JPS604850A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS604850A
JPS604850A JP58111951A JP11195183A JPS604850A JP S604850 A JPS604850 A JP S604850A JP 58111951 A JP58111951 A JP 58111951A JP 11195183 A JP11195183 A JP 11195183A JP S604850 A JPS604850 A JP S604850A
Authority
JP
Japan
Prior art keywords
oxygen
cell
electrodes
solid electrolyte
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58111951A
Other languages
Japanese (ja)
Other versions
JPH0311662B2 (en
Inventor
Tetsumasa Yamada
哲正 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP58111951A priority Critical patent/JPS604850A/en
Publication of JPS604850A publication Critical patent/JPS604850A/en
Publication of JPH0311662B2 publication Critical patent/JPH0311662B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To realize the proper control of an air-fuel ratio A/F by obtaining stable current output in combustion gas of which the flow rate is remarkably varied, by arranging the hot junction of a thermocouple in the vicinity of the outer surface electrode of a plate shaped solid electrolyte for conducting the detection of an oxygen concn. while compensating the influence of gas flow by the output of the hot junction. CONSTITUTION:An oxygen concn. detecting cell (detection cell)1 and an oxygen pumping-up cell (pump cell) 2 are arranged in opposed relationship so as to leave a gap or a cavity part between the inner sides of electrodes P formed to both surfaces of each of the cells 1, 2 by a spacer 3 while the hot junction 7 of a chromelalumel (CA) thermocouple is positioned at the center of the outer surface of the detection cell 1 to be fixed thereto by a heat resistant adhesive and connected to the detection cell 1 in series to regulate the pumping-up current Ip of the pump cell 2 so as to set the total voltage of the electromotive force E of CA and the electromotive force V of the detection cell 1 to a certain constant value. By this method, the influence of the flow rate of combustion exhaust gas can be compensated.

Description

【発明の詳細な説明】 (技術分野) 一般にガス雰囲気、とくに自動車排気ガス中の酸素a1
度を測定するlこめに、酸素イオン導電性固体電解質を
利用した、固体電気化学装置が種々に開発され、内燃機
関の空燃比制御に実用されつつあるが、そのうち内燃機
関の負荷特性、すなわち高速走行のような高回転運転と
例えばアイドリーフグ中におけるが如ぎ低回転運転との
間にJ3ける負荷のちがいの如きに依存して該装置の出
力が影響されることについての解決に関し、以下この明
細書に述べる技術内容は、負荷変動の影響の甚しい内燃
機関などの燃わ1制御にと(に好適な酸素センサに関連
している。
Detailed Description of the Invention (Technical Field) Oxygen a1 in gas atmosphere in general, especially in automobile exhaust gas
Various solid-state electrochemical devices using oxygen ion conductive solid electrolytes have been developed to measure the air-fuel ratio of internal combustion engines. Regarding the solution to the problem that the output of the device is affected depending on the load difference between high-speed operation such as driving and low-speed operation such as during idle fishing, this specification will be described below. The technical content described in this book is related to an oxygen sensor suitable for combustion control in internal combustion engines, etc., which are severely affected by load fluctuations.

(従来技術) 在来の酸素センサは、たとえばλセンサのように、λ点
付近のみにおける作動を専ら利用するに止り、また2点
よりも更にリーン側における出力の補正としては次式 なるネルンストの式にd′3いて示される温度TにJ、
る影響の補償にとどまる。例えば特開DB 53−12
9091に見られるように、Zr 02系固体電解貿の
化学組成としてとくに電子伝導性成分であるFeze3
を添加づることにより、上記温度依存性の軽減を企てる
ことが知られ−Cいる。しかし乍らこの種の出力補正は
上記ネルンストの式で示される温度1−の出力に対する
影響を除去ぽんとするものにすさ″ず、出力が被測定ガ
ス即ち排ガスの流動の影響を受け易い構造の酸素センサ
に対するかかるガス流動の影響補償には本来関与しえな
い。
(Prior art) Conventional oxygen sensors, for example, λ sensors, only utilize the operation near the λ point, and the correction of the output on the leaner side than the 2 points is based on the Nernst's equation shown below. At the temperature T shown by d'3 in the equation, J,
This is limited to compensation for the impact of For example, JP-A DB 53-12
As seen in 9091, the chemical composition of the Zr02 solid electrolyte contains Feze3, which is an electronically conductive component.
It is known to attempt to reduce the temperature dependence by adding -C. However, this type of output correction cannot easily eliminate the effect of temperature 1- on the output shown by the above Nernst equation, and it is difficult to eliminate the influence of temperature 1- on the output as shown by the above Nernst equation. It is essentially not possible to compensate for the influence of such gas flow on the oxygen sensor.

内燃機関は稼動回転域が例えば、アイドリンク時のごと
き毎分数百回転から、高速走行域にお()る毎分数千回
転に至るように広範にわたり、かような回転数ど負荷と
に従う機関d:力に応じて、排気ガス流速が、甚しく変
動し、その結果外界のガス流動の影響をうけ易い酸素セ
ンサにとって空燃比A/Fの制御に用いるためのその電
流出力が、上記の排気ガス流速の変化刃なわら機関出力
の変化に、かなり影響される不利があった。この点につ
いて従来技術の概要を述ぺるど次のとおりである。
Internal combustion engines have a wide range of operating speeds, from several hundred revolutions per minute during idling to several thousand revolutions per minute at high speeds, and the speed depends on the load. Engine d: The exhaust gas flow rate fluctuates significantly depending on the force, and as a result, the current output for use in controlling the air-fuel ratio A/F for the oxygen sensor, which is easily influenced by the gas flow in the outside world, is It had the disadvantage of being significantly affected by changes in engine output due to changes in exhaust gas flow velocity. An overview of the prior art in this regard is as follows.

ざて第1図<a)、(b)、(C)に、酸素濃度検出用
セル(以下単に検出セルと呼ぶ)1と、酸素汲出しセル
(同様にポンプセルと略す)2どを、それらの両面に形
成した電極Pのうち内側同志をギャップないしは空洞部
を隔ててスペーサー3ににり対向させる型式の酸素セン
サの要部構成と、この酸素センサを燃焼ガス雰囲気中に
配置したとき、検出ヒル1に発生する超電力Vの電圧部
計による読みが、例えば通常20+n Vとなるべき、
ポンプセル2の電源5の電流の可変抵抗6による、酸素
汲出し電流の制御の下に該電流出力1pの、機関出力の
影響と、同様な設定における電流出力1 oの、一定ガ
ス流最下のガス温度の影響どを示した。
Figure 1 <a), (b), and (C) show an oxygen concentration detection cell (hereinafter simply referred to as a detection cell) 1, an oxygen pumping cell (also abbreviated as a pump cell) 2, etc. The main structure of an oxygen sensor is such that the inner electrodes P formed on both sides of the electrode P face each other across a spacer 3 with a gap or cavity in between, and when this oxygen sensor is placed in a combustion gas atmosphere, the detection The superpower V generated in Hill 1 should normally be read by a voltage meter, for example, 20+n V.
Under the control of the oxygen pumping current by a variable resistor 6 of the current of the power supply 5 of the pump cell 2, the current output 1p, under the influence of the engine power and the current output 1o in a similar setting, a constant gas flow bottom. The effect of gas temperature was shown.

本来この種の酸素センサによるこの種の測定方法では、
検出セルとポンプセルとを別個にかつ互いに離隔させて
設けであるので、センサの電流出力の温度依存性が補償
される構成となっていて、第1図(b)の温度依存性を
調べた実験結采が示すように温度そのものの依存性は極
めて小さいのであるが、第1図(C)にて、機関の高速
回転による車両の高速走行、従って高い機関出力下に高
温高速の燃焼ガス流速条!I[でのlp特性をα曲線で
示し、これに対しアイドリングのような機関の低速回転
でのイルいJ!pA出力のV;に、比較的低温低速の燃
焼ガス流速条件におけるIp特性をβ曲線C対比したよ
うに、検出セル1と、ポンプセル2との間のギャップへ
の本来好まない雰囲気燃焼ガスの流入の量が機関出力に
依存して変動する排ガスの流動の変動に由来して、上記
電流出力I 13で代表すべきA / Fの値に誤差を
含む(矢印γ参照)のを、避は得なかったのである。
Originally, in this type of measurement method using this type of oxygen sensor,
Since the detection cell and the pump cell are provided separately and separated from each other, the temperature dependence of the current output of the sensor is compensated for. As shown in Figure 1 (C), the dependence on temperature itself is extremely small. ! The lp characteristic at I[ is shown by the α curve, whereas the lp characteristic at low engine speed such as idling is shown by the α curve. As shown in the comparison of Ip characteristics under relatively low temperature and low combustion gas flow velocity conditions with β curve C, the inflow of combustion gas into the gap between detection cell 1 and pump cell 2, which is originally unfavorable, It is unavoidable to avoid including errors in the A/F value that should be represented by the current output I13 (see arrow γ) due to fluctuations in the flow of exhaust gas whose amount varies depending on the engine output. There wasn't.

(発明の目的) 上記した出力電流I11の、いわば燃焼ガス流速依存性
を、有効に排除すること、換言すれば、4とくに内燃機
関のように稼動回転数域が広範にわたり、負荷の如何で
排カスの、とくに流速の変動が著しいような、燃焼ガス
雰囲気中で、安定な電流出力を適確−に得ることができ
る酸素センサを提案し、もってより適切な空燃比A/F
制御を実現することが、この発明の目的である。
(Objective of the invention) To effectively eliminate the so-called combustion gas flow rate dependence of the output current I11 described above, in other words, to effectively eliminate the dependence of the output current I11 on the combustion gas flow rate. We propose an oxygen sensor that can accurately obtain a stable current output in a combustion gas atmosphere where the flow rate of dregs fluctuates significantly, thereby improving the air-fuel ratio A/F.
It is an object of this invention to realize control.

(発明の構成) 上記の目的はこの発明に従い、次の事項を骨子とする仕
組みにて有利に成就される。
(Structure of the Invention) According to the present invention, the above object is advantageously achieved by a mechanism that has the following points as its main points.

酸県淵度検出と、酸素汲出しとに、それそり供する一対
の板状固体電解質を、燃焼ガス雰囲気と連通ずるギャッ
プないしは空洞部を隔てて、各板状固体電解質の内、外
崗部に形成した電極の内側にて互いに向い合わせに固定
するとともに、酸素13度検出を司る板状固体電解質の
外面電極の近傍に熱電対の熱接点を配置し、該同体電解
質の内、外電極間および熱雷対に生起される各起電力の
和を検出づる結線と酸素汲出しを司る板状固体電解質の
内、外電極間にて酸素汲出し電流を導通させる結線とを
そなえる、酸素センサ−0 この酸素センサは、各電極のうち少くともギャップない
し空洞部に面づる電極が酸素の拡散抵抗性を呈Jる、多
孔質耐熱金属を含んだ多孔質層よりなるか、または多孔
買耐火拐斜による多孔質被覆をそなえることが実施態様
として推奨される。
A pair of plate-shaped solid electrolytes used for acid depth detection and oxygen pumping are placed in the inner and outer parts of each plate-shaped solid electrolyte, separated by a gap or cavity that communicates with the combustion gas atmosphere. The formed electrodes are fixed facing each other on the inside, and the hot junction of the thermocouple is arranged near the outer surface electrode of the plate-shaped solid electrolyte that controls oxygen 13 degree detection, and between the inner and outer electrodes of the solid electrolyte and Oxygen sensor-0 is equipped with a connection that detects the sum of electromotive forces generated in a thermal lightning pair and a connection that conducts an oxygen pumping current between the outer electrodes of the plate-shaped solid electrolyte that controls oxygen pumping. In this oxygen sensor, at least the electrode facing the gap or cavity is made of a porous layer containing a porous refractory metal that exhibits oxygen diffusion resistance, or is made of a porous layer containing a porous refractory metal. It is recommended as an embodiment to provide a porous coating with.

この酸素センサは、一対の板状固体電解質を、燃焼ガス
雰囲気と連通ずるギャップないしは空洞部を隔てて、各
板状固体電解質の内、外画面に形成した電極の内側同志
を向い合わせに対設して、片方を酸素温度検出セル、他
方は酸素汲出し用セルにそれぞれ用い、該検出用セルの
起電力を、その外側電極の外面近傍に配置した熱雷対の
起電力どの和を一定ならしめる酸素汲出し用セルの電流
制御を加えてその電流値により、上記検出用セル出力特
性の、負荷変動には依存しない、燃焼ガス中酸県溌度の
測定を行うように使用覆るわけである。
This oxygen sensor consists of a pair of plate-shaped solid electrolytes, separated by a gap or cavity that communicates with the combustion gas atmosphere, with electrodes formed on the inner and outer surfaces of each plate-shaped solid electrolyte facing each other. Then, one side is used as an oxygen temperature detection cell and the other as an oxygen pumping cell, and if the sum of the electromotive force of the detection cell and the electromotive force of the thermal lightning pair placed near the outer surface of its outer electrode is constant, In addition to controlling the current of the oxygen pumping cell, the current value is used to measure the acidity in the combustion gas, which is independent of the load fluctuation of the above-mentioned detection cell output characteristics. .

ところで燃焼ガス流速は、すでに触れたように機関回転
数と負荷との積に応じて変化する。いまこの機関出力が
燃焼排ガス温度に及ぼす影響は、第2図のようにほぼリ
ニアな関係にある。
By the way, as mentioned above, the combustion gas flow rate changes depending on the product of engine speed and load. The influence of this engine output on the combustion exhaust gas temperature has a nearly linear relationship as shown in Figure 2.

一方再び第1図(a )に示した酸素センサにつき雰囲
気温度を一定に保ちつつ、検出はル1の超電力Vを20
m Vから、例えば50m Vに至る間に増すポンプセ
ル2の酸素汲出し電流の調節下に、該起電力Vをパラメ
ータどする空前比A / Fの該電流出力1 +1に及
ぼす影響は、第3図の関係になる。
On the other hand, for the oxygen sensor shown in Figure 1(a) again, while keeping the ambient temperature constant, the superpower V of Le 1 was increased to 20
Under the regulation of the oxygen pumping current of the pump cell 2, which increases from m V to, for example, 50 m V, the effect of the unprecedented ratio A / F on the current output 1 +1, with the electromotive force V as a parameter, is determined by the third The relationship is as shown in the figure.

これらの関係に着目して、検出セル1の外面電46 P
に熱接点が接近ないしは部分的に接触するようにたとえ
ばクロメル−アルメル型熱雷対(以4下CAと略す)を
配置して検出セル1と直列に接続し、CAの起電力Eど
検出セル1の起電力Vとの合泪電用が成る一定の例えば
50m Vになるように、ポンプセル2の波出し電流1
pを調節覆ると、次の関係が導かれるわ(プCある。
Focusing on these relationships, the outer surface potential 46P of the detection cell 1
For example, a chromel-alumel type thermal lightning pair (hereinafter abbreviated as CA) is arranged and connected in series with the detection cell 1 so that the hot junction approaches or partially contacts the electromotive force E of the detection cell. The wave output current 1 of the pump cell 2 is adjusted so that the combined voltage with the electromotive force V of 1 becomes a constant value, for example, 50 mV.
By adjusting p, the following relationship is derived (there is pC).

づな4つら、燃焼ガスが比較的低温のどきCA起電力F
は低く、逆に高温時には、CA起電力が高くなり、従っ
て上に仮定した合泪電圧50m Vからの差に相当する
検出セル1の起電力の値は、燃焼カスが低温の際に高く
一方、高温時には低くなることから、該検出セル1の起
電力Vにつき、CA起電力どの和が例えば50m Vに
なるポンプセル2の酸素汲出し電流111の電流出力を
もって、空燃比Δ/ F aill IIIに従来不可
避であった、燃焼排ガス流速の影響を、補償し1(イる
わけである。
CA electromotive force F when the combustion gas is relatively low temperature
On the other hand, when the temperature is high, the CA electromotive force becomes high. Therefore, the value of the electromotive force of detection cell 1, which corresponds to the difference from the combined voltage of 50 mV assumed above, is high when the combustion scum is low. , becomes low at high temperatures. Therefore, the sum of the electromotive force V of the detection cell 1 and the CA electromotive force is, for example, 50 mV.With the current output of the oxygen pumping current 111 of the pump cell 2, the air-fuel ratio Δ/Fail III is determined. This is to compensate for the influence of combustion exhaust gas flow velocity, which was unavoidable in the past.

第4図にこの発明に従う酸素センサの外観を、また第5
図(a>、(b)にてその断面を、同図(C)の検出セ
ル1の要部とともに図解した。
Figure 4 shows the appearance of the oxygen sensor according to the present invention, and Figure 5 shows the appearance of the oxygen sensor according to the present invention.
The cross section is illustrated in figures (a> and (b) together with the main parts of the detection cell 1 in figure (c)).

図中1は検出セル、2はポンプセル、3はスペーサどし
ての接着剤層、4は電圧計、5は電源、また6は可変抵
抗で、第1図(a)に示したところとほぼInl様であ
るほか、7はCAの熱接点、8は同じく冷接点、9は熱
電対線であり、CAはすでに述べたJ、うに検出セル1
ど直列に、ηなわち検出しル1の+側にCAの一側をつ
ないで、検出セル1の一側とCAの+側どで、リード線
10を介し電圧gt 4に接続する。
In the figure, 1 is a detection cell, 2 is a pump cell, 3 is an adhesive layer such as a spacer, 4 is a voltmeter, 5 is a power supply, and 6 is a variable resistor, which is almost the same as shown in Figure 1 (a). In addition to Inl, 7 is the hot junction of CA, 8 is also the cold junction, 9 is the thermocouple wire, and CA is the already mentioned J, sea urchin detection cell 1.
In series, one side of CA is connected to η, that is, the + side of detection cell 1, and one side of detection cell 1 and the + side of CA are connected to voltage gt 4 via lead wire 10.

% (+) 11はポンプセル2のリード線で電源5お
よび1す変抵抗器6に接続し、また12はポンプセル2
の背面に沿わゼで配置したヒータでリード線13を介し
予熱用電源5′につなぐ。
% (+) 11 is the lead wire of the pump cell 2 and is connected to the power supply 5 and the resistor 6, and 12 is the lead wire of the pump cell 2.
A heater placed along the back side of the heater is connected to a preheating power source 5' via a lead wire 13.

上記各要素は筒状のセンサ本体14の内部に耐熱性充て
ん固着剤15により保持し、センサ本体14にかぶせた
保護管16の透孔17により連通ずる燃焼ガス雰゛J気
と接触可能とする。
Each of the above elements is held inside the cylindrical sensor body 14 by a heat-resistant filler and adhesive 15, and is enabled to come into contact with the combustion gas atmosphere communicated through the through hole 17 of the protective tube 16 placed over the sensor body 14. .

センサ本体14には継筒18.19を連結して各リード
線10・〜13を、それらの接続端子とともに充てん固
着剤20により保持し、継筒19の端部にかしめ止めし
た閉止部材21から各リード線を外部に引き出す。なJ
322は取付(ブねじである。
Connecting tubes 18 and 19 are connected to the sensor body 14, and the lead wires 10 to 13 are held together with their connection terminals by a filling adhesive 20, and a closing member 21 is caulked to the end of the connecting tube 19. Pull out each lead wire to the outside. NaJ
322 is a mounting screw.

検出セル1、ポンプセル2はともに例えば安定化ジルコ
ニア磁器のような、酸素イオン導電性固体電解質の仮払
体の両面に、酸素の拡散抵抗性をもつ多孔質金属を含む
多孔質からなる電極または酸素の拡散抵抗性をもつ多孔
質耐火材料による被覆をイなえる電極Pをそなえ、それ
らの内側同志が互いにギャップを隔ててスペーサ3によ
り合体するほか、検出セル1の外面中火にこの例では0
.32 ++mφのアルメル−クロメル線よりなるCA
の熱接点7を位置させ耐熱接着剤などにより固定する。
Both the detection cell 1 and the pump cell 2 have electrodes made of a porous material containing a porous metal having resistance to oxygen diffusion, or electrodes made of a porous material containing a porous metal having resistance to oxygen diffusion, on both sides of a provisional body made of an oxygen ion conductive solid electrolyte such as stabilized zirconia porcelain. The electrodes P are covered with a porous refractory material having diffusion resistance, and their inner sides are joined together by a spacer 3 with a gap between them.
.. CA made of alumel-chromel wire of 32 ++ mφ
The thermal contact point 7 is positioned and fixed using a heat-resistant adhesive or the like.

CAの熱起電力Fは、検出セル1の起電力Vとの合計電
圧E+Vでもつ−C1第3図につきすでに触れた、検出
セル1の電圧をパフメータとするA/ト−1pの関係を
利用しC第1図(b)で説明した誤差の補正に役立つわ
けである。
The thermal electromotive force F of CA has a total voltage E + V with the electromotive force V of detection cell 1 -C1 Utilizes the relationship A/t-1p with the voltage of detection cell 1 as a puff meter, which was already mentioned in Figure 3. This is useful for correcting the error explained in FIG. 1(b).

ずなわちCAはその熱電対線9の長さ℃の選択によって
、たとえば熱接点温度が800℃のとき、冷接点温度4
00℃、また前者が300℃のとき後者は100°Cど
云った温度勾配をもち、従って熱接点7と冷接点8との
各温度C発生ずる起電力の差に当るCAの起電力Eが熱
電対線9の長さ℃によって決定され、結局、CAにより
補正をずべき第1図(1))の誤差γに応じて、それが
大きいときぶを長く、また小さいとき短くすることによ
り、必要な補正が全うされるわけである。
For example, when the hot junction temperature is 800°C, the cold junction temperature is 4.
00°C, and when the former is 300°C, the latter has a temperature gradient of 100°C. Therefore, the electromotive force E of CA, which corresponds to the difference in electromotive force generated at each temperature C between the hot junction 7 and the cold junction 8, is The length of the thermocouple wire 9 is determined by °C, and depending on the error γ in Fig. 1 (1), which should be corrected by CA, by lengthening the gap when it is large and shortening it when it is small, All necessary corrections will be made.

上に述べた酸素センサを、CAの配置のない点でのみ異
なる在来センサとともに、秤々な条件の燃焼排ガス雰囲
気中にて次のように動作させて、第6図に示?I’Ip
−A/F特性が得られた。
The oxygen sensor described above, together with a conventional sensor that differs only in the absence of a CA arrangement, was operated as follows in a combustion exhaust gas atmosphere under balanced conditions, as shown in FIG. I'Ip
-A/F characteristics were obtained.

はじめに空燃比A / Fを15に設定し、その後A 
/ Fが20になるまで排カスに順次空気を混入し、こ
のとぎA/Fは、λスキャンカス分析器により計測した
First, set the air-fuel ratio A/F to 15, then set the A/F ratio to 15.
Air was sequentially mixed into the waste residue until A/F reached 20, and then A/F was measured using a λ scan waste analyzer.

υ1ガス温度J3よびA/Fに応じる排カス流量は、次
表のと;J3りである。
The exhaust gas flow rate corresponding to υ1 gas temperature J3 and A/F is as shown in the following table: J3.

なおヒータ12に対し14Vを印加して、測定温度環境
を揃えた。
Note that 14 V was applied to the heater 12 to equalize the measurement temperature environment.

第6図において、在来センサは高い機関出力に対応する
高温大流量の際におけるα曲線と、低い機関出力に相当
り−る比較的低温小流最時のβ曲線との誤差が著しいの
に反し、この発明による酸素センサによると上記とほぼ
対応覆る関係において較差の僅少なα′、β′両曲線の
ように、排気ガス流速の影響からほぼ脱#] L 得る
ことが明らかである。
In Figure 6, the conventional sensor has a significant error between the α curve at high temperature and large flow rate corresponding to high engine output, and the β curve at relatively low temperature and small flow corresponding to low engine output. On the other hand, with the oxygen sensor according to the present invention, it is clear that almost no difference can be obtained from the influence of the exhaust gas flow rate, as in the α' and β' curves, which have a small difference in a relationship that is almost the same as the above.

下表は従来のものとの比較のまとめを承り。The table below is a summary of the comparison with the conventional one.

更にGAの起電力を冷接点位置の変更により調整りるこ
とにより特性誤差ΔA/Fは縮少出来る。
Furthermore, the characteristic error ΔA/F can be reduced by adjusting the electromotive force of the GA by changing the position of the cold junction.

(発明の効果) この発明によれば、熱雷対の起電力と検出センサの起電
力との代数和を利用することにより、空燃比Δ/Fどポ
ンプセルの酸素汲出し電流との関係に箸しく影響づる排
ガス流量で代表される機関出力依存性を有利に離脱して
、適切な空燃比制御を極めて簡便な手段にて、有効に実
現することができる。
(Effects of the Invention) According to the present invention, by using the algebraic sum of the electromotive force of the thermal lightning pair and the electromotive force of the detection sensor, the relationship between the air-fuel ratio Δ/F and the oxygen pumping current of the pump cell can be determined. It is possible to advantageously eliminate engine output dependence represented by the exhaust gas flow rate, which has a negative influence on the engine, and to effectively realize appropriate air-fuel ratio control using extremely simple means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)、(c)は酸素セン4ノの要部骨
組図とその特性線図、 第2図は機関出力と排ガス温度との関係線図、第3図は
酸素汲出し電流と空燃比との検出セル起電力をパラメー
タどする関係グラフであり、第4図はこの発明による酸
素センサの外観図、第5図(a)、(b)はその断面図
、 第5図(C)はその要部側面図、 第6図は性能比較グラフである。 1・・・酸素m度検出用板状固体電解質(検出セル)2
・・・酸素汲出し用板状固体電解質(ポンプセル)3・
・・スペーサ 7・・・CA熱接点8・・・CA冷接点
 10.11・・・リード線第1図 (a) (b) Q 4会 (C) 第2図 第3図 ■ 機関出力 ケ 第4図 第5図 (、b ) (C’ ) 手続補正書 昭和59年4・ 月19 日 1、事件の表示 昭和58年 特 許 順/111951号2、発明の名
称 酸素センサ 3、補正をする者 事件との関係 特許出願人 (+54) 日本特殊陶業株式会社 1明細書第1頁第8行〜第2頁第3行の特許請求の範囲
を次のとおりに訂正する。 [2、特許請求の範囲 L 酸素濃度検出と、酸素汲出しとにそれぞれ供する一
対の板状固体電解質を、燃焼ガス雰囲気と連通ずるギヤ
ツブないしは空洞部を隔てて、各板状固体電解質の内、
外両面に形成した電極の内側にて互いに向い合わせに固
定するとともに、酸素濃度検出を司る板状固体電解質の
外面電極の近傍に熱電対の熱接点を配置し該λ 電極の
うち、少くともギヤツブないし空洞部に面する電極が、
酸素の拡散抵抗性をもつ多孔質耐熱金属を含んだ多孔質
層よりなる特許請求の範囲1記載のセンサ。 8、 電極のうち、少くともギヤツブないし空洞部に面
する電極が、酸素の拡散抵抗性をもつ多孔質耐火材料に
よる多孔質層被覆をそなえる特許請求の範囲1記載のセ
ンサ。」 2、明細書第2頁第10行の「そのうち内燃機関」を1
−そのうち特開昭58−158155号公報に記載され
たような酸素センサ、即ち、酸素濃度検出と、酸素汲み
出しもしくは汲み入れとQこそれぞれ供する一対の板状
固体電解質を間1僚を介して各電極の内外両面に形成し
た電極の内側にて互いに向い合わせに固定した酸素セン
サに関して、かかる酸素センサが内燃機関」に訂正し、 同頁第14行の「解決に関し、」を「解法につき、」に
訂正する。 8、同第2頁第19行〜第8頁第14行を削除する04
、同第4頁第1行の(−酸素センサ」を[この種の酸素
センサ」に訂正する。 5、同第6頁第17行〜第7頁第1行の「該固体電解質
−−−酸素センサ。」を次のとおりに訂正する。 「該熱接点の出力によってガス流動の影響を補償するこ
とを特徴とする酸素センサ。」6同第7頁第19行の「
燃焼ガス流速」を「燃焼ガス温度」に訂正する。 同頁第20行の[積に応じて変化する。いま」を次のと
おりに訂正する。 「積すなわち機関出力に応じて変化する。」7、同第8
頁第4〜5行の「超電力」を「起電力」に訂正する。 8同第9頁第9行の1図解した。」を「1実施例につき
図解した。」に訂正する。 9同第10頁第17行の「電極P」を「電極」に訂正す
る。 10同第18頁下から第8〜7行間に下記を加入する。 [次に第7図(a)(b)には別の実施例を示し、この
例ではすでに述べたガス流動の影響の補!IIと同時に
、フィードバック制御回路23により、検出セル1のリ
ード線lOIを介した出力が常に一定となるようにIp
が制御され、この工、に応じた出力を端子24より、こ
のセンサの酸素濃度指示出力として取出すことができる
。図中25は補償用回路部分、26.27そして28は
増巾器、29は加算器である。」 11、同第14頁第11行の1グラフである。」を次の
とおりに訂正する。 「グラフ、 第7図(a)、(b)は他の実施例を示す断面図である
。」 外1石 、− 4、□I+、/
Figures 1 (a), (b), and (c) are the main parts of the oxygen sensor 4 and their characteristic diagrams, Figure 2 is the relationship diagram between engine output and exhaust gas temperature, and Figure 3 is the oxygen This is a graph showing the relationship between the pumping current and the air-fuel ratio using the detection cell electromotive force as a parameter. FIG. 4 is an external view of the oxygen sensor according to the present invention, FIGS. Figure 5 (C) is a side view of the main parts, and Figure 6 is a performance comparison graph. 1... Plate solid electrolyte for oxygen m degree detection (detection cell) 2
... Plate solid electrolyte for oxygen pumping (pump cell) 3.
...Spacer 7...CA hot junction 8...CA cold junction 10.11...Lead wires Fig. 1 (a) (b) Q 4 (C) Fig. 2 Fig. 3■ Engine output Figure 4 Figure 5 (,b) (C') Procedural amendment April 19, 1980 1, Indication of case 1981 Patent order/No. 111951 2, Title of invention Oxygen sensor 3, Amendment Relation to the case of the patent applicant (+54) NGK Spark Plug Co., Ltd. The scope of claims on page 1, line 8 to page 2, line 3 of the 1 specification is amended as follows. [2. Claim L A pair of plate-shaped solid electrolytes for detecting oxygen concentration and pumping out oxygen are separated by a gear or a cavity that communicates with the combustion gas atmosphere, and of each plate-shaped solid electrolyte,
The electrodes formed on both outer surfaces are fixed facing each other on the inside, and the hot junction of the thermocouple is arranged near the outer electrode of the plate-shaped solid electrolyte that controls oxygen concentration detection. or the electrode facing the cavity,
The sensor according to claim 1, comprising a porous layer containing a porous heat-resistant metal having oxygen diffusion resistance. 8. The sensor according to claim 1, wherein at least one of the electrodes facing the gear or the cavity is coated with a porous layer of a porous refractory material having resistance to oxygen diffusion. ” 2. “Internal combustion engine” on page 2, line 10 of the specification is 1.
- One of these is an oxygen sensor such as that described in Japanese Patent Application Laid-Open No. 58-158155, in which a pair of plate-shaped solid electrolytes are connected to each other via an interlayer for detecting oxygen concentration, pumping out or pumping in oxygen, and providing Q. Regarding oxygen sensors fixed facing each other inside electrodes formed on both the inner and outer surfaces of the electrodes, such oxygen sensors are corrected to "Internal combustion engine", and "Regarding the solution" in line 14 of the same page is changed to "Regarding the solution". Correct. 8. Delete page 2, line 19 to page 8, line 1404
, (-oxygen sensor) in the first line of page 4 is corrected to [this type of oxygen sensor]. 5. "The solid electrolyte --- "Oxygen sensor." is corrected as follows: "An oxygen sensor characterized by compensating for the influence of gas flow by the output of the thermal junction." 6, page 7, line 19, "Oxygen sensor."
Correct "combustion gas flow velocity" to "combustion gas temperature". On the 20th line of the same page, [varies depending on the product. Correct "Now" as follows. "It changes according to the product, that is, the engine output." 7, same No. 8
Correct "superpower" in lines 4 and 5 of the page to "electromotive force". 8 Illustrated on page 9, line 9. " is corrected to "Illustrated for one example." 9 Correct "electrode P" on page 10, line 17 of the same to "electrode." 10 Add the following between the 8th and 7th lines from the bottom of page 18. [Next, FIGS. 7(a) and 7(b) show another example, in which the influence of the gas flow already mentioned is compensated for! At the same time, the feedback control circuit 23 controls Ip so that the output via the lead wire lOI of the detection cell 1 is always constant.
is controlled, and an output corresponding to this process can be taken out from the terminal 24 as the oxygen concentration indicating output of this sensor. In the figure, 25 is a compensation circuit, 26, 27 and 28 are amplifiers, and 29 is an adder. 11, page 14, line 11, graph 1. ” is corrected as follows. "The graph, Figures 7 (a) and (b) are cross-sectional views showing other examples." 1 stone outside, - 4, □I+, /

Claims (1)

【特許請求の範囲】 1、酸素濃度検出と、酸素汲出しとにそれぞれ供覆る一
刻の板状固体電解質を、燃焼ガス雰囲気と連通ずるギャ
ップないしは空洞部を隔Cて、各板状固体電解質の内、
外両面に形成した゛電極の内側にて互いに向い合わせに
固定するどどもに、酸素濃度検出を司る板状固体電解質
の外面電極の近傍に熱電対の熱接点を配置し、該固体電
解質の内、外電極間および熱電対に生起される各起電力
の和を検出する結線と、酸素汲出しを司る板状固体電解
質の内、外電極間にて酸素汲出し電流を制御1lI7I
る結線とをそなえる、酸素センサ。 2、電極のうち、少くともギャップないし空洞部に而す
る電極が、酸素の拡散抵抗性をもつ多孔質耐熱金属を含
んだ多孔質層よりなる特許請求の範囲1記載のセンサ。 3、電極のうち、少くどもギャップないし空洞部に面す
る電極が、酸素の拡散抵抗性をもつ多孔質耐火材料によ
る多孔質層被覆をそなえる特許請求の範囲1記載のセン
サ。
[Scope of Claims] 1. A single plate-shaped solid electrolyte is provided for oxygen concentration detection and oxygen pumping, respectively, with a gap or cavity communicating with the combustion gas atmosphere separated from each plate-shaped solid electrolyte. Inside,
The hot junction of the thermocouple is arranged near the outer electrode of the plate-shaped solid electrolyte that controls oxygen concentration detection, and the electrodes are fixed facing each other inside the electrodes formed on the outer surfaces. , a connection that detects the sum of each electromotive force generated between the outer electrodes and the thermocouple, and a plate-shaped solid electrolyte that controls oxygen pumping, and controls the oxygen pumping current between the outer electrodes.
Oxygen sensor with wire connections. 2. The sensor according to claim 1, wherein among the electrodes, at least the electrode located in the gap or cavity is made of a porous layer containing a porous heat-resistant metal having oxygen diffusion resistance. 3. The sensor according to claim 1, wherein at least one of the electrodes facing the gap or cavity is coated with a porous layer of a porous refractory material having resistance to oxygen diffusion.
JP58111951A 1983-06-23 1983-06-23 Oxygen sensor Granted JPS604850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58111951A JPS604850A (en) 1983-06-23 1983-06-23 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58111951A JPS604850A (en) 1983-06-23 1983-06-23 Oxygen sensor

Publications (2)

Publication Number Publication Date
JPS604850A true JPS604850A (en) 1985-01-11
JPH0311662B2 JPH0311662B2 (en) 1991-02-18

Family

ID=14574236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58111951A Granted JPS604850A (en) 1983-06-23 1983-06-23 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPS604850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276446A (en) * 1985-09-30 1987-04-08 Honda Motor Co Ltd Method for controlling oxygen concentration sensor
CH682340A5 (en) * 1990-04-27 1993-08-31 Klaus Leistritz

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS445199Y1 (en) * 1965-04-03 1969-02-25
JPS4925997A (en) * 1971-09-01 1974-03-07
JPS56130609A (en) * 1980-03-19 1981-10-13 Hitachi Ltd Measuring device with function to convert absolute value

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS445199Y1 (en) * 1965-04-03 1969-02-25
JPS4925997A (en) * 1971-09-01 1974-03-07
JPS56130609A (en) * 1980-03-19 1981-10-13 Hitachi Ltd Measuring device with function to convert absolute value

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276446A (en) * 1985-09-30 1987-04-08 Honda Motor Co Ltd Method for controlling oxygen concentration sensor
CH682340A5 (en) * 1990-04-27 1993-08-31 Klaus Leistritz

Also Published As

Publication number Publication date
JPH0311662B2 (en) 1991-02-18

Similar Documents

Publication Publication Date Title
US4464244A (en) Oxygen sensing device having solid electrolyte cell and means for supplying controlled current thereto
US5236569A (en) Air/fuel ratio sensor having resistor for limiting leak current from pumping cell to sensing cell
JPH0820414B2 (en) Electrochemical sensor for detecting the concentration of reactants contained in a fluid mixture and an air-fuel mixture ratio adjusting system using the sensor
JPS60219547A (en) Oxygen concentration detection apparatus
JPS6310781B2 (en)
CA1222285A (en) Apparatus for measuring oxygen concentration and method of producing the apparatus
JPS60173461A (en) Oxygen sensor
KR950009249A (en) Sensors for measuring the oxygen content in the gas mixture and a method of adjusting the composition of the fuel / air mixture supplied to the internal combustion engine
US20090120161A1 (en) Gas sensor control device
JP2004354400A (en) Gas sensor and nitrogen oxide sensor
US6254765B1 (en) Method of regulating the temperature of a sensor
JP2020003284A (en) Gas sensor
JP2505459B2 (en) Adjustment method of oxygen concentration measuring device
EP0140295A2 (en) Method of operating an air-fuel ratio sensor
JP2020165815A (en) Method for determining target value for sensor element control, sensor element manufacturing method, and gas sensor manufacturing method
US20120018304A1 (en) Oxygen sensor element and oxygen sensor
JPS604850A (en) Oxygen sensor
US5972200A (en) Method for driving a wide range air to fuel ratio sensor
JP3831320B2 (en) Limit current type oxygen sensor
US20020154030A1 (en) Sensor element
JP2016521855A (en) Gas sensor for measuring a plurality of different gases and associated manufacturing method
US6524467B2 (en) Method for adjusting output characteristics of a gas sensing element based on application of electric power to this sensing element
JPS63138256A (en) Air-fuel ratio measuring method for exhaust gas of internal combustion engine
JP2009515178A (en) Sensor element
WO2024116510A1 (en) Gas sensor, method for determining adjustment voltage target value for control of sensor element, method for manufacturing sensor element, and method for manufacturing gas sensor