JPS6047989A - Cooling device for melted core - Google Patents

Cooling device for melted core

Info

Publication number
JPS6047989A
JPS6047989A JP58154893A JP15489383A JPS6047989A JP S6047989 A JPS6047989 A JP S6047989A JP 58154893 A JP58154893 A JP 58154893A JP 15489383 A JP15489383 A JP 15489383A JP S6047989 A JPS6047989 A JP S6047989A
Authority
JP
Japan
Prior art keywords
heat
molten core
heat pipe
core
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58154893A
Other languages
Japanese (ja)
Inventor
氏田 博士
明彦 湊
増原 康博
照文 河崎
松本 明良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58154893A priority Critical patent/JPS6047989A/en
Publication of JPS6047989A publication Critical patent/JPS6047989A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原子カプラントで事故時に発生する溶融炉心を
保持・冷却する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for holding and cooling a molten core that occurs in an nuclear couplant during an accident.

〔発明の背景〕[Background of the invention]

原子カプラントで事故が発生した場合、緊急炉心冷却系
が作動し、原子炉の熱全十分に除去し冷却することがで
きる。しかし、もし緊急炉心冷却系が故障すると、炉心
は溶融し、圧力容器を貫通し、溶融炉心がキャビティへ
落下する事態が考えうる。この際、溶融炉心がキャピテ
イの水と接触して水蒸気の発生が、またコンクリートと
反応して水蒸気や二酸化炭素等のガスの発生が起p1そ
の量が多量な場合には、5GTS等の非常用ガス処理系
の容量を越え、格納容器が過圧破損する恐れがある。こ
の様な炉心溶融事故の場合、放射性物質放出に対する4
種類の障壁のうち、1)燃料ベレット、2)燃料被覆管
、3)−次系は既に失なわれているため、格納容器が最
後の障壁である。
If an accident occurs in a nuclear couplant, the emergency core cooling system is activated and can sufficiently remove all the heat from the reactor and cool it down. However, if the emergency core cooling system were to fail, the core could melt, penetrate the pressure vessel, and fall into the cavity. At this time, the molten core contacts the water in the capacity and generates water vapor, and reacts with the concrete to generate gases such as water vapor and carbon dioxide.If the amount is large, emergency There is a risk that the capacity of the gas treatment system will be exceeded and the containment vessel will be damaged due to overpressure. In the case of such a core meltdown accident, 4.
Among the types of barriers, 1) fuel pellets, 2) fuel cladding tubes, and 3) secondary systems have already been lost, so the containment vessel is the last barrier.

米国サンプイア国立研究所の評価によると、格納容器の
過圧破損によるリスクが原子カプラントの全リスクの約
30%を占めている。このため、溶融炉心が水、コンク
リート等と接触し、水蒸気・ガスを発生し格納容器の圧
力が上昇することを妨たげることか安全上重要な課題と
なっている。
According to an assessment by the Sampuia National Laboratory in the US, the risk of overpressure failure of the containment vessel accounts for approximately 30% of the total risk of nuclear couplants. Therefore, it is an important safety issue to prevent the molten core from coming into contact with water, concrete, etc., generating steam and gas, and increasing the pressure in the containment vessel.

従来、一部の高速増殖炉には第1図に示す如き溶融炉心
保持装置が設けられている。また軽水炉においても類似
の保持装置の設置が炉心溶融事故対策の1つとして検討
され始めた。圧力容器1を溶融・貫通した炉心を受け取
めるべく、格納容器2の下部に炉心保持装置3が設けら
れている。炉心保持装置3の材質としては次の2つが考
えられている。
Conventionally, some fast breeder reactors are provided with a molten core holding device as shown in FIG. The installation of similar holding devices in light water reactors has also begun to be considered as a measure against core meltdown accidents. A core holding device 3 is provided at the lower part of the containment vessel 2 to receive the core that has melted and penetrated the pressure vessel 1 . The following two materials are considered for the core holding device 3.

(1)反射タイプ:Mg0(融点2800 C>の如き
高融点の耐熱材によシ溶融炉心を保持する。
(1) Reflection type: The molten core is held by a heat-resistant material with a high melting point such as Mg0 (melting point 2800 C).

(2)吸収タイプ:ガラス細片等の融解熱により溶融炉
心の熱を吸収する。
(2) Absorption type: The heat of the molten core is absorbed by the heat of fusion of glass fragments, etc.

しかし、炉心が溶融した場合、その重量、温度。But if the core melts, its weight, temperature.

発生熱量はそれぞれ580t、圧力容器を貫通する事故
後170分で30271r、2.3X10フWと美大な
ものであり、上記の炉心保持装置では永久保持すること
は不可能である。例えば、MgOの保持材を用いた場合
、4日で1.6m厚の炉心保持装置を貫通する。本装置
は熱を系外に放出するものではないため、炉Ib保持装
置貫通後は、コンク1.1 )等との反応によるガス発
生のため急激な格納容器圧力上昇に継がる。結局、従来
の方法では、放射性物質閉じ込めのための最後の障壁で
ある格納容器の破損を遅延させ、その間の放射性物質の
減衰を期待するものであり、本質的に格納容器の健全性
を保つことはできない。
The amount of heat generated is 580 tons, 30271 r at 170 minutes after the accident penetrating the pressure vessel, and 2.3 x 10 fuW, which is a huge amount, and it is impossible to maintain it permanently with the above-mentioned core holding device. For example, when MgO retaining material is used, it takes four days to penetrate a 1.6 m thick core retainer. Since this device does not release heat to the outside of the system, after penetrating the furnace Ib holding device, gas is generated due to reaction with conc. In the end, conventional methods delay the failure of the containment vessel, which is the last barrier for confining radioactive materials, and hope that the radioactive materials decay during this time, essentially maintaining the integrity of the containment vessel. I can't.

この対策として、溶融炉心を冷却する方法が考えつるが
、直接冷却材で冷却する方法では反応により水蒸気・ガ
ス等が発生し格納容器圧力上昇が起るため採用すること
は不可能である。
As a countermeasure to this problem, a method of cooling the molten core can be considered, but it is impossible to use the method of cooling directly with a coolant because the reaction generates water vapor, gas, etc., and the pressure in the containment vessel increases.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の問題を解決するために、非直接接触冷
却が可能なヒートパイプを用いて溶融炉心の熱を格納容
器外へ放出して溶融炉心を冷却・固化させてしまうこと
によシ格納容器の健全性を保つ溶融炉心冷却装置を提供
することを目的とする。
In order to solve the above problems, the present invention utilizes a heat pipe capable of non-direct contact cooling to cool and solidify the molten core by discharging the heat of the molten core to the outside of the containment vessel. The purpose is to provide a molten core cooling system that maintains the integrity of the containment vessel.

〔発明の実施例〕[Embodiments of the invention]

以下、本1発明の一実施例を第2図を用いて説明する。 An embodiment of the present invention will be described below with reference to FIG.

第2図は本発明になる溶融炉心冷却装置である。圧力容
器lを貫通した溶融炉心4は炉心保持装置3に保持され
る。ヒートパイプ5は吸熱部6が溶融炉心4に浸けられ
、放熱部7は格納容器の外部に設けられている。非直接
接触冷却であるため格納容器2内の圧力は上昇せず、ヒ
ートパイプ5によシ溶融炉心4は、熱全格納容器外に放
出され、炉心保持装置3の上で冷却・固化してしまい、
格納容器2の健全性は確保される。
FIG. 2 shows a molten core cooling system according to the present invention. The molten core 4 that has passed through the pressure vessel 1 is held by a core holding device 3. The heat pipe 5 has a heat absorption part 6 immersed in the molten core 4, and a heat radiation part 7 provided outside the containment vessel. Because it is non-direct contact cooling, the pressure inside the containment vessel 2 does not rise, and the molten core 4 is discharged outside the thermal containment vessel through the heat pipes 5, where it is cooled and solidified on the core holding device 3. Sisters,
The integrity of the containment vessel 2 is ensured.

ここで炉心保持装置3の材質・規模について検討する。Here, the material and scale of the core holding device 3 will be considered.

炉心保持装置3の材質としては高融点の耐熱材が必要で
ある。考えられる材質としては、W (’Imelt”
= 3377 C) 、 C(Tmelt ) 350
0C)TaC(Tme I t = 3880C)があ
る。またその規模は、圧力容器の内径が6.4mあるの
で、溶融炉心を総て受けるためには円半径r = 3.
2 m以上の断面を持つ凹状の保持装置が必要である。
The material for the core holding device 3 needs to be a heat-resistant material with a high melting point. Possible materials include W ('Imelt)
= 3377 C), C(Tmelt) 350
0C) TaC (Tme It = 3880C). In addition, since the inner diameter of the pressure vessel is 6.4 m, the radius of the circle r = 3.0 m is required to receive the entire molten core.
A concave holding device with a cross section of 2 m or more is required.

また、炉内構造物が総て落下した場合、その重量は58
0tであり、UO2の密度1o、sg/cdを代表とし
て用いると容量は55m1となシ、これを半球状の炉心
保持装置で受けることを考えると、r=3.0mとなる
。これよシ溶融炉心保持装置3の形状を半球状とした場
合その半径r = 3.5 m程度が妥当である。 い 次にヒートパイプの外管と媒体の材質について検討する
。外管の拐質としては高融点かつ高熱伝導率のものが必
要であシ、次のものが考えられる。
In addition, if all the reactor internals were to fall, their weight would be 58
0t, and using UO2 density 1o and sg/cd as a representative, the capacity is 55m1. Considering that this is received by a hemispherical core holding device, r = 3.0m. If the shape of the molten core holding device 3 is hemispherical, it is appropriate that the radius r = about 3.5 m. Next, we will consider the material of the heat pipe's outer tube and medium. The material for the outer tube must have a high melting point and high thermal conductivity, and the following materials can be considered.

W:融点 Tmel t = 3377C熱伝導率λ=
 1.5 W/ On−deg (a t200cE’
)C: Tme I t > 3500 CJ = 1
..05W/Cm −deg (a t 1000 C
)このうちタングステン(W)については実績があるの
でWt−用いる方が良い。冷却媒体としては、溶融炉心
が約3000Cと高温であるので、第1表に示す如く熱
流束が大きく取れる高温用冷却媒体Na、に等を用いる
ことができる。′よたこれらの金属は第2表に示す如く
室温で固体かつ溶融炉心が落下すれば、自動的に溶融・
蒸発する。このため、通常運転時は固体であるため安全
性が高く、事故時には何らの起動機構も必要とせずに自
動起動する。
W: Melting point Tmel t = 3377C Thermal conductivity λ =
1.5 W/ On-deg (at200cE'
) C: Tme It > 3500 CJ = 1
.. .. 05W/Cm -deg (at 1000C
) Among these, tungsten (W) has a proven track record, so it is better to use Wt. As the cooling medium, since the molten core is at a high temperature of about 3000 C, a high temperature cooling medium such as Na, which can obtain a large heat flux as shown in Table 1, can be used. As shown in Table 2, these metals are solid at room temperature and automatically melt when the molten core falls.
Evaporate. Therefore, during normal operation, it is highly safe because it is solid, and in the event of an accident, it automatically starts without the need for any starting mechanism.

第1表 第2表 さらにヒートパイプ5の規模について検討する。Table 1 Table 2 Furthermore, the scale of the heat pipe 5 will be considered.

まず、伝熱管の口径f、Naを冷却媒体として用いた場
合について計算する。伝熱管の伝熱面積Sに次式で計算
できる。
First, the diameter f of the heat exchanger tube and the case where Na is used as the cooling medium will be calculated. The heat transfer area S of the heat transfer tube can be calculated using the following formula.

Q=(1軸×S ここで Q;発生熱i=3.7X10’Wq軸:軸方向
熱流束 = 6000W/Cm’ (第1表参照)これよ、?S
=0.38m”、半径に直すとr=0.35mとなシ、
この半径以上の円筒状の伝熱管が必要であるが、十分実
現可能である。
Q = (1 axis x S where Q; generated heat i = 3.7
= 0.38m", converted to radius, r = 0.35m,
Although a cylindrical heat exchanger tube with a radius greater than this is required, it is completely possible.

次にヒートパイプ吸熱部6の伝熱面21検討する。伝熱
面積si次式で計算できる。
Next, the heat transfer surface 21 of the heat pipe heat absorption section 6 will be examined. The heat transfer area can be calculated using the following equation.

Q=□ ・S 1 /q半径+1/hd・ΔT ここで q半径:半径方向熱流束 = 30 ow/cm’ (第1表参照)hd:溶融炉
心−ヒートバイブ吸熱 部間の熱伝達率= 5000W/m’ ψdeg ΔT:溶融炉心−ヒートパイプ吸熱 部間の温度差=20001; これよjりS=10m’ となる。これを達成するため
には、第3図に示す如く、半径1.8mの円状の吸熱板
とすれば良い。また1辺が3.2mの正方形の吸熱板で
も可能である。これらは半径3.5m程度の半球状の炉
心保持装置3に十分に設置することが可能である。本方
法ではヒートパイプの吸熱部6が直接接触しているため
に10mzの伝熱面で達成できた。これよシ、ヒートパ
イプを炉心保持装置3に埋め込む、もしくは下方に置く
構造では、実現不可能である。
Q=□ ・S 1 /q radius + 1/hd・ΔT where q radius: radial heat flux = 30 ow/cm' (see Table 1) hd: heat transfer coefficient between molten core and heat vibration heat absorption part = 5000 W/m' ψdeg ΔT: Temperature difference between the molten core and the heat pipe heat absorption part = 20001; From this, S = 10 m'. In order to achieve this, a circular heat absorbing plate with a radius of 1.8 m may be used as shown in FIG. It is also possible to use a square heat absorbing plate with one side of 3.2 m. These can be fully installed in the hemispherical core holding device 3 with a radius of about 3.5 m. In this method, since the heat absorbing part 6 of the heat pipe is in direct contact with each other, it was possible to achieve this with a heat transfer surface of 10 mz. This cannot be achieved with a structure in which the heat pipe is embedded in the core holding device 3 or placed below it.

また、ヒートパイプの放熱部7は格納容器2の外部であ
るため、面積全十分に取ることができる。
Furthermore, since the heat dissipation section 7 of the heat pipe is located outside the containment vessel 2, a sufficient area can be taken up.

さらに効率を向上させるために放熱フィン8を付ける方
法も可能である。
Furthermore, it is also possible to attach heat radiation fins 8 to improve efficiency.

第4図は本発明になるもう1つの実施例である。FIG. 4 shows another embodiment of the present invention.

炉心保持装置3はサプレッションプール水9に水浸けに
なった状態になっておシ、プール水9による冷却の効果
が追加される。炉心保持装置の厚みt = 0.1 m
とすると、プール水の冷却のみで溶融炉心4を十分に冷
却する能力を持っている。またヒートパイプの放熱部7
は燃料プール水8に水浸けにされてお)、放熱の効率向
上を図っている。
The core holding device 3 is immersed in the suppression pool water 9, and the cooling effect of the pool water 9 is added. Core holding device thickness t = 0.1 m
If so, it has the ability to sufficiently cool the molten core 4 only by cooling the pool water. Also, the heat dissipation part 7 of the heat pipe
is immersed in fuel pool water 8) to improve the efficiency of heat dissipation.

第5図は、本発明になるもう1つの実施例である。本実
施例では、ヒートパイプ5がループ型をしている。本構
造によれば蒸発・上昇と凝縮・下降の流路が分離される
ため、対向流による界面抵抗がなく、熱輸送の効率向上
が図れる。またヒートパイプ5がプール水に水浸けにさ
れているため凝縮効果が増す。
FIG. 5 shows another embodiment of the present invention. In this embodiment, the heat pipe 5 is loop-shaped. According to this structure, the evaporation/rising flow path and the condensation/falling flow path are separated, so there is no interfacial resistance due to opposing flows, and the efficiency of heat transport can be improved. Furthermore, since the heat pipe 5 is immersed in pool water, the condensation effect is increased.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、直接接触冷却でない
ため、1)水蒸気・ガス発生による格納容器圧力上昇が
ない、11)化学反応による熱発生かない、ヒートパイ
プを用いるため、in) 安価かつ高信頼性、吸熱部が
直接炉心に接しているため、1い熱伝達率が犬、放熱部
が格納容器外に設けられているため、V)温度・圧力の
上昇を抑えられる、Na、に等の高融点、高沸点の冷却
媒体を用いているため、■1)自動的に作動する、vi
i)熱伝達率が大、WXC等の超高融点のヒートパイプ
外管、溶融炉心保持材を用いているため、viii)融
解に伴なうガス発生がない、I×)溶融・貫通による急
激な反応がない、等の多くの特徴を持つ、溶融炉心を冷
却・固化する装置全提供でき、これによシ、格納容器の
健全性金保つことができる。
As explained above, according to the present invention, since there is no direct contact cooling, 1) there is no pressure increase in the containment vessel due to the generation of water vapor or gas, 11) there is no heat generation due to chemical reactions, and since a heat pipe is used, in) inexpensive and high cost; Reliability: Since the heat absorption part is in direct contact with the reactor core, the heat transfer coefficient is 1.V) Since the heat radiation part is provided outside the containment vessel, increases in temperature and pressure can be suppressed, Na, etc. Because it uses a cooling medium with a high melting point and a high boiling point, ■1) Automatic operation, vi
i) High heat transfer coefficient, using ultra-high melting point heat pipe outer tube such as WXC, and molten core holding material, viii) No gas generation due to melting, Ix) Rapid reduction due to melting/penetration We can provide a complete system for cooling and solidifying the molten core, which has many features such as no reaction, and thereby maintains the integrity of the containment vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の溶融炉心保持装置の断面図、第2図は本
発明の一実施例による溶融炉心冷却装置の断面図、第3
図は本発明の一実施例による溶融炉心冷却装置のうちヒ
ートパイプの吸熱部の拡大図、第4図は本発明のもう一
つの実施例による溶融炉心冷却装置の断面図、第5図は
本発明のさらにもう一つの実施例による溶融炉心冷却装
置の断面図である。 1・・・圧力容器、2・・・格納容器、3・・・炉心保
持装置、4・・・溶融炉心、5・・・ピートノζイブ、
6・・・ヒーしくイブ吸熱部、7・・・ヒートツクイブ
放熱部、8・・・放熱第1頁の続き 0発 明 者 松 本 明 良 東京都千代田区神1作
所内
FIG. 1 is a sectional view of a conventional molten core holding device, FIG. 2 is a sectional view of a molten core cooling device according to an embodiment of the present invention, and FIG.
The figure is an enlarged view of the heat absorption part of the heat pipe in the molten core cooling system according to one embodiment of the present invention, FIG. 4 is a sectional view of the molten core cooling system according to another embodiment of the present invention, and FIG. FIG. 3 is a cross-sectional view of a molten core cooling device according to yet another embodiment of the invention. DESCRIPTION OF SYMBOLS 1... Pressure vessel, 2... Containment vessel, 3... Core holding device, 4... Molten core, 5... Pete no ζ Eve,
6...Heat Tsukibu heat absorption section, 7...Heat Tsukibu heat dissipation section, 8...Continued from page 1 of heat dissipation0 Inventor Akira Matsumoto Kami 1 Sakusho, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】 1、圧力容器直下に位置し、圧力容器水平断面よシ広い
面積を持った溶融炉心を受ける容器と、吸熱部が溶融炉
心に浸ム放熱部が格納容器の外部に設けられたヒートパ
イプとによシ構成され、非直接接触冷却によシ溶融炉心
の熱を格納容器外に放出できること番特徴とする溶融炉
心冷却装置。 2、前記ヒートパイプの媒体として、融点が300以上
の材料を用いること全特徴とする特許請求の範囲第1項
記載の溶融炉心冷却装置。 3、前記ヒートパイプの外管吸熱部と容器として、融点
が3000C以上の材料を用いることを特徴とする特許
請求の範囲第1項記載の溶融炉心冷却装置。 4、前記溶融炉心を受ける容器を抑力仰制室の冷却水に
浸すことを特徴とする特許請求の範囲第1項記載の溶融
炉心冷却装置。 5、前記ヒートパイプの放熱部を燃料プール水に浸けた
ことを特徴とする特許請求の範囲第1項記載の溶融炉心
冷却装置。 6、前記ヒートパイプをループ型とし、熱効率を向上さ
せたこと’t%徴とする特許請求の範囲第1項記載の溶
融炉心冷却装置。
[Claims] 1. A vessel for receiving the molten core located directly below the pressure vessel and having a wider area than the horizontal cross section of the pressure vessel, and a heat absorbing part immersed in the molten core and a heat radiating part provided outside the containment vessel. 1. A molten core cooling system comprising a heat pipe and a molten core cooling system, which is characterized in that the heat of the molten core can be released to the outside of the containment vessel by non-direct contact cooling. 2. The molten core cooling system according to claim 1, characterized in that a material having a melting point of 300 or more is used as the medium of the heat pipe. 3. The molten core cooling device according to claim 1, wherein a material having a melting point of 3000C or more is used for the outer pipe heat absorption part and the container of the heat pipe. 4. The molten core cooling system according to claim 1, wherein the container receiving the molten core is immersed in the cooling water of the suppression suction chamber. 5. The molten core cooling device as set forth in claim 1, wherein the heat radiating portion of the heat pipe is immersed in fuel pool water. 6. The molten core cooling device according to claim 1, wherein the heat pipe is of a loop type to improve thermal efficiency.
JP58154893A 1983-08-26 1983-08-26 Cooling device for melted core Pending JPS6047989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154893A JPS6047989A (en) 1983-08-26 1983-08-26 Cooling device for melted core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154893A JPS6047989A (en) 1983-08-26 1983-08-26 Cooling device for melted core

Publications (1)

Publication Number Publication Date
JPS6047989A true JPS6047989A (en) 1985-03-15

Family

ID=15594253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154893A Pending JPS6047989A (en) 1983-08-26 1983-08-26 Cooling device for melted core

Country Status (1)

Country Link
JP (1) JPS6047989A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195595A (en) * 2003-12-31 2005-07-21 General Electric Co <Ge> Core catcher cooling
JP2008241657A (en) * 2007-03-29 2008-10-09 Toshiba Corp Reactor container
JP2014048110A (en) * 2012-08-30 2014-03-17 Hitachi-Ge Nuclear Energy Ltd Cooling facilities of reactor pressure vessel
JP2019045433A (en) * 2017-09-06 2019-03-22 日立Geニュークリア・エナジー株式会社 Nuclear reactor container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195595A (en) * 2003-12-31 2005-07-21 General Electric Co <Ge> Core catcher cooling
JP4620449B2 (en) * 2003-12-31 2011-01-26 ゼネラル・エレクトリック・カンパニイ Core catcher cooling assembly and nuclear reactor having the assembly
JP2008241657A (en) * 2007-03-29 2008-10-09 Toshiba Corp Reactor container
JP2014048110A (en) * 2012-08-30 2014-03-17 Hitachi-Ge Nuclear Energy Ltd Cooling facilities of reactor pressure vessel
JP2019045433A (en) * 2017-09-06 2019-03-22 日立Geニュークリア・エナジー株式会社 Nuclear reactor container

Similar Documents

Publication Publication Date Title
US4036688A (en) Apparatus for controlling molten core debris
JP3118489B2 (en) Reactor with equipment for recovery of core after accidental meltdown of reactor
US4022662A (en) Nuclear fuel element having a metal liner and a diffusion barrier
RU2576516C1 (en) System of localisation and cooling of melt of active zone of pressurised water reactor
EA032395B1 (en) System for confining and cooling melt from the core of a water cooled-water modified reactor
RU2696612C1 (en) Melt localization device
RU2696004C1 (en) System for localization and cooling of molten core of nuclear reactor of water-cooled type
JP6630746B2 (en) Reactor passive protection system
JPH03152497A (en) Passive type dry well water injector
US9384863B2 (en) Apparatus for retention of molten material outside generation IV reactor after nuclear power plant accident
JP3263402B2 (en) Clearance structure for reactor vessel
JPH06201879A (en) Melting reactor-core holding mechanism for light water reactor
JPS6047989A (en) Cooling device for melted core
US4076587A (en) Fuse and application of said fuse to the construction of an emergency shutdown system for a nuclear reactor
US3037924A (en) Jacketed body
JPH033917B2 (en)
JPS6047988A (en) Cooling device for melted core
JP7506825B2 (en) System for localization and cooling of molten core in nuclear reactors
JP2023548267A (en) System for localization and cooling of core melt in nuclear reactors
WO2021188007A1 (en) System for confining and cooling melt from the core of a nuclear reactor
RU2740400C1 (en) Guiding device of nuclear reactor core melt localization and cooling system
RU2750230C1 (en) Localization and cooling system for core melt of nuclear reactor
RU2810651C1 (en) Melt containment device filler
Dunckel Emergency heat removal system for a nuclear reactor
RU2017242C1 (en) Nuclear reactor