JPS604817A - Flow rate measuring apparatus - Google Patents

Flow rate measuring apparatus

Info

Publication number
JPS604817A
JPS604817A JP11372183A JP11372183A JPS604817A JP S604817 A JPS604817 A JP S604817A JP 11372183 A JP11372183 A JP 11372183A JP 11372183 A JP11372183 A JP 11372183A JP S604817 A JPS604817 A JP S604817A
Authority
JP
Japan
Prior art keywords
flow rate
time
pulse
measured
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11372183A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujieda
藤枝 博
Tatsuo Saka
達男 坂
Tadanori Shirasawa
忠徳 白沢
Masayuki Okamoto
岡本 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11372183A priority Critical patent/JPS604817A/en
Publication of JPS604817A publication Critical patent/JPS604817A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/20Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows
    • G01F3/22Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows for gases
    • G01F3/227Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows for gases characterised by the means for transfer of membrane movement information to indicating means

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PURPOSE:To measure the flow rate accurately by counting pulses from a flow rate sensor while the time is measured from the first to last flow rate pulse within a unit measuring time length to make the flow rate pulse synchronizing the measured time. CONSTITUTION:A flow rate sensor 2 is provided in a gas supply line 1 and a sensor 2 made up of a membrane type gas meter 3 and a lead switch 4 as a magnetic field sensor to transmit a flow rate pulse F each time measuring a specified unit weighing volume. The pulse F is inputted into an arithmetic processor 5 which computes the flow rate per unit time. A counter 6 of the device 5 counts the number of the pulses F and a timer 7 measures the time from the first to last flow rare pulse within a unit measuring time. An arithmetic processing section 8 computes and outputs the flow rate Q per unit time from the pulses counted with the counter 6 and the time length measured with the time 7. Thus, the flow rate per unit time can be measured accurately by having the flow rate pulses synchronizing the measured time length.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は流体の流量測定装置に関し、単位時間当りの流
量の測定が必要な装置に好適な流量測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a fluid flow rate measurement device, and more particularly to a flow rate measurement device suitable for a device that requires measurement of flow rate per unit time.

従来例の構成とその問題点 従来の流量測定装置としては、流体の供給ライン中に設
けたガスメータと、ガスメータ内の回転軸に永久磁石全
円周の一部に取付けた円盤全固定し、永久磁石の磁界を
検出するホールI(ii設けて、円盤が一回転するごと
に1パルスの流量パルスを発信させ、この流量パルスの
一分間の数をカウンタでカウントし平均流量全計算する
制御装置とで構成するものがある。この装置では所定時
間内の流量パルス数から平均流量を計算するが、以下の
ような問題点がある。流量パルスと所定時間との同期が
とれれば正確な平均流量全計算できるが、同期がとれな
ければ、すなわち所定時間の開始時点で流量パルスが入
力され、所定時間経過時点でも流量パルスが入力される
という条件が成立しないときには不正Hな平均流量全計
算することになる。すなわち流量パルスの時間間隔が所
定時間の整数分の1であpかつ測定開始時点に流量パル
スが入力されるというときのみ正iな平均流量が、;1
算でき、それ以外のときは不正確となる。
Conventional configuration and its problems Conventional flow rate measuring devices consist of a gas meter installed in the fluid supply line, and a permanent magnet permanently fixed to the rotating shaft inside the gas meter. A control device is provided with a hole I (ii) for detecting the magnetic field of the magnet, transmits one flow pulse every time the disk rotates, counts the number of flow pulses per minute with a counter, and calculates the total average flow rate. This device calculates the average flow rate from the number of flow pulses within a predetermined time, but it has the following problems.If the flow pulses and the predetermined time can be synchronized, the average flow rate can be calculated accurately. It can be calculated, but if synchronization is not achieved, that is, if the conditions that a flow rate pulse is input at the start of a predetermined time and a flow rate pulse is also input at the elapse of a predetermined time do not hold, an incorrect H average flow rate will be calculated. In other words, the average flow rate that is positive i only when the time interval of the flow rate pulse is an integer fraction of the predetermined time p and the flow rate pulse is input at the measurement start point is;
can be calculated, otherwise it will be inaccurate.

発明の目的 本発明は上記従来の欠点を解消するもので、流:1;:
パルスと測定時間との同期をとることにより、正6f+
i ;’I: 、jp位時間当り流量を測定することを
目的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks.
By synchronizing the pulse and measurement time, positive 6f+
i;'I: The purpose is to measure the flow rate per hour.

発明の構成 上記目的を達成するため、本発明の流量測定装置は、流
体供給ライン中に、所定の単位計量体積の流体流量全計
量するつど流量パルスを発信する流)i;−センサ全段
け、この流量パルスを受けて、カウンタにてこの流量パ
ルス数を計数し、この計数値と、測定開始時より所定の
単位計測時間内の最後の流計パルス入力時点までの時間
をタイマで測定し、この測定時間とから演算処理部が単
位時間当り流計ヲ言」算する構成であり、最初の流量パ
ルスが人力された時点で測定を開始し、所定時間内の最
後の流液パルス入力時点呼での時間を測定し、この時間
と流計パルス数とから単位時間当り流量全111算する
ので、流量パルスと測定時間とが完全に同期状態となり
、極めて正確な測定ができるという効果を有する。
Structure of the Invention In order to achieve the above object, the flow rate measuring device of the present invention provides a flow measuring device in which a flow rate pulse is emitted every time a predetermined unit measurement volume of fluid flow is measured in a fluid supply line. In response to this flow rate pulse, a counter counts the number of flow rate pulses, and a timer measures this counted value and the time from the start of measurement to the time when the last flowmeter pulse is input within a predetermined unit measurement time. The arithmetic processing unit calculates the flow rate per unit time from this measurement time, and measurement starts when the first flow pulse is input manually, and when the last flow pulse is input within a predetermined time. The time spent on a call is measured, and the total flow rate per unit time is calculated from this time and the number of flowmeter pulses, so the flow rate pulse and measurement time are completely synchronized, resulting in extremely accurate measurements. .

実施例の説明 以下、本発明の一実施例について図面に基づいて説明す
る。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1はガス供給ライン、2はガス供給ラ
イン中に設けられた流量センサで、模式ガスメータ3、
模式ガスメータの計量応動部分の例えば膜、膜の変位を
伝達するリンク機構部等に設けた磁石、磁石の磁界を検
出する磁界センサとしてのリードスイッチ4よジ構成さ
れ、リードスイッチはメータ3が単位計量体積を計量す
るつとオフからオンとなる流量パルスを発信する。5は
流量パルスFQ入力とする演算処理装置で、以下のよう
に構成する。6Fi流量パルスFiカウントしカウント
数をFCとして出力するカウンタ、7はタイマで、測定
時間iTとして出力する。8は演算処理部で、流量パル
スF、カウンタ出力FCタイマ出力T、9なる記憶部の
出力としての前回測定流量パルス時間間隔(以下前回間
隔と略述)T′、および10なるタイマの測定時間TA
を入力とし、カウンタ6ff:リセットする信号OR、
タイマγ全リセットする信号TR1記憶部9の記憶デー
タ信号TD、タイマ1o′ff:制御する信号TA′、
1’−()’L時間当り流量演算結果Q1変化有信号q
を出力とする。タイマ10は、測定開始後の時間を測定
し、図の例では記憶器である0すなわち測定開始時点で
、演算処理部8によりゼロとされ、流量パルス間隔がタ
イマ7で測定されるつどその測定時間は演算処理部8で
、記憶器1Qに保存されている過去の測定時間と積算さ
れ、結果が記憶器10に記憶される。従って記憶器10
の内容は流量パルスが入力される捷での測定時間全保存
する一種のタイマとして動作する。
In FIG. 1, 1 is a gas supply line, 2 is a flow rate sensor installed in the gas supply line, and a model gas meter 3,
A reed switch 4 serves as a magnetic field sensor that detects the magnetic field of a magnet installed in a metering response part of a model gas meter, such as a membrane, a link mechanism that transmits displacement of the membrane, etc., and the meter 3 is the unit of the reed switch. When the measured volume is measured, a flow rate pulse that turns from off to on is transmitted. Reference numeral 5 denotes an arithmetic processing unit to which the flow rate pulse FQ is input, and is configured as follows. 6Fi is a counter that counts flow rate pulses Fi and outputs the count as FC; 7 is a timer that outputs as measurement time iT. 8 is an arithmetic processing unit which outputs the flow rate pulse F, the counter output FC timer output T, the previously measured flow rate pulse time interval (hereinafter abbreviated as the previous interval) T' as the output of the storage unit 9, and the timer measurement time 10. T.A.
as input, counter 6ff: reset signal OR,
Timer γ Full reset signal TR1 Stored data signal TD in storage section 9, Timer 1o'off: Control signal TA',
1'-()'L flow rate calculation result per hour Q1 change signal q
Let be the output. The timer 10 measures the time after the start of the measurement, and in the example shown in the figure, it is set to zero by the arithmetic processing unit 8 at the time of the start of the measurement, which is a memory, and each time the flow rate pulse interval is measured by the timer 7, the measurement is The time is multiplied by the past measurement time stored in the storage device 1Q in the arithmetic processing unit 8, and the result is stored in the storage device 10. Therefore, memory 10
The contents of the timer function as a type of timer that saves the entire measurement time at which the flow pulse is input.

以下」−記構成における作用について、第2図の動作説
明用タイミング図を参照しつつ説明する。
The operation of the above configuration will be described below with reference to the timing chart for explaining the operation in FIG.

第2図で、(イ)はガス供給ライン全流れている単位1
1.5間当りの流袖値、(ロ)は流量パルスF、Hに測
定に当っての所定時間、に)は流量測定回、(ホ)は演
算処理装置により出力される流量1−示す。今一定流量
Q1が流れている状態で、時刻to にてi回目の測定
を開始したとする0このときの・ぐルス間隔はT1であ
り、to、1:9時間T1の後の時刻t1に1発目の流
量パルスFが発信される。カウンタ6はこれを1と計数
し、演算処理部8は、タイマ7の出力T、全入力し、記
憶部9の前回間隔T′とを次のようにして比較する。i
ず今回測定間隔T1に所定数αを乗する0このαは、一
定流量が流れている状態で発生する流量・ぐルスの時間
間隔のばらつき等を考慮した許容変動l]であって、例
えば1%である。次に、前回間隔T′と今回間隔の差の
絶対値IT’−T11’に演算する0仄に先に演算した
α・T1とIT′−T11とを比較し、α・T1≧IT
’−T11なら測定全続行し、α・T1〈IT’ −T
+ lならこの回の測定全中止するO今、流量が一定で
あるから、前回間隔T′キT1であジ、時刻t1以降測
定を続行する。時刻t1では測定を続行するため、演算
処理部8はタイマ7全信号TRによりリセットし、記憶
器10の測定時間TA(今はゼロ)とT1とを加え、す
なわちT1−1−TA=T1+○=T1゜結果全新たに
記憶器10にTp として出力し、記憶器1oの記憶デ
ー タはT1 となる。以下同様の動作を繰返し、時刻
t5で、時刻t。より所定の単位測定時間TMが経過し
たので、演算処理部8は、カウンタ6の泪数値FC:N
と、これまで測定し記憶器10が記憶しているところの
所定の単位測定時間TM以前の最後のN見目の流量パル
スが入力されるまでの時間TA と、所定の単位糖量体
積Fuとより、単位時間当りの流量Q1を、Q、=Fu
・N/TAに、l:り演算し、結果全Q1 として出力
するとともに、カウンタ6全信号CRに工9リセッl−
1,、記憶器10の記憶データ全TP二〇としてリセッ
トし、次回の開側に備える。
In Figure 2, (a) is the unit 1 in which the entire gas supply line is flowing.
1.5 hours, (b) is the flow rate pulse F, H is the predetermined time for measurement, (b) is the flow rate measurement time, and (e) is the flow rate 1-indicated by the arithmetic processing unit. . Suppose that the i-th measurement is started at time to while a constant flow rate Q1 is flowing.The guru interval at this time is T1, and at time t1 after to, 1:9 hours T1. The first flow rate pulse F is transmitted. The counter 6 counts this as 1, and the arithmetic processing unit 8 inputs the entire output T of the timer 7 and compares it with the previous interval T' in the storage unit 9 as follows. i
First, the current measurement interval T1 is multiplied by a predetermined number α. This α is the permissible fluctuation l] taking into consideration variations in the time interval of flow rate and gas that occur when a constant flow rate is flowing, and is, for example, 1 %. Next, calculate the absolute value IT'-T11' of the difference between the previous interval T' and the current interval. Compare the previously calculated α・T1 and IT'-T11, and if α・T1≧IT
'-T11, continue the entire measurement, α・T1〈IT'-T
+l, all measurements for this time will be stopped.O Since the flow rate is now constant, the measurement will be continued from time t1 onwards at the previous interval T'+T1. In order to continue the measurement at time t1, the arithmetic processing unit 8 resets the timer 7 with the full signal TR and adds the measurement time TA (currently zero) in the memory 10 and T1, that is, T1-1-TA=T1+○ = T1° The result is all newly outputted to the memory 10 as Tp, and the stored data in the memory 1o becomes T1. Thereafter, the same operation is repeated, and at time t5, time t is reached. Since the predetermined unit measurement time TM has elapsed, the arithmetic processing unit 8 changes the count value FC of the counter 6 to N.
, the time TA until the last N-th flow rate pulse is input before the predetermined unit measurement time TM that has been measured so far and is stored in the memory 10, and the predetermined unit sugar volume Fu. Therefore, the flow rate Q1 per unit time is Q,=Fu
・Calculate l: on N/TA, output the result as total Q1, and reset the counter 6 total signal CR.
1. Reset all stored data in the storage device 10 as TP20 and prepare for the next opening.

次に流量が極めて低く、単位計測時間TM内に1発も流
量パルスが入力されないときにつき、第3図ケ用いて説
明する。最初の流量パルスFが時刻t。で入力される。
Next, the case where the flow rate is extremely low and no flow pulse is input within the unit measurement time TM will be explained using FIG. 3. The first flow pulse F is at time t. is input.

流量が小さいため、単位計測時間TM、J:!ll長い
パルス間隔T 2 > T 1となる。
Since the flow rate is small, the unit measurement time TM, J:! ll long pulse interval T 2 > T 1 .

ずなわぢ時刻t。より時間1M経過後の時刻t、でrよ
、カウンタ6の計数値FCはセロのままである。
Zunawaji time t. At time t, after 1M has elapsed, the count value FC of the counter 6 remains at zero.

演算処理部8はその1まタイマγを動作さぜる。The arithmetic processing unit 8 operates the timer γ for the first time.

時刻t2で、1発目の流量パルスFが入力される。At time t2, the first flow rate pulse F is input.

そこで演算処理部8は、タイマ7の測定時間T2、J:
り、流量バ/L/、X数FQ=1、単位計量体積Fu工
υ、流量Q 2−y u / T 2を演算し結果を出
力するとともに、カウンタ6、タイマ7をリセットする
。筐たさらに流量が小さくなり、或いはゼロとなり、流
量パルス時間間隔が極めて長くなったときは、演算処理
部8は、タイマ7で測定している流量パルス時間間隔T
と、所定の制限時間T、)T。
Therefore, the arithmetic processing unit 8 calculates the measurement time T2, J of the timer 7:
Then, the flow rate bar/L/, the number of X FQ=1, the unit metered volume Fu υ, and the flow rate Q2-yu/T2 are calculated and the results are output, and the counter 6 and timer 7 are reset. Furthermore, when the flow rate becomes smaller or becomes zero and the flow rate pulse time interval becomes extremely long, the processing unit 8 changes the flow rate pulse time interval T measured by the timer 7.
and a predetermined time limit T, )T.

とを比較し、T>TLとなったとき、流量はほぼゼロと
判定し、Q=CI出力するとともに、カウンタ6、タイ
マ7、記憶部9、記憶器10iリセツ トする。
When T>TL, the flow rate is determined to be almost zero, Q=CI is output, and the counter 6, timer 7, memory section 9, and memory device 10i are reset.

なお演算処理装置8の典型的なものはマイクロコンビー
ータであり、以上詳述した演算処理部に関わる処理手順
については、内蔵のl’(OM部分に記憶されている。
Note that a typical arithmetic processing unit 8 is a microcombinator, and the processing procedures related to the arithmetic processing unit detailed above are stored in the built-in l'(OM part).

このように本実施例によれば、流量・(ルスと測定時間
とが同期状態となるので、正確に単位時間当り流液を計
算できる、また低流量域において単Q rii測時開時
間も長い流量パルス間隔となる場合でも測定が可能であ
る、さらにほぼゼロ流量となって′1trll限時間よ
りも流量パルス間隔が長くなるとゼロ流量と判定し、事
実上ゼロ判定ができるといった効果全潰する。
As described above, according to this embodiment, since the flow rate and measurement time are synchronized, the flow rate per unit time can be calculated accurately, and the single Q rii time measurement opening time is also long in the low flow rate region. Measurement is possible even when the flow rate pulse interval is reached, and furthermore, when the flow rate becomes almost zero and the flow rate pulse interval becomes longer than the '1trll time limit, it is determined to be zero flow rate, and the effect of being able to effectively make a zero determination is completely destroyed.

発明の効果 以上のように本発明の流量測定装置によれば仄の効果全
得ることができる。
Effects of the Invention As described above, the flow rate measuring device of the present invention can provide all of the other effects.

(1)流量パルスと測定時間とを同期させることができ
る。
(1) The flow rate pulse and measurement time can be synchronized.

(2) (1)の効果に+Cす、正確な単位時間当り流
量全測定できる。
(2) By adding C to the effect of (1), it is possible to accurately measure the total flow rate per unit time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の流量測定装置の概略構成図
、第2図イ1口、ハ、二、ホ、第3図イ。 1」、ハ、二、ポは第1図の装置の動作説明用タイミン
グ図である。 1・・・・−・流体供給ライン、2・・・・・流量セン
サ、6、・、・・、演算処理装置、6・・・・・・カウ
ンタ、8・・・・・・演算処理部、1o・・・・・・タ
イマとしての記憶器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 to tL t2 第31 (匂 11十 tb tt t2
FIG. 1 is a schematic configuration diagram of a flow rate measuring device according to an embodiment of the present invention, FIG. 1, C, 2, and P are timing diagrams for explaining the operation of the apparatus shown in FIG. 1...Fluid supply line, 2...Flow rate sensor, 6... Arithmetic processing unit, 6...Counter, 8... Arithmetic processing section , 1o... Memory device as a timer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 to tL t2 31st (smell 110tb tt t2

Claims (1)

【特許請求の範囲】[Claims] 流体供給ライン中に設けられ、所定の単位計量体積の流
体をd1量するつど流量パルスを発信する流量センサと
、前記流量パルスを入力とじ、所定の単位測定時間内の
流量パルス数に基づいて単位時間当りの流量を演算する
演算処理装置とを備え、前記演算処理装置は、前記流量
パルスの数を計数するカウンタと、前記単位測定時間内
の最初の流量パルスから最後の流量パルスまでの時間全
測定するタイマと、前記カウンタにて旧教した流量パル
ス数と、前記タイマで測定した時間とから単位時間当り
の流量全演算する演算処理部とで構成した流−量測定装
置。
A flow rate sensor is installed in a fluid supply line and transmits a flow rate pulse every time d1 of a predetermined unit measurement volume of fluid is input, and the flow rate sensor is connected to a flow rate sensor that transmits a flow rate pulse each time a predetermined unit measurement volume of fluid is supplied. an arithmetic processing unit that calculates the flow rate per hour; the arithmetic processing unit includes a counter that counts the number of flow rate pulses; A flow rate measuring device comprising a timer for measuring, and an arithmetic processing section that calculates the total flow rate per unit time from the number of flow pulses measured by the counter and the time measured by the timer.
JP11372183A 1983-06-23 1983-06-23 Flow rate measuring apparatus Pending JPS604817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11372183A JPS604817A (en) 1983-06-23 1983-06-23 Flow rate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11372183A JPS604817A (en) 1983-06-23 1983-06-23 Flow rate measuring apparatus

Publications (1)

Publication Number Publication Date
JPS604817A true JPS604817A (en) 1985-01-11

Family

ID=14619455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11372183A Pending JPS604817A (en) 1983-06-23 1983-06-23 Flow rate measuring apparatus

Country Status (1)

Country Link
JP (1) JPS604817A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123670A (en) * 1976-04-09 1977-10-18 Takeda Riken Ind Co Ltd Digital frequency measuring device
JPS57520A (en) * 1980-06-02 1982-01-05 Ricoh Co Ltd Electronic type flowmeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123670A (en) * 1976-04-09 1977-10-18 Takeda Riken Ind Co Ltd Digital frequency measuring device
JPS57520A (en) * 1980-06-02 1982-01-05 Ricoh Co Ltd Electronic type flowmeter

Similar Documents

Publication Publication Date Title
GB2108794A (en) Rate meter for drip feed
US4953386A (en) Method and apparatus for proving electronic gas meters
JPS604817A (en) Flow rate measuring apparatus
US4549549A (en) Electronic sphygmomanometer
JP3203782B2 (en) Flow measurement device
US4926678A (en) Method and apparatus for proving electronic gas meters at low flow rates
JPS604816A (en) Flow rate measuring apparatus
JPS59226826A (en) Flow rate measuring device
JP3291772B2 (en) Appliance identification device
JPS604818A (en) Flow rate measuring apparatus
EP1130370A2 (en) Electronic scale
JP2910267B2 (en) Flow measurement device
JPH0610263Y2 (en) Instantaneous flow monitor
JPS5522131A (en) Timing meter
JPS60143710A (en) Apparatus for measuring flow rate of fluid
JPS5968632A (en) Electronic clinical thermometer
JPH06160530A (en) Counting rate meter
GB1510308A (en) Determining the average temperature of a flow of gas
JPH0627660B2 (en) Flow rate display method of flow rate display device
JP2002022519A (en) Flowmeter
JP2002365119A (en) Integrator for flow rate of fluid
JPS6330977Y2 (en)
JPH034945Y2 (en)
JPS58113780A (en) Time measuring circuit
JP3905665B2 (en) Fluidic gas meter