in a ratio Pr of polymerization pressure/saturated vapor pressure of 1>Pr> 0.5, diisopropyl peroxycarbonate and di-2-ethoxyethyl peroxycarbonate in a weight ratio of >=1/1 are used to give the desired polymer.

Description

【発明の詳細な説明】 本本発明は塩化ビニル単量体(以下VCMと略記)又は
、それを主体として、共重可能なコモノマーとの気相重
合に於て、反応性の高い改良された重合法に関するもの
である。
Detailed Description of the Invention The present invention provides an improved polymer with high reactivity in the gas phase polymerization of vinyl chloride monomer (hereinafter abbreviated as VCM) or a comonomer that can copolymerize it. It's about legality.

VCMの気相重合については、特公昭48−14666
、特公昭52−44918.米国特許3,578,64
6等でラジカル開始剤で重合する事は公知である。
Regarding gas phase polymerization of VCM, Japanese Patent Publication No. 14666/1973
, Special Publication No. 52-44918. U.S. Patent 3,578,64
It is known that polymerization using a radical initiator such as No. 6 is possible.

気相重合は、重合温度でのVCMの飽和蒸気圧Psより
低い操作圧Poで重合される。即ち、相対圧力Pr=P
o/Psとすると1>Pr>0.5がほぼ重合範囲であ
る。一般的には、気相での重合は液相での重合に比べ、
反応性は低いと考えられがちであるが、実際には意外に
も速い。その理由は、(1)塊状予備重合で作成した種
ポリマーは多孔質性が大きく、重合温度とPrによって
変るが、種ポリマーのVCM吸着量は予想外に大きく、
20〜65wt%(乾量基準)におよび、これが反応に
関与している。
Gas phase polymerization is carried out at an operating pressure Po lower than the saturated vapor pressure Ps of the VCM at the polymerization temperature. That is, relative pressure Pr=P
When o/Ps, 1>Pr>0.5 is approximately the polymerization range. In general, polymerization in the gas phase is compared to polymerization in the liquid phase.
Although it is often thought that the reactivity is low, it is actually surprisingly fast. The reason for this is (1) the seed polymer prepared by bulk prepolymerization has high porosity, which varies depending on the polymerization temperature and Pr, but the amount of VCM adsorbed by the seed polymer is unexpectedly large;
It ranges from 20 to 65 wt% (dry weight basis) and is involved in the reaction.

(2)液相バッチ反応では、当初仕込んだVCMが、重
合の進行に伴って減少し、後半には反応すべきVCMは
、どんどん減少するに対し、気相重合は反応圧を一定に
保ち、吸着及び重合消費量を補給している。即ち、重合
して粉体量が増すにつれ、反応の場に存在するVCM全
体量は増加してくる。
(2) In liquid phase batch reaction, the initially charged VCM decreases as the polymerization progresses, and in the latter half the amount of VCM to be reacted gradually decreases, whereas in gas phase polymerization, the reaction pressure is kept constant; Adsorption and polymerization are replenishing consumption. That is, as the amount of powder increases through polymerization, the total amount of VCM present at the reaction site increases.

(3)液相反応に比べ、気相重合は連続相がないので停
止反応が起りにくく、従って見掛けの生長反応が大きく
なる。
(3) Compared to liquid phase reaction, gas phase polymerization has no continuous phase, so termination reactions are less likely to occur, and therefore the apparent growth reaction becomes larger.

(4)液相反応では、初め開始剤を加え、重合反応を行
わせ、反応途中で開始剤を追加する事は通常は行わない
。通常はS字型カーブをとって反応は進行する。即ち、
スタート時は反応が遅く、途中から直線になり更に加速
され最后はなだらかになり、ストップする。即ち、時間
毎の反応速度は山型のカーブを描く。もっとも最近は低
温活性の開始剤と組合せ、比較的山をなだらかな台地型
にする努力は払われている。
(4) In a liquid phase reaction, an initiator is added at the beginning and the polymerization reaction is carried out, and the initiator is not usually added during the reaction. The reaction usually proceeds in an S-shaped curve. That is,
At the start, the reaction is slow, then in the middle it becomes straight, accelerates further, and finally becomes gentle before coming to a stop. That is, the reaction rate for each hour draws a mountain-shaped curve. However, recent efforts have been made to combine it with low-temperature active initiators to create a relatively gentle plateau shape.

一方気相重合では、系内のVCMが重合してポリマーに
変ると圧が低下するので、供給すると同時に出来たポリ
マーに一定比率で、VCMガスを吸着されるので、時間
毎の反応量は明確におさえられ、反応速度がおちてきた
ら開始剤を追加すればよい。
On the other hand, in gas phase polymerization, when the VCM in the system polymerizes and turns into a polymer, the pressure decreases, so a fixed ratio of VCM gas is adsorbed by the polymer formed at the same time as it is supplied, so the amount of reaction per hour is clear. When the reaction rate slows down, the initiator can be added.

従って、理想的には直線的な反応速度を維持する事が可
能である。
Therefore, it is ideally possible to maintain a linear reaction rate.

以上の理由で気相重合の反応性はガス相であっても、想
像以上に早い。
For the above reasons, the reactivity of gas phase polymerization is faster than expected, even in the gas phase.

気相重合に使用する開始剤の代表的なものの例を次表に
示す。これらの開始剤は、重合温度によって適宜選択さ
れる。
Examples of typical initiators used in gas phase polymerization are shown in the table below. These initiators are appropriately selected depending on the polymerization temperature.

気相重合のもつ1つの特長は、反応性がPrによって大
きく左右される事である。
One of the features of gas phase polymerization is that the reactivity is greatly influenced by Pr.

Prが高くなると反応性は著しく高くなり、かつかさ比
重も大きくなり、粒度分布もシャーシになり、粗粒分の
生成率は減少する。又、製品の加工時の初期着色(色相
)、熱安定性も良好になる。
As Pr becomes higher, the reactivity becomes significantly higher, the bulk specific gravity also becomes larger, the particle size distribution becomes more chassisy, and the production rate of coarse particles decreases. In addition, the initial coloring (hue) and thermal stability of the product during processing are also improved.

しかしながら、粒子内部の重合が進行し、多孔質性が減
少し、又フィッシュアイ特性(以下FE特性と略記)も
悪化する。
However, polymerization inside the particles progresses, porosity decreases, and fish-eye characteristics (hereinafter abbreviated as FE characteristics) also deteriorate.

従って前述のとおり0.5<Pr<1で気相重合は起る
が、F.E.特性を良いレベルに保ちなおかつ他の特性
も実用レベル内に入れるには、Prは0.65以上0.
85未満の範囲、好ましくはPr0.70〜0.80が
よい。例えば、P(平均重合度。
Therefore, as mentioned above, gas phase polymerization occurs when 0.5<Pr<1, but F. E. In order to keep the characteristics at a good level and bring other characteristics within the practical level, Pr should be 0.65 or more.
Pr is preferably in a range of less than 85, preferably from 0.70 to 0.80. For example, P (average degree of polymerization.

以下同じ。)≒10OOをうる重合温度でPr0.75
での有機過酸化物純量1gr当りの時間当の生成PVC
(ポリ塩化ビニル。以下同じ。)は、350〜450g
PVC/gIhrで、懸濁重合法でのP≒1000をう
る。重合温度での反応性は250〜350gPVC/g
■hrを上廻っている。しかし気相重合の場合、やや上
部の空間容量を必要とするので、反応容器の容積当りの
生産性では同等かやや下廻る。
same as below. )≒Pr0.75 at a polymerization temperature of 10OO
PVC produced per hour per gram of pure organic peroxide at
(Polyvinyl chloride. The same applies hereinafter) is 350 to 450 g
With PVC/gIhr, P≒1000 is obtained by suspension polymerization method. Reactivity at polymerization temperature is 250-350gPVC/g
■Exceeding hr. However, in the case of gas phase polymerization, since a slightly higher space capacity is required, the productivity per volume of the reaction vessel is the same or slightly lower.

この生産性の問題を克服するため発明者等は、鋭意研究
を重ねた結果、特定の開始剤を複合型で用いると相剰効
果により著しく反応性が高くなる事を発明して本発明を
完成した。
In order to overcome this productivity problem, the inventors conducted intensive research and completed the present invention by discovering that when a specific initiator is used in a complex form, the reactivity becomes significantly higher due to a mutual effect. did.

すなわち、重合温度55〜65℃において、IPPとE
EPを重合比1/1以上で使用すると反応性がそれの最
も高い■PPと同等またはそれ以上となることを見出し
た。
That is, at a polymerization temperature of 55 to 65°C, IPP and E
It has been found that when EP is used at a polymerization ratio of 1/1 or more, the reactivity is equal to or higher than that of the highest PP.

これらの事象について説明する。These events will be explained.

例えば、60.5℃Pr0.75で気相重合を行う場合
、開始剤種類による反応性は、次の結果である。(混合
比率は重量比であり、反応性の単位はgPVC/gIh
rである。以下同じ。)単独開始剤系では反応性はND
<EEP<MC<IPPの順で高いが、複合系では、M
CとND、EEP、AIBNを夫々組合せた場合、単独
系でもっている反応性より下廻る。MC/IPPの系で
は相剰効果は認められるが、IPPのもつ反応性をこえ
ない。
For example, when performing gas phase polymerization at 60.5° C. Pr0.75, the reactivity depending on the type of initiator is as follows. (The mixing ratio is a weight ratio, and the unit of reactivity is gPVC/gIh.
It is r. same as below. ) In single initiator systems, the reactivity is ND.
<EEP<MC<IPP, but in a composite system, M
When C is combined with ND, EEP, and AIBN, the reactivity is lower than that of the single system. Although a mutual effect is observed in the MC/IPP system, it does not exceed the reactivity of IPP.

EEPの場合もND、MCとの似合では単独の反応性を
下廻る。EEP/IPP(1/3)の場合のみ、約12
5%の反応性となる。
In the case of EEP as well, the reactivity with ND and MC is lower than that of the individual. Approximately 12 for EEP/IPP (1/3) only
5% reactivity.

又、更に鷺くべき事は、Prを変えて反応性の変化を調
べてみると、次表の如くになった、。
What should be further noted is that when we investigated the change in reactivity by changing Pr, we found the results shown in the following table.

この結果を第1図に示す。これらから明らかなようにP
rに対する反応性の依存性が、開始剤種類組合せによっ
て異なりEEP/IPP(1/3)の組合せは相剰効果
で著しく反応性が向上している。
The results are shown in FIG. As is clear from these, P
The dependence of the reactivity on r differs depending on the combination of initiator types, and the combination of EEP/IPP (1/3) significantly improves the reactivity due to the mutual effect.

これらの開始剤の種類およびその組合せがもたらす効果
は55〜65℃の包囲でほぼ同様の傾向を示す。
The effects of these types of initiators and their combinations show similar trends in the temperature range of 55-65°C.

つぎに本発明の実施例を挙げるが、実施例のみで本発明
が限定されるものではない。
Next, examples of the present invention will be described, but the present invention is not limited only to the examples.

実施例1、比較例1〜6 (1)種ポリマーの作成 錨型撹拌機付100l不銹鋼製重合缶に、予めエバンス
ブルー0.2g/m2/ラウリル硫酸ソーダ0.19g
/m2/ポリビニルアルコール2g/m2になるようス
ケール防止剤を塗布し、50℃で乾燥した。エチルセル
ローズT−503.0g、ステアリン酸3.0g、高級
アルコール(花王石鹸社製カルコール68)1.0g、
ジオクチル錫ジラウレート(日東化成製JVS+810
5)3.0gを入れ、脱気を行い、VCM56kgを仕
込み180rpm撹拌し、ジャケットに温水を通じ56
℃に昇温し、開始剤イソブチリル・パーオキサイド(I
B)25%イソパラフィン液25.0mlと24.4ト
リメチル−ペンチル−2−パーオキシフェノオキシアセ
テート(TMP−PA)30%イソパラフィン液10.
0mlをVCM4kgで缶に洗い入れ、重合開始する。
Example 1, Comparative Examples 1 to 6 (1) Preparation of seed polymer In a 100 liter stainless steel polymerization can with an anchor-type stirrer, 0.2 g/m2 of Evans blue/0.19 g of sodium lauryl sulfate was added in advance.
A scale inhibitor was applied at a ratio of 2g/m2/polyvinyl alcohol/m2 and dried at 50°C. Ethyl cellulose T-503.0g, stearic acid 3.0g, higher alcohol (Kao Soap Co., Ltd. Calcol 68) 1.0g,
Dioctyltin dilaurate (Nitto Kasei JVS+810
5) Add 3.0g of VCM, deaerate, add 56kg of VCM, stir at 180rpm, and pour warm water into the jacket to remove the air.
℃ and initiator isobutyryl peroxide (I
B) 25.0 ml of 25% isoparaffin solution and 24.4 trimethyl-pentyl-2-peroxyphenooxyacetate (TMP-PA) 30% isoparaffin solution 10.
Wash 0 ml into the can with 4 kg of VCM to start polymerization.

内温を一定に保つようジャケットに冷却水を通し、調節
する。
Cooling water is passed through the jacket to maintain a constant internal temperature.

1.5時間で予めVCMに溶解したエチルセルローズT
−100,50grをVCM2kgで仕込み、5分間混
合后、内温50℃内圧7.2kg/cm2Gで定圧回収
する。初め60分間はジャケット54℃として以后52
℃にし、回収速度をややおとす。内温52℃で自圧回収
、次にプロバイダー(フジキン製)で減圧回収し残留V
CMを除き、ポリマーをとり出す。重合率17.1%、
48メッシュ篩上1.8%であった。
Ethyl cellulose T pre-dissolved in VCM for 1.5 hours
-100.50gr was charged with 2kg of VCM, mixed for 5 minutes, and then recovered under constant pressure at an internal temperature of 50°C and an internal pressure of 7.2kg/cm2G. The jacket temperature was 54℃ for the first 60 minutes, and then 52℃.
℃ and slightly slow down the collection rate. At an internal temperature of 52℃, the pressure is recovered, and then the provider (manufactured by Fujikin) is used to recover the residual V under reduced pressure.
Remove the CM and take out the polymer. Polymerization rate 17.1%,
It was 1.8% on a 48 mesh sieve.

(2)気相重合 立上り翼長350m/m錯翼と中板に知冊翼を備えた、
100L不銹鋼製重合缶で、缶内上部に入口1.0mm
の出口1.5mmφの施廻流型VCMスプレーノズルを
取付ける。
(2) Equipped with a gas phase polymerization rising blade length of 350m/m complex blade and a chisaku blade in the middle plate.
A 100L polymerization can made of stainless steel, with an inlet of 1.0mm at the top of the can.
Install a circulating flow type VCM spray nozzle with an outlet of 1.5 mmφ.

予めら前述のスケール防止剤を塗布、乾燥しておく。Apply the above-mentioned scale inhibitor in advance and let it dry.

(1)の種ポリマー3.8kgを入れ、80rpmで撹
拌し、脱気しジャケットに温水を通じ昇温しVCMをノ
ズルより徐々に加え、昇温する。
Add 3.8 kg of the seed polymer from (1), stir at 80 rpm, deaerate, heat water through the jacket, and gradually add VCM through the nozzle to raise the temperature.

内温60.5℃内圧7.5kg/cm2G(PrO.7
5)になったら、開始剤EEP50%トルエン液/IP
P50%トルエン液(1/3)2.7mlをVCM加圧
ポンプでノズルより散布する。
Internal temperature 60.5℃ Internal pressure 7.5kg/cm2G (PrO.7
5), add initiator EEP 50% toluene solution/IP
Spray 2.7 ml of P50% toluene solution (1/3) from a nozzle using a VCM pressure pump.

重合が始まる。ジャケットは61℃一定に保つ(スケー
ルの発生を防止する。)重合熱除去は、内温でVCM加
圧ポンプのストローク調節を行う。一方、内圧は圧力調
節し、蒸発した余分なVCMガスは回収し、冷却液化し
リサイクルする。計量槽の時間毎の減量より、反応量が
判る。反応速度が低下してきたら、前述の開始剤を追加
する。増殖比5.5倍で禁止剤4.4′−ブリチリデン
ビス(3−メチル−6−第3ブチルフェノール)3.5
grとトジフェニルモノデシルホスファイト1.5gを
VCMで予め溶解したものを噴霧仕込后、回収減圧回収
し、残留VCMを除いた后製品を取出す。
Polymerization begins. The jacket is maintained at a constant temperature of 61° C. (to prevent scale formation). Polymerization heat is removed by adjusting the stroke of the VCM pressure pump at the internal temperature. On the other hand, the internal pressure is adjusted, and excess evaporated VCM gas is recovered, cooled, liquefied, and recycled. The amount of reaction can be determined from the weight loss in the measuring tank over time. When the reaction rate slows down, add the initiator as described above. Inhibitor 4.4'-Blycylidenebis(3-methyl-6-tert-butylphenol) 3.5 at growth ratio 5.5 times
gr and 1.5 g of todiphenylmonodecyl phosphite dissolved in VCM in advance are sprayed, collected and recovered under reduced pressure, and after removing residual VCM, the product is taken out.

結果を下表に示す。The results are shown in the table below.

また、別の開始剤の組合せのものの結果をも、下表に示
す。
Results for other initiator combinations are also shown in the table below.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各種の開始剤の反応性のPr依存性を示すグ
フフである。 特許出願人東洋冒違工秦株式会社 LJ、/LJ0750.800.85(第1図 Φ<巳、1lll6n、5°C 1″自1・5) □1 / )、900,951.00
FIG. 1 is a graph showing the Pr dependence of the reactivity of various initiators. Patent Applicant: Toyo Fukai Koukin Co., Ltd. LJ, /LJ0750.800.85 (Fig. 1 Φ < Sn, 1lll6n, 5°C 1" 1.5) □1 / ), 900,951.00

Claims (1)

【特許請求の範囲】[Claims] (1)塩化ビニル単量体又は、それと共重合可能な単量
体と、塩化ビニル単量体の気相重合に於て、重合温度5
5℃以上65℃未満で、重合圧力/重合温度での飽和蒸
気圧の比Prが、1>Pr)0.5の重合圧力で行うに
際して、開始剤としてジイソプロピルパーオギシカーボ
ネートと、ジ−2−エトオキシエチルバーオキシカーボ
ネートを重量比1/1以上で混合して使用する事を特徴
とする重合方法。
(1) In gas phase polymerization of vinyl chloride monomer or a monomer copolymerizable therewith with vinyl chloride monomer, polymerization temperature 5
When carrying out the polymerization at a temperature of 5° C. or higher and lower than 65° C., the ratio Pr of polymerization pressure/saturated vapor pressure at polymerization temperature is 1>Pr) 0.5, diisopropyl peroxycarbonate and di-2 - A polymerization method characterized by using a mixture of ethoxyethyl peroxycarbonate at a weight ratio of 1/1 or more.
JP15630383A 1983-08-29 1983-08-29 Vapor-phase polymerization of vinyl chloride Granted JPS6049010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15630383A JPS6049010A (en) 1983-08-29 1983-08-29 Vapor-phase polymerization of vinyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15630383A JPS6049010A (en) 1983-08-29 1983-08-29 Vapor-phase polymerization of vinyl chloride

Publications (2)

Publication Number Publication Date
JPS6049010A true JPS6049010A (en) 1985-03-18
JPH0581601B2 JPH0581601B2 (en) 1993-11-15

Family

ID=15624856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15630383A Granted JPS6049010A (en) 1983-08-29 1983-08-29 Vapor-phase polymerization of vinyl chloride

Country Status (1)

Country Link
JP (1) JPS6049010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068953C (en) * 1998-06-03 2001-07-25 北京工业大学 Method of preparing rare-earth ferrronitrides permanent megnet material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068953C (en) * 1998-06-03 2001-07-25 北京工业大学 Method of preparing rare-earth ferrronitrides permanent megnet material

Also Published As

Publication number Publication date
JPH0581601B2 (en) 1993-11-15

Similar Documents

Publication Publication Date Title
JPS6251633A (en) Manufacture of spherical magnesium alkoxide particle
BR112015017749B1 (en) catalyst composition for the polymerization of olefins, its process for the preparation and use, catalyst system and process for the production of a polyolefin
JPS5832607A (en) Preparation of water-absorbing material having improved water absorption property
FR2569410A1 (en) CATALYST COMPONENT FOR THE POLYMERIZATION OF OLEFINS AND CATALYST CONTAINING THE SAME
JPS58162607A (en) Polymerization of alpha-olefin
JPS5916563B2 (en) Production method of water-soluble cationic polymer
Fan et al. Photoluminescent polymer cubosomes prepared by RAFT-mediated polymerization-induced self-assembly
JPS6178808A (en) Manufacture of insoluble and low swellability powdery polymer
JPS6049010A (en) Vapor-phase polymerization of vinyl chloride
JP2003509549A (en) One-step seeding polymerization to produce large polymer particles with narrow particle size distribution
JP3887879B2 (en) Method for producing fluorine-containing (meth) acrylic polymer
US3661881A (en) Process for preparing vinyl chloride polymers of reduced porosity
JPS6352662B2 (en)
US4306047A (en) Propylene polymerization
US4145499A (en) Process for polymerizing vinyl chloride
Zimmermann Poly (vinyl chloride) polymerization performance‐enhancing initiators with emphasis on high activity grades and water‐based dispersions
US4826935A (en) Process for gas phase polymerization of vinyl chloride
JPS5981302A (en) Polymerization
WO1982004053A1 (en) Process for producing propylene polymer or copolymer
EP0191874A1 (en) Process for gas phase polymerization of vinyl chloride
JPS5847010A (en) Continuous copolymerization of ethylene with vinyl acetate
JPS6124047B2 (en)
JPS5940842B2 (en) Method for producing cationic polymer
JP3628470B2 (en) Method for producing triallyl isocyanurate polymer
JPH0195104A (en) Dispersion stabilizer for suspension polymerization of vinyl compound