JPS604897A - Waste liquor concentrating solidifying treating device - Google Patents
Waste liquor concentrating solidifying treating deviceInfo
- Publication number
- JPS604897A JPS604897A JP11311983A JP11311983A JPS604897A JP S604897 A JPS604897 A JP S604897A JP 11311983 A JP11311983 A JP 11311983A JP 11311983 A JP11311983 A JP 11311983A JP S604897 A JPS604897 A JP S604897A
- Authority
- JP
- Japan
- Prior art keywords
- hopper
- heating surface
- liquid
- scraper
- container body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 本発明は廃液の濃縮同化処理装置に関する。[Detailed description of the invention] The present invention relates to an apparatus for concentrating and assimilating waste liquid.
従来放射性廃液の処理法として凝集沈殿法。The coagulation-sedimentation method is a conventional treatment method for radioactive waste liquid.
イオン交換法、蒸発濃縮法がある。凝集沈殿法は廃液に
凝集剤を添加し、放射性物質を捕捉し共沈殿させる方法
である。イオン交換法は廃液中の主な放射性物質が陽イ
オンと陰イオンとして存在するのでこれらをイオン交換
樹脂によって吸着除去する方法である。There are ion exchange method and evaporation concentration method. The coagulation-precipitation method is a method in which a flocculant is added to waste liquid to capture and co-precipitate radioactive substances. The ion exchange method is a method in which the main radioactive substances in waste liquid exist as cations and anions, and these are adsorbed and removed using an ion exchange resin.
以上の方法は低レベル放射性廃液を大量に処理するには
有効であるが、除染係数が低(、高レベル放射性廃液を
処理するには適していない。The above method is effective for treating large amounts of low-level radioactive waste liquid, but the decontamination coefficient is low (and it is not suitable for treating high-level radioactive waste liquid).
蒸発濃縮法は廃液から大量の水を蒸発分離し。The evaporative concentration method evaporates and separates a large amount of water from the waste liquid.
放射性物質を廃液中にそのまま残存させる方法である。This method allows radioactive substances to remain in the waste liquid.
この方法は上記工法では除去しIIf[’非イオン性核
種も水から分離できるため除去係数が上記工法にくらべ
て極めて高(、高レベル放射性廃液の除染に適している
。This method is suitable for decontaminating high-level radioactive waste liquids because the removal coefficient is much higher than that of the above method because nonionic nuclides can also be separated from water.
現在放射性物質取扱施設などで発生する放射性廃液は主
にこの方法で濃縮され、セメント又はアスファルトと混
合・固化されてドラム缶に充填し保管されるのが一般的
である。この廃液の処理法として遠心薄膜乾燥機で乾燥
し、アスファルトで固化する装置が提案されている(特
公昭52−24200号公報参照)。Currently, radioactive waste fluid generated at facilities handling radioactive materials is generally concentrated using this method, mixed with cement or asphalt, solidified, and then filled into drums and stored. As a method for treating this waste liquid, an apparatus has been proposed in which it is dried in a centrifugal thin film dryer and solidified with asphalt (see Japanese Patent Publication No. 52-24200).
この装置は遠心薄膜乾燥機の下部にアスファルト固化機
を設置し、アスファルト槽の混合を遠心薄膜乾燥機の回
転軸を利用して行い、定常運転時には遠心薄膜乾燥機よ
り生成する粉末状を直接にアスファルトで固化し、また
遠心薄膜乾燥機の異常運転において流出する廃液をもア
スファルト槽に受けて同化できるようにしている。This equipment has an asphalt solidifying machine installed at the bottom of the centrifugal thin film dryer, and mixes the asphalt in the asphalt tank using the rotating shaft of the centrifugal thin film dryer.During steady operation, the powder produced by the centrifugal thin film dryer is directly mixed. The asphalt tank is designed to receive and assimilate waste liquid that solidifies with asphalt and flows out during abnormal operation of the centrifugal thin film dryer.
をアスファルト槽に直接受けて、その水分をアスファル
ト層表面で蒸発させなければならないため処理速度が遅
くなる。これを防止するため廃液の乾燥粉末物の水分を
検出して廃液の供給量をコントロールしている。しかし
水分検出器は乾燥粉末物に直接接触するためその機能を
維持するには頻繁なメンテナンスを要する。The water must be directly received into the asphalt tank and the water must be evaporated on the surface of the asphalt layer, which slows down the processing speed. To prevent this, the amount of waste liquid supplied is controlled by detecting the moisture content of the dry powder in the waste liquid. However, since moisture detectors come into direct contact with dry powder, they require frequent maintenance to maintain their functionality.
本発明は上記問題点を解決するもので、実質的に鉛直な
加熱面を周面に具え、上部に蒸気出口を有する筒状の容
器本体、同容器本体の上部に配設され被処理液が上記加
熱面に達する直前に被処理液と水ガラスを混合させる混
合室、上記容器本体内に回動自在に設置されその外周面
が上記加熱面に摺接するとともにその下端が上端に対し
先行するスクレーパ、上記容器本体の下部にその上縁が
上記加熱面から適当に離間して配設され上aC加熱面か
ら上記スクレーパによって掻き取られて落下するスケー
ルを受けるホッパ、同ホッパ内に配設され上記ホッパ面
上に溜ったスケールを下方に掻き落す上記スクレーパと
連動する回転羽根、上記容器本体底部に連設され上記加
熱面より大径に形成されて上記ホッパを包囲し上記加熱
面を伝って上記漏斗状ホッパの玉縁との隙間を経て流下
する未蒸発液を受ける未蒸発液室及び」−記ホツバ下縁
に連接され上記ホッパより掻き落されたスケールを受け
る容器とからなることを特徴とする廃液濃縮固化処理装
置を特徴とし、その目的とするところは、上記自動コン
トロール等の制御回路を一切必要とせず、定常運転だけ
でなく異常運転におい1でも処理速度がほぼ一定で乾燥
ができる放射性廃液濃縮同化処理装置を提供しようとす
るものである。The present invention solves the above-mentioned problems, and consists of a cylindrical container body equipped with a substantially vertical heating surface on its circumferential surface and a steam outlet at the top; A mixing chamber in which the liquid to be treated and water glass are mixed just before reaching the heating surface, and a scraper rotatably installed in the container body, the outer peripheral surface of which slides into contact with the heating surface, and the lower end of which is in front of the upper end. , a hopper disposed at the lower part of the container body with its upper edge appropriately spaced from the heating surface to receive scales scraped and falling from the upper aC heating surface by the scraper; A rotary blade that works in conjunction with the scraper that scrapes scale accumulated on the hopper surface downward, is connected to the bottom of the container body and is formed with a larger diameter than the heating surface, surrounds the hopper, and passes along the heating surface to the heating surface. The hopper is characterized by comprising an unevaporated liquid chamber for receiving unevaporated liquid flowing down through a gap with the bead of the funnel-shaped hopper, and a container connected to the lower edge of the hopper for receiving scale scraped from the hopper. It is characterized by a waste liquid concentration and solidification treatment equipment that does not require any control circuits such as the above-mentioned automatic control, and the processing speed is almost constant not only in steady operation but also in abnormal operation, and the radioactive material can be dried. The purpose is to provide a waste liquid concentration and assimilation treatment device.
本発明は上8Cの構成とすることにより放射性廃液を効
率良く濃縮・同化でき同化速度が大きい。濃縮・固化操
作において自動コントロール等の制御回路が不要である
。密閉型であるため揮発性核種を含む放射性廃液でも濃
縮・同化でき高い除染係数が得られる。及び固定剤とし
てアスファルトを用いる場合でも、未蒸発の水分がアス
ファルト中にほとんど入らないため処理速度が大きい。By adopting the configuration shown in 8C above, the present invention can efficiently concentrate and assimilate radioactive waste liquid and has a high assimilation rate. Control circuits such as automatic control are not required for concentration and solidification operations. Since it is a sealed type, even radioactive waste liquid containing volatile nuclides can be concentrated and assimilated, resulting in a high decontamination coefficient. Even when asphalt is used as a fixing agent, the processing speed is high because almost no unevaporated water enters the asphalt.
等の効果を奏する。It has the following effects.
以下本発明を最も好ましい実施例について説明する。The present invention will be described below with reference to the most preferred embodiments.
第1図ないし第3図において、回状の容器本体lの加熱
面7は実質的に鉛直な面であり、その外側周面にはスチ
ームジャケット6が設けられており、被処理液21はエ
ゼクタ89で薬液ノズル40から注入される薬液41と
混合室4で混合されて加熱面7へ入る。混合室4は加熱
面7に接する平面に対して平行で2水平又はやや上方に
向けて配設されノズルの役目もなしている。2はモータ
、87はプーリを示し容器本体lの中には回転軸6a、
その軸廻りに取り伺けられた複数のスクレーパアーム2
2.スクレーパアーム22の先端に接合されたスクレー
パ8が設けられており1回転軸6aは回転軸受28を介
して下部の回転軸6bと接続され、これらは回転可能に
なっている。24は回転軸受23の支持アームである。In FIGS. 1 to 3, the heating surface 7 of the circular container main body l is a substantially vertical surface, and a steam jacket 6 is provided on the outer peripheral surface of the heating surface 7, and the liquid to be treated 21 is passed through the ejector. At step 89, the chemical liquid 41 injected from the chemical liquid nozzle 40 is mixed in the mixing chamber 4 and enters the heating surface 7. The mixing chamber 4 is disposed parallel to the plane in contact with the heating surface 7, horizontally or slightly upwardly, and also serves as a nozzle. 2 is a motor, 87 is a pulley, and inside the container body l there are a rotating shaft 6a,
Multiple scraper arms 2 around the axis
2. A scraper 8 joined to the tip of the scraper arm 22 is provided, and one rotation shaft 6a is connected to a lower rotation shaft 6b via a rotation bearing 28, so that these can rotate. 24 is a support arm of the rotary bearing 23.
スクレーパアーム22およびスクレーパ8は垂直方向に
対して複数個配設されており、上下に隣接するスクレー
パアーム22およびスクレーパ8は互に回転軸6&廻り
に対して所定角度(通常180°)に位置するように配
備する。A plurality of scraper arms 22 and scrapers 8 are arranged in the vertical direction, and the vertically adjacent scraper arms 22 and scrapers 8 are positioned at a predetermined angle (usually 180°) with respect to the rotation axis 6. Deploy it like this.
スクレーパ8が加熱面7を掻き取る垂直方向の幅は、上
方又は下方に隣接するスクレーパ8が加熱面7を掻き取
る垂直方向の幅の下端又は上端の一部と各々重なるよう
に、各々のスクレーパ8が配置されている。またスクレ
ーパ8は加熱面7に密着しながら進行方向に対して下端
が上端に対して先行するように、鉛直線に対して所定角
度傾けて配備されている。The vertical width of each scraper 8 scraping the heating surface 7 overlaps with a part of the lower end or the upper end of the vertical width of the upper or lower adjacent scraper 8 scraping the heating surface 7, respectively. 8 is placed. Further, the scraper 8 is tilted at a predetermined angle with respect to the vertical line so that its lower end precedes its upper end in the direction of movement while closely contacting the heating surface 7 .
スクレーパアーム22およびスクレーパ8は回転軸廻り
の同一水平位置に複数個所定間隔に位置するように設け
てもよい。A plurality of scraper arms 22 and scrapers 8 may be provided at the same horizontal position around the rotation axis at predetermined intervals.
25はスチームジャケット5内へのスチーム人口、26
はスチームジャケット5の底部に設けられたスチームド
レン出口、3は容器本体l上部に設けた蒸発蒸気出口で
ある。25 is the steam population in the steam jacket 5, 26
3 is a steam drain outlet provided at the bottom of the steam jacket 5, and 3 is an evaporative steam outlet provided at the top of the container body l.
27は加熱面7の底部に形成された容器本体1の内面の
径より大きな内径を有する未蒸発液室。Reference numeral 27 denotes an unevaporated liquid chamber formed at the bottom of the heating surface 7 and having an inner diameter larger than the inner diameter of the container body 1.
28は未蒸発液室27に設けられた未蒸発液出口。28 is an unevaporated liquid outlet provided in the unevaporated liquid chamber 27.
29は未蒸発液室より加熱面7内に挿入されて上方に開
口すると共に、その開口上面が未蒸発液室27の上方部
に位置するようにした漏斗状のホッパである。ホッパ2
9の頂部内径は加熱面7の内径とほぼ同径になるように
形成されており。A funnel-shaped hopper 29 is inserted into the heating surface 7 from the unevaporated liquid chamber and opens upward, and the upper surface of the opening is positioned above the unevaporated liquid chamber 27. Hopper 2
The inner diameter of the top of the heating surface 9 is formed to be approximately the same as the inner diameter of the heating surface 7.
その外周は加熱面7と未蒸発液室27の側壁と適当な間
隙となるように設けられている。Its outer periphery is provided so as to form an appropriate gap between the heating surface 7 and the side wall of the unevaporated liquid chamber 27 .
80はホッパ29の内面に沿って設けられた回転羽根で
2回転軸6bと強固に接合されている。80 is a rotary blade provided along the inner surface of the hopper 29, and is firmly connected to the two-rotation shaft 6b.
回転羽根80はホッパ内面の傾斜部と密着しているだけ
でなくホッパ29の頂部−E透面にも密着している。The rotary vane 80 is not only in close contact with the inclined portion of the inner surface of the hopper, but also in close contact with the top-E transparent surface of the hopper 29.
81a、81bはホッパ29下部に連なる筒状の調圧室
82の上端および下端より垂下したダンtRである。8
8は同化装置で調圧室82と接続している。81a and 81b are dampers tR hanging from the upper and lower ends of the cylindrical pressure regulating chamber 82 connected to the lower part of the hopper 29. 8
8 is an assimilation device connected to a pressure regulating chamber 82.
14はアスファルト、84はアスファルト供給ノズル、
85は固化体出口、15はヒー”夕、86は固化装置モ
ータをそれぞれ示す。14 is asphalt, 84 is an asphalt supply nozzle,
85 is a solidified material outlet, 15 is a heater, and 86 is a solidifying device motor.
実質的に鉛直な加熱面7はスチーム人口25より吹き込
まれたスチームによって加熱されている。被処理液21
はエゼクタ89で薬液ノズル40から注入される薬液4
1と混合されて混合室4から加熱面7に入る。The substantially vertical heating surface 7 is heated by steam blown from the steam port 25. Liquid to be treated 21
is the chemical liquid 4 injected from the chemical liquid nozzle 40 by the ejector 89.
1 and enters the heating surface 7 from the mixing chamber 4.
被処理液21にはあらかじめ固化助剤を混合しておく。The liquid to be treated 21 is mixed with a solidification aid in advance.
固化助剤としては被処理液21がウランを含む溶液の場
合は無機酸、有機酸、炭酸アルカリおよびアルカリ土類
金属塩などを用い、被1例や病
処理液2 t h; M rat性物質取扱施設の廃液
の場合はホウ酸、ホウ酸塩、リン酸、第1リン酸塩およ
びアルミニウム塩の他に、亜硫酸又は亜硫酸塩。When the liquid to be treated 21 is a solution containing uranium, an inorganic acid, an organic acid, an alkali carbonate, an alkaline earth metal salt, etc. are used as the solidification aid, and the solidification aid is used to treat the treated liquid 21 or disease treatment liquid 2 th; M rat substance. In the case of waste liquid from handling facilities, in addition to boric acid, borates, phosphoric acid, monophosphates, and aluminum salts, sulfite or sulfites.
チオ硫酸塩、−酸化炭素、二酸化硫黄、硫化水素又は硫
化物、アルデヒド化合物、単糖類、還元性少糖類、還元
性有機酸又は還元性有機酸塩などを用いる。薬液41は
水ガラスを使用する。Thiosulfates, carbon oxides, sulfur dioxide, hydrogen sulfide or sulfides, aldehyde compounds, monosaccharides, reducing oligosaccharides, reducing organic acids or reducing organic acid salts are used. Water glass is used as the chemical solution 41.
被処理液21は混合室4より加熱面7に沿いながら表面
円周面に沿って旋回して流下する。その際薬液41と被
処理液21にあらかじめ添加しておいた固化助剤および
加熱によって、直ちに被処理液21中の固形物が重合ケ
イ酸被膜に覆れて同化し始め、水から分離する。水は加
熱面7により加熱されて直ちに蒸気となって蒸気出口8
より排出する。スクレーパ8はモータ2とプーリ37に
よって回転軸6aおよびスクレーパアーム22を介して
加熱面7をこすりながら、被処理液21の蒸発乾固物で
ある乾燥スケール10を掻き取って、続々とスクレーパ
8の面上を上方と回転軸6a方向の合成された方向へ移
動し、やがてスクレーパ8の面から溢れるようにして下
方に落下する。下方のスクレーパ8も同様に作用する。The liquid to be treated 21 flows down from the mixing chamber 4 along the heating surface 7 while swirling along the surface circumference. At this time, due to the chemical solution 41, the solidification aid added in advance to the liquid to be treated 21, and heating, the solids in the liquid to be treated 21 are immediately covered with a polymerized silicic acid film and begin to be assimilated, and are separated from the water. The water is heated by the heating surface 7 and immediately turns into steam at the steam outlet 8.
Emit more. The scraper 8 uses the motor 2 and pulley 37 to scrape the heated surface 7 through the rotating shaft 6a and the scraper arm 22, and scrapes off the dry scale 10 that is the evaporated solid matter of the liquid to be treated 21. It moves on the surface in the combined direction of the upward direction and the direction of the rotation axis 6a, and eventually overflows the surface of the scraper 8 and falls downward. The lower scraper 8 also acts in the same way.
下方へと落下したスケール10はホッパ29に溜する。The scale 10 that has fallen downward is collected in a hopper 29.
ホッパ29に溜ったスケール10は回転羽根80で下方
に送られ、ダンパ81a、ダンパ81bを順次開閉する
ことにより調圧室32を通過して固化装置3Bに流下す
る。The scale 10 accumulated in the hopper 29 is sent downward by the rotating blade 80, passes through the pressure regulating chamber 32, and flows down to the solidification device 3B by sequentially opening and closing the damper 81a and the damper 81b.
一方蒸発していない加熱面7を伝って落下した液は未蒸
発液室27の側壁が加熱面7の内径より大きな径を有す
るため、この側壁に沿って矢印88のように落下し、ホ
ッパ29には入らず未蒸発液室27に溜り、出口28を
経由して排出される。On the other hand, since the side wall of the unevaporated liquid chamber 27 has a larger diameter than the inner diameter of the heated surface 7, the liquid that has not evaporated and fallen along the heating surface 7 falls along this side wall as shown by the arrow 88, and falls into the hopper 29. The unevaporated liquid does not enter the liquid and accumulates in the unevaporated liquid chamber 27, and is discharged via the outlet 28.
未蒸発液は直ちにポンプ等による移送手段によって被処
理液21と混合して再度容器本体lに流入せしめる。The unevaporated liquid is immediately mixed with the liquid to be treated 21 by a transfer means such as a pump, and is caused to flow into the container body l again.
同化装置88ではノズル84から入れるアスファルト1
4とスケールlOとをヒーター15で加熱しなからモー
タ36によって混合攪拌し、固化体出口85から排出し
てドラム缶等容器内に充填して静置放冷すると固化する
。In the assimilation device 88, asphalt 1 is introduced from the nozzle 84.
4 and scale lO are heated by the heater 15 and then mixed and stirred by the motor 36, discharged from the solidified material outlet 85, filled into a container such as a drum can, and left to cool to solidify.
なお上記2段のダンパ81’a、81b及び調圧室32
に代えて、容器本体1内を所定の真空度に保持しつつス
ケールを下方に送れるものであれば20−タリーフィー
ダーその他の手段に換えることができる。又、真空に保
つ必要がない場合は設けなくてもよい。Note that the two-stage dampers 81'a and 81b and the pressure regulating chamber 32
Instead, a 20-tally feeder or other means may be used as long as it is capable of feeding the scale downward while maintaining the inside of the container body 1 at a predetermined degree of vacuum. Further, if there is no need to maintain a vacuum, it may not be provided.
また固化装置88はアスファルト同化方法の他にセメン
ト同化又はガラス同化方法におき換えることができる。Further, the solidification device 88 can be replaced with a cement assimilation method or a glass assimilation method in addition to the asphalt assimilation method.
また放射性物質がほとんどない場合は固化装置83を設
けず直接ドラム缶等の密閉容器に置き換えてスケールを
直接充填してもよい。Furthermore, if there is almost no radioactive material, the solidification device 83 may be omitted, and the container may be directly replaced with a closed container such as a drum and filled with scale directly.
次に本実施例による効果を列挙する。Next, the effects of this embodiment will be listed.
(1) 被処理液21が容器本体1に流入する直前にエ
ゼクタ89で薬液41と混合することにより。(1) By mixing the liquid 21 to be treated with the chemical liquid 41 in the ejector 89 immediately before it flows into the container body 1.
薬液41(水ガラス)の管内析出が防止できる。Precipitation of the chemical solution 41 (water glass) inside the tube can be prevented.
(2) ノズルの役目を;lす混合室4を加熱面7に接
する平面に対して平行で流入口が水平又はやや上方に向
けて配設することによって被処理液21に加熱面7で旋
回流を与えるため被処理液21の分散が効率良くおこな
える。(2) By arranging the mixing chamber 4, which serves as a nozzle, in parallel to the plane in contact with the heating surface 7 and with the inlet facing horizontally or slightly upward, the liquid to be treated 21 can be swirled around the heating surface 7. Since the flow is provided, the liquid to be treated 21 can be efficiently dispersed.
(3) 被処理M21の流入方向とスクレーパ8の移動
方向が同じであるため被処理液21の分散を妨げること
がない。(3) Since the inflow direction of the to-be-treated M21 and the moving direction of the scraper 8 are the same, the dispersion of the to-be-treated liquid 21 is not hindered.
(4) スクレーパ8が加熱面7を掻き取る垂直方向の
幅を、上方又は下方に隣接する各々のスクレーパ8の幅
と重なるように配置することにより、スケール10の付
着していない新しい加熱面をたえず用意することになり
、極めて蒸発速度が大きい。(4) By arranging the vertical width of the heating surface 7 scraped by the scraper 8 so that it overlaps with the width of each scraper 8 adjacent above or below, a new heating surface to which scale 10 is not attached is removed. It has to be prepared constantly, and the evaporation rate is extremely high.
(5) スクレーパ8が進行方向に対して下端が先行す
るように鉛直線に対して所定角度傾けて配備することに
より、掻き取られたスケールlOの滞留時間が増加し、
スケール10の水分をさらに減少せしめる。(5) By arranging the scraper 8 at a predetermined angle with respect to the vertical line so that the lower end leads in the direction of movement, the retention time of the scraped scale lO is increased;
The water content of the scale 10 is further reduced.
(6) 加熱面7と漏斗状ホッパ29の頂部内径がほぼ
同径に形成されていることと、底部に前記加熱面より大
径に形成されている未蒸発室27を設けているため、ス
クレーパ8で掻き取られたスケールはホッパ内29に容
易に落下するとともに、未蒸発液は加熱面7より未蒸発
液室27の側壁を伝ってホッパ内29に落下するこトナ
ク未蒸発液に流下するので自動的にスケールと未蒸発液
分離できる。(6) Since the heating surface 7 and the top inner diameter of the funnel-shaped hopper 29 are formed to have approximately the same diameter, and the non-evaporation chamber 27 is provided at the bottom with a larger diameter than the heating surface, the scraper The scale scraped off in step 8 easily falls into the hopper 29, and the unevaporated liquid flows from the heating surface 7 along the side wall of the unevaporated liquid chamber 27 and falls into the hopper 29, where it flows down into the unevaporated liquid. Therefore, scale and unevaporated liquid can be automatically separated.
(7) ホッパ29内面を絶えず回転羽根8oで攪拌す
るため、スケールに付着している微量の水分を蒸発でき
る。(7) Since the inner surface of the hopper 29 is constantly stirred by the rotary blade 8o, trace amounts of water adhering to the scale can be evaporated.
(8) ダンパー81a、81bと調圧室82を設ける
ことにより蒸発室内部を真空型とすることができ、放射
性物質が外部に漏れることがないため、安全性を高める
ことができるだけでなく。(8) By providing the dampers 81a, 81b and the pressure regulating chamber 82, the inside of the evaporation chamber can be made into a vacuum type, and radioactive substances will not leak outside, which not only improves safety.
高温では容易に揮発する放射性物質が含まれる廃液でも
処理できる。Even waste liquid containing radioactive substances that easily volatilize at high temperatures can be treated.
(9) 水ガラスと固化助剤を被処理液に添加すること
により、加熱濃縮の効果と相まって著しく同化速度が促
進され、効率良(蒸発固化できる。(9) By adding water glass and a solidification aid to the liquid to be treated, in combination with the effect of heating and concentration, the assimilation rate is significantly accelerated, allowing efficient evaporation and solidification.
00 液中の溶解成分および放射性物質が急速に重合ケ
イ酸で覆れてペレットとなることにより、液中の水分が
容易に蒸発分離される。00 The dissolved components and radioactive substances in the liquid are rapidly covered with polymerized silicic acid to form pellets, so that the water in the liquid can be easily evaporated and separated.
0υ ペレット化したスケールは重合ケイ酸で覆れでい
るため未蒸発の液に触れても再溶解しないため、未蒸発
液中の固形物の量が極めて低く従って分離効率が上昇す
る。0υ Since the pelletized scale is covered with polymerized silicic acid, it does not dissolve again even if it comes into contact with the unevaporated liquid, so the amount of solids in the unevaporated liquid is extremely low, and the separation efficiency increases.
(至) 」−記ペレット化したスケールは水分および結
晶水をほとんど含まないため、アスファルトに容易に固
着するのでアスファルト固化速度が大きい。(To) Since the pelletized scale contains almost no moisture or water of crystallization, it easily sticks to asphalt, resulting in a high asphalt solidification rate.
Q3 重合ケイ酸は非膨潤性ゲルであるため、アスファ
ルト中の微■の水分を吸収しても膨潤せずアスファルト
との間隙を生じさせない。Q3 Polymerized silicic acid is a non-swellable gel, so even if it absorbs a small amount of water in asphalt, it does not swell and does not form gaps with the asphalt.
そのため放射性物質が浸出し難く、安全性を高める。This makes it difficult for radioactive substances to leak out, increasing safety.
第1図ないし第8図は本発明の一実施例を示し、第1図
はその要部の縦断面図、第2図は第1図のA−A断面図
、第8図は本実施例におけるスクレーパの取付状態を表
す説明図である。
1・・・容器本体、3・・・蒸気出口、4・・・混合室
。
7・・・加熱面、8・・・スクレーパ728・・・未蒸
発液室。
29・・・ホッパ、80・・・回転羽根、33・・・固
化装置15イ“VV′VV)
第2図
I
勇3図1 to 8 show one embodiment of the present invention, FIG. 1 is a vertical sectional view of the main part, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. 8 is an embodiment of the present invention. It is an explanatory view showing an attachment state of the scraper in . 1... Container body, 3... Steam outlet, 4... Mixing chamber. 7... Heating surface, 8... Scraper 728... Unevaporated liquid chamber. 29...Hopper, 80...Rotating blade, 33...Solidification device 15 I"VV'VV) Figure 2 I Figure 3
Claims (1)
有する筒状の容器本体、同容器本体の上部に配設され被
処理液が上記加熱面に達する直前に被処理液と水ガラス
を混合させる混合室、上記容器本体内に回動自在に設置
されその外周面が上記加熱面に摺接するとともにその下
端が上端に対し先行するスクレーパ、−h記容器本体の
下部にその上縁が上記加熱面から適当に離間して配設さ
れ上記加熱面から上記スクレーパによって掻き取られて
落下するスケールを受けるホッパ、同ホッパ内に配設さ
れ上記ホッパ面上に溜ったスケールを下方に掻き落す上
記スクレーパと連動する回転羽根、上記容器本体底部に
連設され上記加熱面より大径に形成されて上記ホッパを
包囲し上記加熱面を伝って上記漏斗状ホッパの上縁との
隙間を経て流下する未蒸発液を受ける未蒸発液室及び上
記ホッパ下縁に連接され上記ホッパより掻き落されたス
ケールを受ける容器とからなることを特徴とする廃液濃
縮同化処理装置。A cylindrical container body with a substantially vertical heating surface on its periphery and a steam outlet at the top, and a cylindrical container body disposed at the top of the container body to separate the liquid to be treated and water immediately before the liquid to be treated reaches the heating surface. a mixing chamber for mixing glass; a scraper which is rotatably installed in the container body and whose outer peripheral surface slides on the heating surface and whose lower end precedes the upper end; A hopper is disposed at an appropriate distance from the heating surface to receive falling scales scraped by the scraper from the heating surface, and a hopper is disposed within the hopper to scrape downwardly the scale accumulated on the hopper surface A rotary blade that interlocks with the scraper and is connected to the bottom of the container main body and is formed to have a diameter larger than the heating surface, surrounds the hopper, runs along the heating surface, and passes through a gap with the upper edge of the funnel-shaped hopper. A waste liquid concentration and assimilation treatment apparatus comprising an unevaporated liquid chamber for receiving flowing unevaporated liquid and a container connected to the lower edge of the hopper to receive scale scraped off from the hopper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11311983A JPS604897A (en) | 1983-06-23 | 1983-06-23 | Waste liquor concentrating solidifying treating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11311983A JPS604897A (en) | 1983-06-23 | 1983-06-23 | Waste liquor concentrating solidifying treating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS604897A true JPS604897A (en) | 1985-01-11 |
Family
ID=14603993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11311983A Pending JPS604897A (en) | 1983-06-23 | 1983-06-23 | Waste liquor concentrating solidifying treating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS604897A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6224641A (en) * | 1985-07-25 | 1987-02-02 | Toshiba Corp | Manufacture of semiconductor substrate |
-
1983
- 1983-06-23 JP JP11311983A patent/JPS604897A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6224641A (en) * | 1985-07-25 | 1987-02-02 | Toshiba Corp | Manufacture of semiconductor substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
UA65629C2 (en) | Method and device for densifying a bulk powder material | |
JPS604897A (en) | Waste liquor concentrating solidifying treating device | |
KR20100105246A (en) | Thermal desorption apparatus having treating function of dust | |
JPS6335000B2 (en) | ||
JP2527276Y2 (en) | Slurry sampling equipment | |
JPS604896A (en) | Waste liquor concentrating solidifying device | |
JPS6038697A (en) | Device for concentrating and solidifying radioactive waste liquor | |
CN213752002U (en) | Handle microwave drying device in bucket of low radioactivity turbid liquid | |
JPH0631841B2 (en) | Method and apparatus for treating radioactive waste | |
KR20200069957A (en) | Radioactive sludge drying apparatus having elliptical heat transfer wall and drying method thereof | |
CN117072144B (en) | Preparation device and method of radioactive isotope tracer for injection profile logging | |
KR840000979B1 (en) | Soliditication of radioactive waste effluents | |
DE2856539C2 (en) | Slag melt granulation plant | |
JPS6136640B2 (en) | ||
JPS643955Y2 (en) | ||
JPS5848398Y2 (en) | Mixing tank for powder and liquid | |
JPS6036333Y2 (en) | Chemical recovery equipment | |
JPS63128345A (en) | Treating device for waste developing solution | |
SU1502134A1 (en) | Device for dewatering granular material | |
CN1221645A (en) | Liquid bleeding device and method for controlling concentration of slurry in wet flue gas desulfurization system | |
CN113209716A (en) | Solid-liquid separation type-based material treatment equipment for biomass energy | |
JPH0221988A (en) | Treating device for waste photographic processing liquid | |
JPS60252000A (en) | Excretion drying method and apparatus for livestock industry | |
JPS63130182A (en) | Apparatus for treating waste liquid developer | |
JPS6347516B2 (en) |