JPS6048729A - Cardiograph analytical apparatus - Google Patents

Cardiograph analytical apparatus

Info

Publication number
JPS6048729A
JPS6048729A JP58156588A JP15658883A JPS6048729A JP S6048729 A JPS6048729 A JP S6048729A JP 58156588 A JP58156588 A JP 58156588A JP 15658883 A JP15658883 A JP 15658883A JP S6048729 A JPS6048729 A JP S6048729A
Authority
JP
Japan
Prior art keywords
wave
waveform
amplifier
electrocardiogram
trigger point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58156588A
Other languages
Japanese (ja)
Other versions
JPH057016B2 (en
Inventor
徳夫 佐伯
豊継 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58156588A priority Critical patent/JPS6048729A/en
Publication of JPS6048729A publication Critical patent/JPS6048729A/en
Publication of JPH057016B2 publication Critical patent/JPH057016B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、心臓疾患の予知、治療に用いることができる
心電図解析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrocardiogram analysis device that can be used for predicting and treating heart diseases.

従来例の構成とその問題点 一般に心臓は生体ポンプとして、休むことなく収縮・拡
張という活動を続けている。これは心臓の機械的活動と
いわれるものであるが、実はこの機械的活動を引き起こ
す原因になる活動が心臓にあり、それが電気的活動とい
われるもので、この電気的な活動を心電計を使って記録
したものが、心電図の波形である。
Conventional configurations and their problems In general, the heart acts as a biological pump and continues to contract and expand without rest. This is called mechanical activity of the heart, but there is actually an activity in the heart that causes this mechanical activity, and this is called electrical activity, and this electrical activity can be detected using an electrocardiograph. What is recorded using this device is the electrocardiogram waveform.

心電図の波形は第1図に示すように、主にP波1、Q波
2.R波3.S波4.T波5に分けら汎る。捷ずP波1
は、第2図に示すように、洞結節6に始まった興奮的刺
檄が心房内伝導線維7を通って房室結節8捷で伝わって
いく心房の興奮過程を表わしている。QR9波群はQ波
2.R波3゜S波4の3つの波を合わせて呼んだもので
、こ九らは興奮が房室結節8を通や、心室上部にあるヒ
ス束9を伝わって左脚後方線1oが丑ず分岐し、さらに
左脚前方線11と右脚前方線12に分かれて、プルキニ
エ線維13となって心内膜の表面を走り、心室筋14全
体に広がってゆくもので、心臓の興奮過程の終了までを
表わしている。すなわち、Q波2は心室中隔の興奮過程
を、R波3は心室筋の興奮過佐を、S波4は電極の位置
から見て反対側の心室筋の興奮過程を表わしている。つ
捷り、QR3波群といつのは心室中隔と左右心室筋の興
奮過程を表しているものである。そして心室の収縮活動
は、このQR3波群として表われる電気的刺激が通った
後で行われる。そしてまた心室筋14の回復過程がT波
5として表わ几でくる。
As shown in Figure 1, the electrocardiogram waveform mainly consists of P wave 1, Q wave 2, and so on. R wave 3. S wave 4. It is divided into 5 T waves. Switchless P wave 1
As shown in FIG. 2, this represents the atrial excitatory process in which an excitatory stimulation that begins at the sinus node 6 is transmitted through the atrioventricular node 8 through the intra-atrial conduction fibers 7. The QR9 wave group is Q wave 2. It is a combination of three waves: R wave 3° and S wave 4. Excitation in these waves passes through the atrioventricular node 8, the His bundle 9 in the upper part of the ventricle, and the left leg posterior line 1o. The fibers branch into the left anterior peduncle line 11 and the right anterior peduncle line 12, become Purkinje fibers 13, run on the surface of the endocardium, and spread throughout the ventricular muscle 14, and play a role in the excitatory process of the heart. It shows until the end. That is, the Q wave 2 represents the excitation process of the ventricular septum, the R wave 3 represents the overexcitation of the ventricular muscle, and the S wave 4 represents the excitation process of the ventricular muscle on the opposite side as viewed from the electrode position. The 3-wave group, QR3 wave group, and 3 waves represent the excitation process of the ventricular septum and left and right ventricular muscles. The contractile activity of the ventricle occurs after this electrical stimulation, which appears as the QR3 wave group, passes. Then, the recovery process of the ventricular muscle 14 is expressed as a T wave 5.

また心電南波形の発生の原理ラミクロ的に見ると、歩調
とり細胞の集1りである洞結節6の興1πはそれぞれ伝
達経路の細胞の細胞内電位の変化(活動電位の発生)が
生じ、人体表面に置かれた電位はその値の約1000分
の1に減衰して観測さルる。心電計に現われる波形は、
心臓内での興奮の伝達経路上の細胞の活動をベクトル的
に表示したものともいえる。
Also, from a lamicroscopic perspective, the principle behind the generation of the electrocardiogram south waveform is that the 1π of the sinus node 6, which is a collection of pacing cells, is caused by changes in the intracellular potential of cells in the transmission path (generation of action potentials). , the potential placed on the surface of the human body is observed to be attenuated to about 1/1000 of its value. The waveform that appears on the electrocardiograph is
It can also be said to be a vector representation of the activities of cells on the excitation transmission path within the heart.

例えば、簡単に説明するため、1本の伝達経路のみ仮想
して考えて見ると、第3図のように房室結節8からプル
キニエ線維13、心室筋14への伝達において、そ扛ぞ
れを構成する細胞内の活動電位は少しずつ違っているも
ので、すなわち第4図aは房室結節、第4図すはヒス束
、第4図Cは右脚、第4図dはグルキニエ線維、第4図
eは心室筋の活動電位を示し、これらは少しずつ違って
いる。仮に伝達経路上のA、B、C,D、E、F“点の
細胞内電位を、時間軸上に見ると、第6図のようになり
、人体表面の電極には、第6図のように、約100分の
1に減衰され、かつ電圧軸が各時間軸の細胞内電位の積
分した値として表われる。
For example, to simplify the explanation, if we hypothetically consider only one transmission path, as shown in Figure 3, in the transmission from the atrioventricular node 8 to the Purkinje fibers 13 and the ventricular muscle 14, The action potentials in the constituent cells are slightly different; Figure 4a shows the atrioventricular node, Figure 4 shows the bundle of His, Figure 4C shows the right leg, and Figure 4d shows the Glukinje fiber. Figure 4e shows the action potentials of the ventricular muscle, and these are slightly different. If we look at the intracellular potentials at points A, B, C, D, E, and F on the transmission path on the time axis, they become as shown in Figure 6. As shown in FIG.

実際には、房室結節8から心室筋14まで多くの細胞が
あり、興奮の伝達において、細胞内電位の人体表面での
観測波形は第7図のように心電図のQR8波群として表
われると考えら汎る。
In reality, there are many cells from the atrioventricular node 8 to the ventricular muscle 14, and in the transmission of excitement, the observed waveform of the intracellular potential on the human body surface appears as the QR8 wave group of the electrocardiogram, as shown in Figure 7. My thoughts spread.

もしも、上記興奮の伝達経路において、疾患があり、細
胞の活動電位が正常てなけ才′シば、QR3波は第8図
のように、波形に凹部ができ、正常な波形とは異ってく
る。
If there is a disease in the above-mentioned excitement transmission pathway and the cell action potential is not normal, the QR3 wave will have a concave waveform as shown in Figure 8, and will differ from the normal waveform. come.

従来の心電計では主にペン書き記録計で記録しているが
、紙の材質やペンの機械的動作など限界があり、通常1
00Hzぐらいの波形しか追従性がなく、したがって波
形の変化が見に<<、また電磁オシログラフぜ使用して
も2〜3kHzの波形しか追従性がなく、興奮の伝達経
路における疾患の発見できる大きさは約30〜40Mの
大きな部位しか発見できず、そのため、心臓疾患の発見
が遅れ、死亡率が下げられないという問題があった。
Conventional electrocardiographs mainly record with a pen recorder, but there are limitations such as the material of the paper and the mechanical movement of the pen, so it is usually
It is only possible to follow a waveform of about 00 Hz, so it is difficult to see changes in the waveform, and even if an electromagnetic oscilloscope is used, it is only able to follow a waveform of 2 to 3 kHz, making it difficult to detect diseases in the excitement transmission path. Only large areas of about 30 to 40 meters in diameter could be detected, which caused a delay in the detection of heart disease and an inability to lower mortality rates.

発明の目的 本発明は上記従来の問題点を除去するためになさ扛たも
ので、従来発見できなかった心臓の活動の源の電気的刺
激(興■)の伝達経路上での疾患部の発見能力をより高
め、かつ疾患部位の位置まで推定できる心電図解析装置
を提供することを目的とするものである。
Purpose of the Invention The present invention has been made to eliminate the above-mentioned conventional problems, and it is possible to discover a diseased area on the transmission path of electrical stimulation (stimulation) of the source of cardiac activity, which could not be discovered in the past. It is an object of the present invention to provide an electrocardiogram analysis device that has improved performance and is capable of estimating the location of diseased areas.

発明の構成 上記目的を達成するために本発明は、人体表面に取付け
た電極より得たアナログ微小生体信号を増幅する増幅器
と、この増幅器により増幅されたアナログ信号をディジ
タル信号に′変換するA/D変換器と、前記増幅器によ
り増幅さnたアナログ信号をもってトリガー点を作り、
このトリガー点を基準に、トリガー点以前およびトリガ
ー点以降のディジタル信号を外部記憶部に記憶するCP
Uと、前記外部記憶部に記憶さnた時間分すべて捷たは
一部の時間分のディジタル信号−1cPUで処理して表
示するCRTディスプレイとを備えたもので、この構成
によれば、前記A/D変換器の変換スピード、いわゆる
サンプリングタイムを非常に遅くすることにより、心電
図のQR3波部に相当する波形を、心電図の時間軸、電
圧軸とも細かく分解することができるため、心電図の倣
細な変化を極めて容易に、かつ正確に観察することがで
きるものである。また一度取り込んだ波形は外部記憶部
に記憶するようにしているため、一度記憶した波形は、
必要に応じて何度もCRTディスプレイ上に表示するこ
とができ、しかも任意の区間であっても必要に応じて表
示することができるため、全体または部分の拡大もでき
るようになり、その結果、従来の心電計では観測できな
かった微細な波形の変化も観測できるため、心臓疾患の
予知と治療に大きく役立つものである。
Structure of the Invention In order to achieve the above object, the present invention includes an amplifier that amplifies analog minute biological signals obtained from electrodes attached to the surface of the human body, and an amplifier that converts the analog signal amplified by the amplifier into a digital signal. Creating a trigger point using a D converter and an analog signal amplified by the amplifier,
A CP that stores digital signals before and after the trigger point in an external storage unit based on this trigger point.
and a CRT display that processes and displays the digital signal for all or part of the n time stored in the external storage unit by -1cPU. According to this configuration, the By making the conversion speed of the A/D converter, so-called sampling time, very slow, the waveform corresponding to the QR3 wave part of the electrocardiogram can be broken down into small pieces on both the time and voltage axes of the electrocardiogram, making it possible to imitate the electrocardiogram. This makes it possible to observe minute changes extremely easily and accurately. Also, once the waveform is captured, it is stored in the external storage, so once the waveform is stored,
It can be displayed on the CRT display as many times as necessary, and even arbitrary sections can be displayed as necessary, making it possible to enlarge the whole or parts, and as a result, It can also observe minute changes in waveforms that cannot be observed with conventional electrocardiographs, making it extremely useful for predicting and treating heart disease.

実施例の説明 以下、本発明の一実施例を添付図面にもとづいて説明す
る工 第9図は本発明の一実施例における心電図解析装置のブ
ロック図を示したもので、21は人体で、この人体21
の四肢、すなわち両手2両足に各1本ずつ計4本、胸部
に6本の電極22を固定し、誘導選択器23により、6
つの四肢誘導捷たは6つの胸部誘導のうち一つを選択す
る。この場合、人体21から誘導された生体信号は微少
であり、約1mV前後しかないため、増幅器24でその
生体信号を増幅する。これらを行うのが生体増幅部24
である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. Fig. 9 shows a block diagram of an electrocardiogram analyzer according to an embodiment of the present invention, where 21 is a human body; human body 21
A total of four electrodes 22 are fixed on the limbs of the person, one each on both hands and feet, and six electrodes 22 are fixed on the chest.
Select one of the four limb leads or the six chest leads. In this case, since the biosignal induced from the human body 21 is very small and only about 1 mV, the biosignal is amplified by the amplifier 24. The biological amplification unit 24 performs these operations.
It is.

そして前記増幅された信号はアナログ信号であり、こg
lcPU処理するため、A/D変換器25でディジタル
信号に変換する。一方、記憶スタートスイッチ分押すと
、増幅された信号が予め設定した1、 +7ガー電圧と
電圧比較器26でもって比較され、トリガー点を検出す
る。また外部記憶部27には一定時間(0,1〜0.4
秒間)分の容量をもたせ、かつ記憶スタート信号が入る
捷で外部記憶部27には常時時系列的にシフトして記憶
させている。
The amplified signal is an analog signal, and the amplified signal is an analog signal.
For lcPU processing, the A/D converter 25 converts it into a digital signal. On the other hand, when the memory start switch is pressed, the amplified signal is compared with the preset 1, +7 ga voltage by the voltage comparator 26, and the trigger point is detected. In addition, the external storage unit 27 stores data for a certain period of time (0.1 to 0.4).
The data is stored in the external storage section 27 in a chronologically shifted manner at all times when a storage start signal is input.

この状態で、前述した記憶スタートスイッチを押すと、
トリガー点を検出した後、遅延装置28により予め決め
た時間経過後、ディジタル信号の取り込みをやめる。遅
遅延装置28の遅延時間を、外部記憶部27の容量で決
才る記憶時間より短くすることにより、トリガー点以前
のディジタル信号も記憶されることになる。
In this state, if you press the memory start switch mentioned above,
After the trigger point is detected, the delay device 28 stops capturing the digital signal after a predetermined period of time has elapsed. By making the delay time of the delay device 28 shorter than the storage time determined by the capacity of the external storage section 27, digital signals before the trigger point can also be stored.

そして記憶さ扛た心電図の波形を観測する時には、外部
記憶部27のディジタル信号−q CP U29で呼び
出し、かつアナログ信号に変換して、CRTディスプレ
イ3o上に時間軸と電圧軸の二次元図形として表示する
。捷た外部記憶部27の任意の点または区間を取り出し
、拡大観察することもできるようになる。
When observing the stored electrocardiogram waveform, the CPU 29 reads out the digital signal from the external storage section 27, converts it into an analog signal, and displays it on the CRT display 3o as a two-dimensional figure with a time axis and a voltage axis. indicate. It is also possible to take out any point or section of the shredded external storage section 27 and observe it under magnification.

前記アナログ信号をディジタル信号に変換するA/D変
換器25の変換スピード、いわゆるサンプリングタイム
を例えば20μ露にすることにより、心電図のQR3波
部に相当する約Q、1Sec分の波形を時間軸上で50
00点に分解変換することができる。−1たA/D変換
器25の電圧軸への分解を例えば2進の12ビツトで分
解することにより、QR3波部の最大電圧は約1.○〜
1.1mVであるから、最大変換電圧”t 1.5mV
 とすると0.37μVの分解能を持つことになる。
By setting the conversion speed, so-called sampling time, of the A/D converter 25 that converts the analog signal to a digital signal to, for example, 20μ, a waveform of approximately Q, 1 sec, which corresponds to the QR3 wave portion of an electrocardiogram, is generated on the time axis. and 50
It can be decomposed and converted into 00 points. By decomposing the voltage axis of the A/D converter 25 into, for example, 12 binary bits, the maximum voltage of the QR3 wave portion is approximately 1. ○~
Since it is 1.1mV, the maximum conversion voltage "t" is 1.5mV
Therefore, it has a resolution of 0.37 μV.

このように本発明の一実施例においては、心電図のQR
3波部を時間軸上で5000点(20μ露間隔)に分解
変換することができるとともに、電圧軸」二で0,37
μ■の分解能で観察することができるため、従来の心電
計では発見できなかった波形の微細な変化を観察可能に
したものである。
In this way, in one embodiment of the present invention, the electrocardiogram QR
It is possible to decompose and convert the 3-wave part into 5000 points (20μ dew interval) on the time axis, and also to convert the 3-wave part into 5000 points (20μ dew interval) on the voltage axis.
Since it can be observed with a resolution of μ■, it is possible to observe minute changes in waveforms that could not be detected with conventional electrocardiographs.

発明の効果 以上のように本発明によ几ば、人体表面に取付けた電極
より得たアナログ微小生体信号を増幅する増幅器←汗台
会噌巷器により増幅さ汎たアナログ信号をディジタル信
号に変換するA/D変換器の変換スピード、いわゆるサ
ンプリングタイムを非常に遅くすることにより、心電図
のCJR3波部に相当する波形を、心電図の時間軸、電
圧軸とも細かく分解することができるため、心電図の微
細な変化を極めて容易に、かつ正確に観察することがで
きる。また一度取り込んだ波形は外部記憶部に記憶する
ようにしているため、一度記憶した波形は、必要に応じ
て何度もCRTディスプレイ上に表示することができ、
しかも任意の区間であっても必要に応じて表示すること
ができるため、全体または部分の拡大もできるようにな
り、その結果、従来の心電計では観測できなかった微細
な波形の変化も観測できるため、心臓疾患の予知と治療
に大きく役立つものである。
Effects of the Invention As described above, according to the present invention, an amplifier that amplifies analog minute biological signals obtained from electrodes attached to the surface of the human body ← converts the analog signal amplified by the sweat device into a digital signal. By making the conversion speed of the A/D converter, the so-called sampling time, very slow, the waveform corresponding to the CJR3 wave part of the electrocardiogram can be finely decomposed in both the time and voltage axes of the electrocardiogram. Minute changes can be observed extremely easily and accurately. In addition, since the waveform once captured is stored in the external storage unit, the waveform once stored can be displayed on the CRT display as many times as necessary.
Moreover, since any section can be displayed as needed, it is now possible to enlarge the whole or a portion, and as a result, minute changes in waveforms that cannot be observed with conventional electrocardiographs can also be observed. This makes it extremely useful for predicting and treating heart disease.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の心電波形図、第2図は心臓の垂直断面お
よび電気刺激伝達経路の模型図、第3図は心臓の心室中
隔と右心室の断面および′電気刺激伝達経路の模型図、
第4図a、b、c、d、eは電気刺激伝達経路各点の細
胞内電位の波形図、第5図は電気刺激伝達経路上の細胞
内電位の時間軸と電圧軸の重iつ合わせ波形図、第6図
は人体表面上で観測さnる電位の波形図、第7図は人体
表面上で観測されるQR3波の波形図、第8図は心臓疾
患の人体表面上で観測さnるQR3波の波形図、第第9
図は本発明の一実施例を示す心電図解析装置のブロック
図である。 22 ・・・・電極、24・・・・・増幅器、25 ・
・・A/D変換器、26・・・・電圧比較器、27・・
・・・ダ部記憶部、29 ・・・CPU、30・・・・
・CRTディスプレイ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1図 第2図 第3図 ((27lb〕 Ic) /dノ 第 5 図 第 7 図 第8図
Figure 1 is a conventional electrocardiogram waveform diagram, Figure 2 is a vertical cross section of the heart and a model of the electrical impulse transmission path, and Figure 3 is a cross section of the interventricular septum and right ventricle of the heart and a model of the electrical impulse transmission path. figure,
Figure 4 a, b, c, d, and e are waveform diagrams of the intracellular potential at each point on the electrical stimulation transmission path, and Figure 5 shows the overlap of the time axis and voltage axis of the intracellular potential on the electrical stimulation transmission path. Combined waveform diagram, Figure 6 is a waveform diagram of potential n observed on the human body surface, Figure 7 is a waveform diagram of the QR3 wave observed on the human body surface, and Figure 8 is observed on the human body surface with heart disease. Waveform diagram of the third QR wave, No. 9
The figure is a block diagram of an electrocardiogram analysis device showing one embodiment of the present invention. 22... Electrode, 24... Amplifier, 25 ・
...A/D converter, 26...Voltage comparator, 27...
...Data storage section, 29 ...CPU, 30...
・CRT display. Name of agent: Patent attorney Toshio Nakao and 1 other person Figure 2 Figure 3 ((27lb) Ic) /d Figure 5 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 人体表面に取付けた電極より得たアナログ微小生体信号
を増幅する増幅器と、この増幅器により増幅されたアナ
ログ信号をディジタル信号に変換するA/D変換器と、
前記増幅器により増幅されたアナログ信号をもってトリ
ガー点を作り、このトリガー点を基準に、トリガー点以
前およびトリガー点以降のカシタル信号を外部記憶部に
記憶するCPUと、前記外部記憶部に記憶さnfc時間
分すべて甘たけ一部の時間分のディジタル信号をCP、
Uで処理して表示するCRTディスプレイとを備えた心
電図解析装置。
an amplifier that amplifies analog minute biological signals obtained from electrodes attached to the surface of the human body; and an A/D converter that converts the analog signals amplified by the amplifier into digital signals;
A CPU that creates a trigger point using the analog signal amplified by the amplifier, and stores in an external storage unit the cathode signals before and after the trigger point based on this trigger point; and a CPU that stores the NFC time stored in the external storage unit. The digital signal for a part of the time is CP,
An electrocardiogram analysis device equipped with a CRT display that processes and displays data using U.
JP58156588A 1983-08-26 1983-08-26 Cardiograph analytical apparatus Granted JPS6048729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58156588A JPS6048729A (en) 1983-08-26 1983-08-26 Cardiograph analytical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58156588A JPS6048729A (en) 1983-08-26 1983-08-26 Cardiograph analytical apparatus

Publications (2)

Publication Number Publication Date
JPS6048729A true JPS6048729A (en) 1985-03-16
JPH057016B2 JPH057016B2 (en) 1993-01-27

Family

ID=15631044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58156588A Granted JPS6048729A (en) 1983-08-26 1983-08-26 Cardiograph analytical apparatus

Country Status (1)

Country Link
JP (1) JPS6048729A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684092U (en) * 1993-05-20 1994-12-02 三桜工業株式会社 Cylindrical array collecting piping device
US5969873A (en) * 1994-05-19 1999-10-19 Canon Kabushiki Kaisha Eyepiece lens with image located in space between first and second lens units

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325198A (en) * 1976-07-28 1978-03-08 Dainippon Printing Co Ltd Laminated member
JPS5641412U (en) * 1979-09-06 1981-04-16
JPS5795107U (en) * 1981-11-12 1982-06-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325198A (en) * 1976-07-28 1978-03-08 Dainippon Printing Co Ltd Laminated member
JPS5641412U (en) * 1979-09-06 1981-04-16
JPS5795107U (en) * 1981-11-12 1982-06-11

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684092U (en) * 1993-05-20 1994-12-02 三桜工業株式会社 Cylindrical array collecting piping device
US5969873A (en) * 1994-05-19 1999-10-19 Canon Kabushiki Kaisha Eyepiece lens with image located in space between first and second lens units
US5973847A (en) * 1994-05-19 1999-10-26 Canon Kabushiki Kaisha Eyepiece lens
US6008949A (en) * 1994-05-19 1999-12-28 Canon Kabushiki Kaisha Eyepiece lens

Also Published As

Publication number Publication date
JPH057016B2 (en) 1993-01-27

Similar Documents

Publication Publication Date Title
Prineas et al. The Minnesota code manual of electrocardiographic findings
Dupre et al. Basic ECG theory, recordings, and interpretation
US9681815B2 (en) Reconstruction of a surface electrocardiogram from an endocardial electrogram using non-linear filtering
Watanabe et al. A practical microcomputer-based mapping system for body surface, precordium, and epicardium
Tueche et al. Embedded algorithm for QRS detection based on signal shape
Vieau et al. Basic ECG theory, 12-lead recordings, and their interpretation
Vincent et al. Noninvasive recording of electrical activity in the PR segment in man.
JPH0515455B2 (en)
US5913828A (en) Method and apparatus for distinguishing pacing pulses in an EKG using conduction velocity calculations
Sharma et al. Movement control of robot in real time using EMG signal
JPS6048729A (en) Cardiograph analytical apparatus
Berbari et al. A computerized technique to record new components of the electrocardiogram
Geselowitz et al. Electrocardiography
Briginets et al. Development of a mobile heart monitor based on the ECG module AD8232
Jemilehin et al. Design and Simulation of Electrocardiogram Circuit with Automatic Analysis of ECG Signal.
JPH10127626A (en) Ekg data display device
Lezhnina et al. The experience of using the personal electrocardiograph “ECG-Express”
Feezor et al. A real-time waveform analyzer for detection of ventricular premature beats.
de Meireles ECG denoising based on adaptive signal processing technique
Mayapur Detection and classification of heart defects
Bhattarai et al. IoT Based ECG Using AD8232 and ESP32
Mengko et al. Design and implementation of 12 Lead ECG signals interpretation system
Dupre et al. Basic ECG theory, 12-lead recordings and their interpretation
Bhattarai et al. Design and Implementation of a Portable ECG Device
Barrett Biopotentials