JPS6048732A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPS6048732A
JPS6048732A JP15541083A JP15541083A JPS6048732A JP S6048732 A JPS6048732 A JP S6048732A JP 15541083 A JP15541083 A JP 15541083A JP 15541083 A JP15541083 A JP 15541083A JP S6048732 A JPS6048732 A JP S6048732A
Authority
JP
Japan
Prior art keywords
linear array
transducer
ultrasonic
array
transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15541083A
Other languages
Japanese (ja)
Inventor
安津夫 飯田
孚城 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15541083A priority Critical patent/JPS6048732A/en
Publication of JPS6048732A publication Critical patent/JPS6048732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a) 発明の技術分野 不発明に、リニアプレイグローブ全使用する超音波装置
に被検体の血流計測の機能全付加する平反に関する〇 (bJ 技術の背景 近年、無侵襲という特長から医用診断装置として超音波
診断装置が多く用いられろようにな−)た。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a flat plate that adds a full function of measuring the blood flow of a subject to an ultrasonic device that uses a linear play glove. Due to its invasive nature, ultrasound diagnostic equipment has come to be widely used as a medical diagnostic equipment.

超音波診断装置は所足の繰返し周波数で振動子よp超音
波を送信し、被検体からの該送信超音波の反射超音波を
該振動子で受信し、生体内部の断層画像?形成したり、
血流計測2行う装置である。
An ultrasound diagnostic device transmits ultrasonic waves to a transducer at a predetermined repetition frequency, receives reflected ultrasonic waves of the transmitted ultrasonic waves from the subject using the transducer, and creates a tomographic image inside the living body. form or
This is a device that performs blood flow measurement 2.

超音波Ur層両画像形成するには振動子の超音波送受の
超音波ビーム全観察しようとする被検体に走査する必要
がら夛、従来1個或は複数個の振動子を回転成は回動さ
せて扇形状の走査を行って米た。f&近、振動子の多素
子化の技術が進歩し、リニアアレイとかフェーズドアレ
イといわれる方式が現われ、振動子t1列に連設するだ
けで機械的門動全−切無くして減益することができるよ
うになった。
In order to form images of both ultrasonic Ur layers, it is necessary to scan the entire ultrasound beam transmitted and received by the transducer over the object to be observed. Conventionally, one or more transducers are rotated. Then, a fan-shaped scan was performed. Recently, the technology for multi-element transducers has progressed, and systems called linear arrays and phased arrays have appeared, and by simply connecting transducers to the t1 row, it is possible to eliminate all mechanical gate motion and reduce profits. It became so.

リニアアレイに1個の開(」断面積が約1mX10鴫の
振動子tlQ鶴の辺の側を間接させて130個程度連設
したものである00の多素子振動子?互に隣接した仮数
側に1組として16」じ超音波周波数で同時に送信させ
、ば1組の振動子数μ変えずに植込シに振動子の岨合せ
(i1″移動させながら同時送信を行うもので、合成さ
れた超音波ビームンよりニアアレイ振動子の連設方向(
以下アレイ方向と略称する)と直角方向で、その超音波
ビームが順送pに並行して移動する走査様式になるのが
特徴でめる0 し足がった、リニアアレイグローブ全使用する超音波装
置は一般にBモードと呼ばれる断層画像全取得するに用
いられるO′j″なわち、該超音波装置でのBモード表
示とに表示の4AI!JJJに7レイ方回金とシ縦軸に
被検体の超音波送信方向上とった断層画像であって、生
体P3部の血管やBr3器等の断層像を観測するに用い
る。
00 multi-element oscillators, which are approximately 130 oscillators with a cross-sectional area of approximately 1 m x 10 oscillators in a linear array, are connected with the sides of the tlQ oscillators connected to each other, and the mantissa sides are adjacent to each other. In this method, simultaneous transmission is performed while moving the transducers to the implanted site without changing the number μ of the transducers (i1"). The direction in which the near array transducers are connected from the ultrasonic beam (
It is characterized by a scanning mode in which the ultrasonic beam moves parallel to the progressive direction in the direction perpendicular to the array direction (hereinafter abbreviated as the array direction). The ultrasound device is generally used to acquire all the tomographic images called B mode. This is a tomographic image taken in the ultrasound transmission direction of the subject, and is used to observe tomographic images of blood vessels, Br3 organs, etc. in the P3 region of the living body.

また、Mモードと称される表示もしばしば用いらnる。A display called M mode is also often used.

Mモードとは1本の超音波ビーム全被検体の特定方向に
向けて固定し、横軸に時間軸上と9縦軸に該固定ビーム
方向の被検体の超音波反射信号音とっ尺ものにて、該特
定方向の被慎体各部位とグローブとの距離の時間変化が
表示され、例えば超音波ビーム?心臓に同け7’(場合
、心壁のグローブ方向に対する時間的な動きが計測でき
るO以下本計測と戒示ンMモード計測、Mそ−ド表示と
呼称する。
In M mode, one ultrasonic beam is fixed in a specific direction of the whole subject, and the horizontal axis is the time axis, and the vertical axis is the ultrasonic reflected signal sound of the subject in the direction of the fixed beam. Then, the time change in the distance between each part of the subject and the glove in the specific direction is displayed. For example, the ultrasound beam? In the same case as the heart, the temporal movement of the heart wall in the direction of the globe can be measured.Hereinafter, the main measurement and command are called M-mode measurement and M-mode display.

上述の他に、最近の超曽波の医学応用に血流計測という
重要なデーマがらる0血泥計測には送信超音波と血液の
動きから該血液の反射超音波にドブン効果が作用してい
ることに利用する血流速の=t tlQ 法が一般に多
く用いられている。以下本計測と表示tドラプi[測、
ドラグ戎示と呼称するOリニアアレイプローブ金梗用″
jゐ超弧・波装置に本来上述の9ちでBモードによるl
IJ?tmlidm測が主体であるが、最近ばMモード
表示や血流計測も併せ行うものがある。然し乍ら、これ
らの従来技術のうち特に後述の如く血流速の計測精度に
問題が必シ、不発明はこの問題に対処するものである。
In addition to the above, there is an important topic in recent medical applications of ultrasonic waves: blood flow measurement.In blood sludge measurement, a droop effect acts on the reflected ultrasound waves from the transmitted ultrasound waves and the movement of the blood. The =t tlQ method of blood flow velocity is generally used. Below is the main measurement and display t drap i [measurement,
O linear array probe called “drag display”
The superarc/wave device originally uses the above-mentioned 9-chi B mode l
IJ? The main method is tmlidm measurement, but recently there are some that also perform M mode display and blood flow measurement. However, among these conventional techniques, there is always a problem in the measurement accuracy of blood flow velocity, as will be described later, and the invention is intended to address this problem.

(C) 従来技術と問題点 第1Nは上述のドグラ計測とMモード計測の機能と有す
る従来技術のりニアアレイグローブ?使用した超音波装
置の回路溝成會系統図にて示したものである。
(C) Conventional technology and problems No. 1N is the prior art linear array glove that has the functions of the above-mentioned Dogura measurement and M-mode measurement? This is a diagram showing the circuit configuration of the ultrasonic device used.

第1図に於て、lはリニアアレイグローブにて1−1は
りニアアレイ振動子?示し、振動子の緒数は例えは12
0〜130個である。リニアアレイ振動子の連設方向に
四角に超音波パルス全送受信する超音波ビームはりニア
アレイ振動子1−1の端から8〜10個の素子を同時に
送信し両端に矢印?付した1点鎖線1−3の如く超音波
ビームが形成され(以下走査ビームと略称する)、同時
送イざの振動子の組合せを振動子を1個ずつ図の右の方
向へずらして行き、矢印1−4の方向に走査する。した
がって中括弧1−6で示す如き走査幅になり、該走査幅
?走査した被検体15の超音波M層像ヲ衣示せしめる。
In Figure 1, l is a linear array globe and 1-1 is a linear array transducer? For example, the number of oscillators is 12.
The number is 0 to 130. An ultrasonic beam that transmits and receives all ultrasonic pulses squarely in the direction in which the linear array transducers are connected. Eight to ten elements are simultaneously transmitted from the end of the linear array transducer 1-1, with arrows at both ends? An ultrasonic beam is formed as shown by the dotted chain line 1-3 (hereinafter referred to as a scanning beam), and the combination of simultaneously sent transducers is shifted one by one to the right in the figure. , scan in the direction of arrows 1-4. Therefore, the scanning width becomes as shown in curly brackets 1-6, and the scanning width ? An ultrasonic M-layer image of the scanned object 15 is shown.

該走査及び表示’kBモード走査、Bモード?と示と呼
称する。
The scanning and display'kB mode scanning, B mode? It is called ``indication''.

20は超音波診断戴置の不休を示す。2は溪信駆吻部に
て走査ビーム金形成するに8依lVuえば8〜10個の
駆動パルスを所だの繰返し周波数で元止する。該駆動パ
ルスは経路12奮紅てマルチプレクサ4に送られる。マ
ルチプレクサ4はリニアアレイ振動子1−1?走査させ
るための振動子の組合せ全選択する回路にて該組合せは
全系のタイミングを取るマスクオツシレータ葡言む制御
部3にて作られる。送イごパルスは経路11ケ経て振動
子1−1のV、紺合せの振動子全同一の超音波周波数で
バーストさせ、反射超音波は該組合せ振動子で電気信号
(以下受(W(ば号と呼ぶ)に変換されマルチプレクサ
4を経て経路13’l−経て受信増幅郡8で増幅されて
表示部7に与えられ、表示部7はa貫入力受信信号と制
御部3よシ入力する同期1ご号で作られる帰引笛号によ
りBモード表示で行う。
20 indicates non-stop ultrasound diagnosis. 2 forms a scanning beam at the optical drive proboscis, and if 8 to 10 drive pulses are generated at a certain repetition frequency. The drive pulse is sent to multiplexer 4 via path 12. Is multiplexer 4 linear array transducer 1-1? In a circuit that selects all combinations of transducers for scanning, these combinations are created by a control section 3 including a mask oscillator that takes the timing of the entire system. The transmitted pulse passes through 11 paths and bursts at the same ultrasonic frequency as the V of the transducer 1-1 and all the transducers of the dark blue combination, and the reflected ultrasonic wave is transmitted as an electric signal (hereinafter referred to as received (W)) by the combined transducer. It is converted into a signal (referred to as a signal), passes through a multiplexer 4, passes through a path 13'l, is amplified by a receiving amplification group 8, and is applied to a display section 7. It is displayed in B mode using the return whistle made by Gogo No. 1.

観測者がへ4モード或はドグラバー1測全行うには、上
述のBモード嵌示から計測対象を見出し、咳対象の部位
をマーカ部6全′rA節して時短化する。マーカ部6の
出力は振動子全同一5に入力し、販選択部5は16制御
部3を制御してリニアプレイ振動子の特定振動子に’J
ニアアレイ虫制動子中から例えば1−7の如く選択し、
時短振動子1−7−グMモーF或はドプラ計測の専用振
動子すζ荷主比される。
In order for the observer to perform a total measurement in the He4 mode or the dog grabber 1, he finds the object to be measured from the above-mentioned B mode fitting, and sets the part of the object to be coughed in the marker section 6'rA to save time. The output of the marker section 6 is input to the same transducer 5, and the sales selection section 5 controls the 16 control section 3 to select the specific transducer of the linear play transducer.
Select, for example, 1-7 from the near array insect brakes,
Time-saving transducer 1-7-G MMO F or a dedicated transducer for Doppler measurement.

%足振動子上−7にlJニアアレイ抵劫子1−1のうち
の1個【使用するためリニアアレイ振動子1−1と同一
の超廿波周V、欽2使用ぜさるr得ない。
% One of the lJ near array resistors 1-1 is placed on the foot transducer 1-7.

したがって主食ビームを形成する振動子と閂一時刻で送
受(,5することに相互のねt阪士訃かめるため不可能
でろって、走iビームの振動子の迷信繰返し周波akl
/2にして走査振動子と時延振動子を交互に送受化させ
る。上述の制御はルリ御部3で行われる。
Therefore, the superstition of the oscillator of the running I-beam is that it is impossible to transmit and receive signals at the same time as the oscillator that forms the main eclipse beam.
/2, the scanning transducer and time delay transducer are alternately transmitted and received. The above-mentioned control is performed by the Lully control section 3.

荷主振動子1−7からの受1616号は受信ユ゛u幅部
8で分離δれ、紋1Nri4τ紅て上シ1モード伯号の
一合にMモード信号増幅部9を経て拭示都7に送られ、
ドプラ信号の楠4■よトノ′、7屏析郡lOに込られマ
ーカ部6で形hi、δれるゲート伯匂(経路15)で特
jL部位(被検体の深さ方向)のドプラ解析信号を表示
部7に入力する。Mモード及びドグラ辰示の掃引1i5
号は制御部3からの夫々の同期信号によシ辰示部7で形
成されるQ 上述の従来技術に(σ血流計側につき下記のpaき問題
点がある。
The receiving signal 1616 from the shipper's transducer 1-7 is separated by the receiving unit u width part 8, is separated by δ at the receiving unit u width part 8, and is combined with the 1 mode number on the top side through the M mode signal amplification section 9 and then sent to the wiped signal 7. sent to,
The Doppler analysis signal of the special jL region (in the depth direction of the subject) is detected at the gate (path 15), which is included in the Doppler signal Kusunoki 4, 7, and 7, and is in the form of hi and δ in the marker section 6. is input into the display section 7. M mode and Dogura Shinji sweep 1i5
The signals are generated by the display section 7 based on the respective synchronization signals from the control section 3.

ドプラ計測ではドプラ効果の性質上超音波ビームの方向
と直角を成す(アレイ方向と並行)血流速は理論的に計
測が不ciJ能で必9、また直角に近い血流速のi+l
q足棺度は低くならざる全骨ないO一方、血流(は概(
7て体表1−8、L危がって体pに当接せるアレイ方向
に並行するものが多く、そのため従来技術のりニアアレ
イグローブによるドプラ削測は計側精匠上問題があった
0 (d) 発明の目的 本発明ぼ上述の問題点に鑑み、血流計測用の超音波ビー
ムを7レイ振動子のアレイ方向に対し斜めにし、体表に
並行する或に並行に近い角度で流れる血流に対して高精
度にmK計’J4iJ f心ことと目的とする。
In Doppler measurement, due to the nature of the Doppler effect, it is theoretically impossible to measure the blood flow velocity that is perpendicular to the direction of the ultrasound beam (parallel to the array direction).
On the other hand, blood flow (generally (
7. The body surface 1-8, L is often parallel to the array direction that can contact the body p. Therefore, Doppler ablation measurements using the conventional linear array glove have problems in terms of accuracy. (d) Purpose of the Invention In view of the above-mentioned problems, the present invention aims to make the ultrasonic beam for blood flow measurement oblique to the array direction of the 7-ray transducer so that it flows parallel to the body surface or at an angle close to parallel to the body surface. The purpose is to measure blood flow with high precision using a mK meter.

(e) 発明の構成 211:先−ばリニ゛アアし′イ形雇り波グローブ“イ
[1更月jする超f阪装置に於て、該グローブのりニア
アレイ振動子の7レイ刀同の廷艮肱上に早蘇Q振にす子
或は1組の7エーズドアレイ伝向子?収直し、該単数(
−動子或は1ルiのノエーズトアンイ伝感子が形成する
14.0超U波ビームにドプラ。1画の4用ビームとし
1.I¥i、駅伝動子の旬Bμ該J1(欽伝動子にリニ
アアレイグローブの外t215より屯バ市或は依械的操
作により回励設足し、ノエーズドアレイ振励子:f:使
用゛r/)場付は試振動子相五の超冴波送1占タイミン
グの逐延孟:I:笈ン設足して該グ・用ビームの万li
’TIをリニアアレイ振動子の走立ビームがノe戚する
走査面同を自在に万同設冗できるよりにし、該単数振動
子のビーム方向ぼ試早叔振動fの回動に連&tJJする
エンコーダにより、訊フェーズド1ンイ振動子のビーム
方間は献フェーズドアレイ倣動子相互の超音Vタイミン
グの遅延泣の灰層に工pル成さルる方向マーク【表示部
に表示するものごろって、リニアアレイ振!−子が形成
T、b王不の超音波断層像全観察して計測せんとする血
流部位全定め、該血流部位に該専用ビームの方位を調足
してドラグラ計測全行うものであって、不発明により上
述の目的は達成される。
(e) Structure of the invention 211: In an ultrafonic device that uses a linear array vibrator, On the court, there was a quick response to the early So Q or a set of 7 Aed Array transfers.
- Doppler is applied to the 14.0 ultra-U wave beam formed by a transducer or a 1-channel transducer. 4 beams for 1 stroke 1. I¥i, Ekiden oscillator's oscillator Bμ said J1 (A rotational oscillator is added to the kinen oscillator from outside t215 of the linear array globe by tunba city or mechanical operation, nozed array oscillator: f: Use゛r/) The place is to postpone the timing of the ultra-high wave transmission of the trial oscillator phase five: I: 笈 and set up the beam for the beam.
'TI can be freely installed in the same scanning plane as the running beam of the linear array transducer, and the beam direction of the single transducer is linked to the rotation of the horizontal vibration f. By means of an encoder, the beam direction of the phased array transducer is determined by a direction mark (displayed on the display) in the phased array copying element's mutual ultrasonic V timing delay layer. So, linear array swing! - Observe all the ultrasonic tomographic images of the T and B kings formed in the child, determine all the blood flow areas to be measured, and perform drag measurement by determining the direction of the dedicated beam to the blood flow areas. , the above object is achieved by the invention.

(f) 発明の実施例 第2図に血流速計測用振動子に単数の振動子を使用する
不発明の実施例の回路構成を系統図にて示し、第3図に
フェーズドアレイ振動子?使用し7を場合の系統図金示
す0 第2図に於て、30は本発明実施例の17=アアレイグ
ローブ、40μ超音波診断装置本体である0リニアアレ
イグローブ30に於て、リニアアレイ振動子1−1が走
査ビーム1−3を形成して矢印1−4の方向に走査範囲
1−6全走査することは従来技術の第1図と同様でおる
が、血流速計測にはリニアプレイ振動子1−1のアレイ
方向の延長線上に血流速計測用の単数振動子31’に設
置し、単数振動子31が形成する血流速計測用の専用ビ
ーム33を単数振動子310同きt方向制御部32’f
fi制御して変えることで走査範囲1−6全走査ビーム
1−3に対し斜めの角度で自在に矢印34に示す如く指
向させる。方向制御部32はリニアアレイプローブ30
の外部に駆動つまみ金設けるか或は駆動モータを内蔵さ
せて外部よシスイッチ制御して単数振動子310回き′
f、変えるもので、単数振動子31に連動するエンコー
ダも内蔵し専用ビーム33の方向信号音出力する。
(f) Embodiment of the Invention Fig. 2 shows a system diagram of a circuit configuration of an uninvented embodiment in which a single transducer is used as the transducer for measuring blood flow velocity, and Fig. 3 shows a phased array transducer. In FIG. 2, 30 is the 17=a array glove of the embodiment of the present invention, and the linear array glove 30 is the main body of the 40 μ ultrasonic diagnostic apparatus. The transducer 1-1 forms a scanning beam 1-3 and scans the entire scanning range 1-6 in the direction of the arrow 1-4, which is similar to the prior art shown in FIG. A single transducer 31' for blood flow velocity measurement is installed on the extension line of the linear play transducer 1-1 in the array direction, and a dedicated beam 33 for blood flow velocity measurement formed by the single transducer 31 is connected to the single transducer 310. Same t direction control section 32'f
By controlling and changing fi, the scanning range 1-6 can be freely directed at an oblique angle to the entire scanning beam 1-3 as shown by the arrow 34. The direction control unit 32 is a linear array probe 30
A drive knob is provided on the outside of the unit, or a drive motor is built in and controlled by an external switch to rotate a single oscillator 310 times.
f. It also has a built-in encoder linked to the single oscillator 31 and outputs a direction signal sound for the dedicated beam 33.

超音波診1!′r装置不休40に於て、送信駆動部41
はりニアアレイ振動子の走査ビーム1−3に形成する駆
動パルスを発生し、また単数振動子;う1の専用ビーム
33i形成する駆動パルス?発生する。
Ultrasound examination 1! 'r In the device 40, the transmission drive section 41
Generates drive pulses to form the scanning beams 1-3 of the linear array transducer, and also generates drive pulses to form the dedicated beam 33i of the single transducer; Occur.

マルチプレクサ43μマスクオツシレータ’kP[して
超音波診Fr装置全系のタイミングを取る制御部42に
て制御され、リニアアレイ撮動子1−1の振動子の組合
せt選択してy=ニアアレイ動子1−1+!走食させ、
単数振動子31の駆動パルスに制g41部41の発生パ
ルスの1〜単数伽勤子31に伝達する。
The multiplexer 43μ mask oscillator 'kP[is controlled by the control unit 42 which takes the timing of the entire system of the ultrasonic diagnosis Fr apparatus, selects the combination t of the transducers of the linear array sensor 1-1, and selects y=near array movement. Child 1-1+! Let them run,
The drive pulse of the single oscillator 31 is transmitted to the first to single oscillators 31 of the pulses generated by the control unit 41 .

単数振動子31は従来技術と異な9専用振動子となって
いるため、送信超音波の周波数をリニアプレイ振動子1
−1の周波数と同一にする必要になく、異なった周波数
を用いれば単数振動子31もリニアアレイ振動子1−1
も従来技術の如く繰返し周波数?l/2にする必要にな
い。
Since the single transducer 31 is a 9-dedicated transducer, which is different from the conventional technology, the frequency of the transmitted ultrasonic wave is changed to the linear play transducer 1.
It is not necessary to make the frequency the same as that of -1, but if a different frequency is used, the single oscillator 31 can also be used as the linear array oscillator 1-1.
Is the repetition frequency similar to the conventional technology? There is no need to set it to l/2.

リニアアレイ振動子1−1の受信信号は受信増幅器44
で増幅合成され指示部45に送られ、割り11部42か
らの同期信号によシ指示部45で掃引信号?作、QBモ
ード我示を行5o’l’数振動子31の受1g信号は該
信号がドプラ1百号の場合、ドグラ解析部47にてドプ
ラ解析を行う。計測者は専用ビーム33の方向が方向制
御部32のエンコーダからマーカ部48に送られ表示部
45のBモード表示上で該マーカ?計測せんとする血流
に方向制御部32i調節して設足し、また血流部位に合
わせてゲートイご号rドプラ解析部47に送ジ該部位の
ドプラ解析信号′に衣示することがで@ゐ0該ゲ一ト位
置は該マーカ上にドツトで吹示する。Mモード瑠幅部4
6は専用ビーム33でMモード計測金する場合を考照し
て設けであるQ 第3図に於て、50は本発明実施例のりエアアレイプロ
ーブ、60は超音波診断装置本体である。
The received signal of the linear array vibrator 1-1 is transmitted to the receiving amplifier 44.
The signal is amplified and combined and sent to the instruction section 45, and the synchronization signal from the dividing section 42 is converted into a sweep signal by the instruction section 45. When the received 1g signal of the 5o'l' number oscillator 31 is Doppler No. 100, the Doppler analysis section 47 performs Doppler analysis. The measurement person receives the direction of the dedicated beam 33 from the encoder of the direction control section 32 to the marker section 48, and checks the marker on the B mode display of the display section 45. The direction control unit 32i can be adjusted and installed in the blood flow to be measured, and the gate number can be sent to the Doppler analysis unit 47 according to the blood flow site and can be applied to the Doppler analysis signal of the site.ゐThe gate position is marked with a dot on the marker. M mode wide part 4
Reference numeral 6 is provided in consideration of the case where M mode measurement is performed using a dedicated beam 33. In FIG. 3, reference numeral 50 indicates a glue air array probe according to an embodiment of the present invention, and reference numeral 60 indicates an ultrasonic diagnostic apparatus main body.

リニアアレイプローブ50に於て、血流通計6+1振動
子に1組のフェーズドアレイ振動子51’に用械的駆動
全必要としないことはりニアアレイ振動子と同様である
が、形成された専用ビームがアレイ方向に対しIyr要
の角度金もって方向ヲ裏えられることが特徴で、開口照
面が例えば0.3■X1mの寸法を府し1簡の辺を隣接
して例えd:32個とか64個の数で連設しアレイを形
成し、超音波送信に当たっては全素子を同時に使用し、
′4素子の送イぎタイミングを相互にずらすことにより
専用ビームを矢印53の如く変えられるものである。
In the linear array probe 50, the blood flow meter 6+1 transducer and one set of phased array transducers 51' do not require any mechanical drive, which is similar to the linear array transducer, but the dedicated beam formed The feature is that the direction is reversed at an angle of Iyr with respect to the array direction, and the aperture illumination surface has dimensions of, for example, 0.3 mm x 1 m, and the side of one strip is adjacent to each other, for example, d: 32 or 64 pieces. A number of elements are connected in series to form an array, and all elements are used simultaneously for ultrasonic transmission.
By mutually shifting the sending timings of the four elements, the dedicated beam can be changed as shown by the arrow 53.

超音波診lfr装置本体60に於て、駆動遅延部62は
上述の7エーズドアレイ振動子51の各素子の送信タイ
ミングのすらし全作る回路である0送イd駆動部61で
発生する駆動パルスがマルチプレクサ64にて制御され
て+7 ニアアレイ振動子1−1?走査させ、リニアア
レイ振動子l−1の受領信号が受信増幅部65に入力し
表示部66にてBモード光示されることは第2図にて前
述した実施例と同様であるが、通流速度の計測を丁、b
場合は咳Bモード表示を観察して計測せんとする血流部
位によp駆動遅延部62の駆動パルス遅に廿を変量して
フェーズドアレイ振動子を駆動してWi足の角度に専用
ビーム52に一設定する。
In the ultrasonic diagnosis LFR device main body 60, a drive delay unit 62 controls the drive pulses generated by the 0-feed drive unit 61, which is a circuit that controls the transmission timing of each element of the 7 aided array transducer 51 described above. +7 Near array transducer 1-1 controlled by multiplexer 64? The reception signal of the linear array transducer l-1 is input to the reception amplification section 65 and displayed in the B mode on the display section 66, which is similar to the embodiment described above in FIG. Measuring the speed, b
In this case, observe the cough B mode display and change the drive pulse of the p drive delay unit 62 to be slow depending on the blood flow area to be measured, drive the phased array transducer, and set the dedicated beam 52 at the angle of Wi. Set to .

フェーズドアレイ振動子からの受(tf倍号は合成増幅
部67にて合成増幅され、その出力がドブン解折部69
に送られ、マーカ部で形成され1ζゲ一ト点でのドグ2
1ぎ号を出力して表示部66に表示される。Mモード1
逓号増幅都68は7二一ズドアレイ振動子ff1Mモー
ド計測に使用する場合の増幅部である。
The received (tf) signal from the phased array oscillator is synthesized and amplified in a synthesis amplification section 67, and its output is sent to a doubled decomposition section 69.
The dog 2 formed at the marker section and the 1ζ gate point
The first number is output and displayed on the display section 66. M mode 1
The signal amplification section 68 is an amplification section when used for 721ZD array transducer ff1M mode measurement.

第3図の場合も血流速¥F測智、用の7エーズドアレイ
振動子s12設けているので、該振動子51の送信超音
波周波数にリニアアレイ振動子の周波数と相異させて使
用することができ、その場合は第2図の場合と同様にリ
ニアアレイ振動子もフェーズドアレイ振動子も繰返し周
波献金1/2に減らさずに計測することができる。
In the case of Fig. 3, since the 7-aided array transducer s12 for blood flow velocity measurement is provided, the transmitting ultrasonic frequency of the transducer 51 should be set to be different from the frequency of the linear array transducer. In that case, as in the case of FIG. 2, both the linear array vibrator and the phased array vibrator can be measured without reducing the repetition frequency contribution to 1/2.

上述の如く不発明では血流計測は専用の振動子を用い、
試掘動子の超音波ビームがリニアアレイ振動子のアレイ
方向に対し斜めに指向しているため、第3図に示す如く
、例えば血管54ケ血液がアレイ方向にはソ並行して矢
印55の如く流れている場合でも血流計測専用のビーム
52(グ十分尚稍反に該血流のビーム52万同の分速【
0を側することができる。
As mentioned above, blood flow measurement uses a dedicated vibrator,
Since the ultrasonic beam of the trial excavation transducer is directed obliquely to the array direction of the linear array transducer, as shown in FIG. Even when the blood flow is flowing, the beam 52 dedicated to blood flow measurement (on the contrary, the beam speed of the blood flow is 520,000 times per minute).
You can side 0.

第2図及び第3図の説明にて血流速計測振動子の送信超
音波周波数とIJ ニアアレイ振動子の周波数に異る周
波数を用いて繰返し周波数を便米技術の如(1/2にし
ないこと盆運べたが、該方法により情@v!度を高くし
て最大流速検出限界を高めることができ、極めてM@1
手段である。
In the explanation of Fig. 2 and Fig. 3, using different frequencies for the transmission ultrasonic frequency of the blood flow rate measuring transducer and the frequency of the IJ near array transducer, the repetition frequency is changed as in the conventional technique (do not reduce it to 1/2). However, this method makes it possible to increase the flow rate and increase the maximum flow velocity detection limit, making it extremely
It is a means.

第2図及び第3図の説明にて、Mモード針側にも単数振
動子31やフェーズドアレイ振動子51t使用する例t
ポしたが、特に該振動子でMモード計測金しなければな
らぬ理由はない。場合によっては従来技術の如<リニア
アレイ像勤子の1つにMモード計測全分担させ、Bモー
ド、Mモード。
In the explanation of FIGS. 2 and 3, there is an example t in which a single oscillator 31 or a phased array oscillator 51t is used also on the M mode needle side.
However, there is no particular reason why M-mode measurements must be performed using this vibrator. In some cases, as in the prior art, one of the linear array image sensors is responsible for all of the M-mode measurement, and the B-mode and M-mode measurements are performed.

ドプラ計測で併行し各表示させることもできる。It is also possible to perform each display in parallel with Doppler measurement.

Ig) 発明の効果 本発明により、リニアアレイグローブ?I−使用する超
音波診断装置に於て、診断時に?tJJ頻涙に現われる
表皮にほぼ並行する血流の速鼓計軸を尚積度に行うこと
ができ、す!:際に即しt血流速計測の精度及び最大検
出限界の同上に極めて大きな効果がある。
Ig) Effects of the Invention The present invention provides a linear array globe. I- What about the ultrasound diagnostic equipment you use during diagnosis? It is possible to precisely measure the axis of blood flow that is almost parallel to the epidermis that appears in tJJ lacrimation. :Accurately, it has a very large effect on the accuracy of blood flow velocity measurement and the maximum detection limit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に従来のりニアアレイグローブケ使用する超音波
ビームり勿系統図にて示し、第2図に単数振動子を血流
速計測用振動子として別に設置したリニアアレイグロー
ブ’rR用する不発明の超音V診1I7r装置の実施例
を系統図にて示し、第3図にフェーズドアレイ振動子上
使用した不発明の実施例全系統図にて示す。 2図を通じ同一符号は同一対象物′ど示し、第1図に於
て1はリニアアレイプローブ、20iIi超音波診r!
lr装置不体、1−1はリニアプレイ振動子、1−7は
」流速計測を分担する振動子、5は振動子選択部、2は
送信駆動部、10はドグラフ)T折部、7は表示部であ
る。第2図に於て30はl/ ニアアレイグローブ、4
0は超廿波診pJ1銭は本体、31は単数振動子、47
はドグラ解Pr罷でろる0第3因に於て50はリニアア
レイグローブ、60は超音波診断装嫉不体、511″1
.7エーズドアレイ振動子、62は駆′f、dJ遅延部
、69はドプラ屏軒都である。
Figure 1 shows a system diagram of an ultrasonic beam system using a conventional linear array globe, and Figure 2 shows a system diagram of an ultrasonic beam system using a linear array globe using a single transducer as a transducer for measuring blood flow velocity. An embodiment of the ultrasonic V diagnosis 1I7r device of the invention is shown in a system diagram, and FIG. 3 shows a complete system diagram of the non-inventive embodiment used on a phased array transducer. The same reference numerals indicate the same objects throughout Figure 2, and in Figure 1, 1 is a linear array probe, 20iIi ultrasonic diagnostic r!
lr device body, 1-1 is a linear play transducer, 1-7 is a transducer that shares flow velocity measurement, 5 is a transducer selection section, 2 is a transmission drive section, 10 is a dograph) T-fold section, 7 is a This is the display section. In Figure 2, 30 is l/near array glove, 4
0 is ultrasonic diagnosis pJ1 coin is the main body, 31 is a single oscillator, 47
In the third cause, 50 is a linear array glove, 60 is an ultrasound diagnostic equipment, 511″1
.. 7 aided array vibrator, 62 is drive'f, dJ delay section, and 69 is Doppler Pingxuandu.

Claims (2)

【特許請求の範囲】[Claims] (1)アレイ葡形成する連設されfC複数の超音波振動
子(以下リニアアレイ振動子と略称するンが該連設方向
に直角に超音波ビーム全形成し、該超音波ビームが該連
設方向に順次移動して足fI]1r全形成し、該リニア
アレイ振動子に当接せる被検体全脂走査面にて断層走査
するy ニアアレイ形超音波グローブ(以下リニアアレ
イグローブと略称する)音使用する超音波#断装置に於
て、該リニアアレイグローブ内にリニアアレイ振動子の
連設方向の延長線上に単数の振動子(以下単数振動子と
略称する)全設置し、該単数振動子の超音波ビームがj
Jニアアレイ振動子が形成せる走査面内金自社に指向で
きかつ方向設定できるよう該リニアアレイグローブの外
部より電気的或は機械的な操作手段によシ該jllL数
振動子を1!2!動及び設定し、該回動機構に運動する
エンコーダにより単数振動子の超音波ビームのりニアア
レイ振動子が形成する走査面内での方向信号が形成され
て表示部に該方向が表示されることt%徴とする超音波
診rDr装置。
(1) A plurality of ultrasonic transducers (hereinafter abbreviated as linear array transducers) that are connected in series to form an array form an ultrasonic beam at right angles to the direction in which the ultrasonic beams are connected to the The foot is moved sequentially in the direction fI] 1r, and a tomographic scan is performed on the whole fat scanning surface of the subject that is brought into contact with the linear array transducer. In the ultrasonic cutting device used, a single transducer (hereinafter referred to as a single transducer) is all installed on an extension line in the direction in which the linear array transducers are connected in the linear array globe, and the single transducer is The ultrasonic beam of j
The JllL number oscillator is controlled by an electrical or mechanical operating means from the outside of the linear array globe so that the scanning plane formed by the JNear array oscillator can be oriented toward itself and the direction can be set. the direction signal is formed in the scanning plane formed by the linear array transducer of the ultrasonic beam of the single transducer, and the direction is displayed on the display section. Ultrasound diagnostic rDr device with % signs.
(2) アレイ全形成する連設された複数の超音波振動
子(以下リニアアレイ振動子と略称するンが該連設方向
に直角に超音波ビーム全形成し、該超音波ビームが該連
設方向に順次移動し゛C走査而面形成し、該リニアアレ
イ振動子に当J表せる被検体金腋定食面にて断層疋食丁
ゐリニアアレイ形超音波グローブ(以下リニアアレイグ
ローブと略称するン’t−t’用丁ゐ超音波診断装置に
於て、該リニアアレイグローブ内にリニアアレイ振動子
の連設方向の延長線上に1mの7エーズドアレイ振動子
を設置し、該7エーズドアレイ振動子による超音波ビー
ムがリニアアレイが形成せる走査Ifr円(1″目在に
指向できかつ万Iii]設定できるよう該7エーズドア
レイ振動子相互の超音波送信タイミングV遅延量rK量
設定し、該変、敞e足により該フェーズドアレイ振動子
のりニアアレイ振動fが形■すゐ走査面内での方向信号
が輩子回路で形成されて表示部に該方間のマークが表示
されることを%徴とする超音波診断装置。
(2) A plurality of connected ultrasonic transducers (hereinafter referred to as linear array transducers) that form an entire array form an ultrasonic beam at right angles to the connected direction, and the ultrasonic beams are A linear array type ultrasonic globe (hereinafter abbreviated as linear array globe) is moved sequentially in the C direction to form a scanning surface, and the linear array transducer is placed on the subject's armpit fixed surface, which can be represented by the linear array transducer. In the ultrasonic diagnostic equipment for t-t', a 7-aided array transducer of 1 m length is installed on the extension line of the linear array transducer in the direction in which the linear array transducers are connected, and the ultrasonic The ultrasonic wave transmission timing V delay amount rK between the seven aided array transducers is set so that the sonic beam can be directed to the scanning Ifr circle (1" mark) formed by the linear array, and the amount of delay rK is set. The linear array vibration f of the phased array transducer is shaped by the foot. A directional signal within the scanning plane is generated by the directional circuit, and a mark between the two directions is displayed on the display section. Diagnostic equipment.
JP15541083A 1983-08-25 1983-08-25 Ultrasonic diagnostic apparatus Pending JPS6048732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15541083A JPS6048732A (en) 1983-08-25 1983-08-25 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15541083A JPS6048732A (en) 1983-08-25 1983-08-25 Ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
JPS6048732A true JPS6048732A (en) 1985-03-16

Family

ID=15605373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15541083A Pending JPS6048732A (en) 1983-08-25 1983-08-25 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS6048732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622965A (en) * 1990-02-12 1994-02-01 Acuson Corp Acoustic scanning method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622965A (en) * 1990-02-12 1994-02-01 Acuson Corp Acoustic scanning method and apparatus

Similar Documents

Publication Publication Date Title
US4341120A (en) Ultrasonic volume measuring system
JPH0614932B2 (en) Ultrasonic diagnostic equipment
JPS6247537B2 (en)
JPS6131135A (en) Ultrasonic diagnostic apparatus
JPS61290942A (en) Ultrasonic tissue diagnostic apparatus
JPH0790026B2 (en) Ultrasonic diagnostic equipment
JPS6382633A (en) Ultrasonic diagnostic apparatus
JP3180958B2 (en) Ultrasound diagnostic equipment
JPS6048732A (en) Ultrasonic diagnostic apparatus
JPS5854940A (en) Composite ultrasonic diagnostic apparatus
JP2535050B2 (en) Ultrasonic therapy equipment
JPS624984B2 (en)
JPH11262489A (en) Ultrasonography and ultrasonograph
JPS6234537A (en) Ultrasonic doppler apparatus
JP2004305236A (en) Ultrasonograph
JPH0368694B2 (en)
JP2760558B2 (en) Ultrasound diagnostic equipment
JPS6244226A (en) Ultrasonic doppler apparatus
JPS6130643Y2 (en)
JPS63216548A (en) Ultrasonic diagnostic apparatus
JPS6331646A (en) Ultrasonic diagnostic apparatus
JPH0263441A (en) Ultrasonic wave feeler and ultrasonic wave diagnosis device
JPH11123194A (en) Ultrasonic diagnostic device
JPS62122639A (en) Ultrasonic diagnostic apparatus
JPS62112536A (en) Ultrasonic diagnostic apparatus