JPS6047965A - Laser doppler speedometer - Google Patents

Laser doppler speedometer

Info

Publication number
JPS6047965A
JPS6047965A JP15490683A JP15490683A JPS6047965A JP S6047965 A JPS6047965 A JP S6047965A JP 15490683 A JP15490683 A JP 15490683A JP 15490683 A JP15490683 A JP 15490683A JP S6047965 A JPS6047965 A JP S6047965A
Authority
JP
Japan
Prior art keywords
signal
particle
laser
buffer memory
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15490683A
Other languages
Japanese (ja)
Inventor
Makoto Shimoda
誠 下田
Tsugita Yukitake
雪竹 次太
Kazuichi Saito
斉藤 一一
Koichi Nemoto
根本 浩一
Keizo Otsuka
大塚 馨象
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15490683A priority Critical patent/JPS6047965A/en
Publication of JPS6047965A publication Critical patent/JPS6047965A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To make it possible to measure a particle size and a particle concn. simultaneously with a particle speed, by imparting a particle size analytical analysis to a laser Doppler speedometer. CONSTITUTION:A burst signal is analysed in state separated into a high frequency component and a low frequency component. That is, the high frequency component is analyzed by a frequency analyser 10 while the low frequency component is analyzed by a pulse crest analyser 13 and the synchronism of both signals is discriminated by a signal analyser 14 and, if both signals are synchronous, it is discriminated that both signals are ones generated from one particle which passed a measuring point and both signals are recorded by buffer memory 11. This operation is repeated many times and statistical processing is performed by using a counter 12 to measure a particle size simultaneously with a particle speed. The frequency of a Doppler signal being the flow speed component in the burst signal and the pulse crest value of a pedestal signal being a particle size component are recorded as a pair by the buffer memory 11. The frequency fD of the Doppler signal is converted to the speed V of the particle from this buffer memory 11.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は二本のレーザービームの交点に生ずる干渉縞に
粒子を横切り通過させ、その際、発生する散乱光パルス
を二次電子増倍管に受光して電気パルスとして計数し、
流体中の粒子速度を測定するレーザ・ドラグラ速度計の
改良に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention allows interference fringes generated at the intersection of two laser beams to pass across particles, and the scattered light pulses generated at that time are transmitted to a secondary electron multiplier. Receive light and count it as electrical pulses,
This paper relates to improvements in laser draglar velocimeters for measuring particle velocities in fluids.

〔発明の背景〕[Background of the invention]

従来のレーザ−ドッグ2速度計は第1図に示す構成のも
のである。すなわち、レーザー光源1から発生したレー
ザビームは偏波面回転器2を通ってビームスグリツタ3
で二本の等強度のビームとし、このうちの一本を周波数
シフター4でビーム周波数をシフトさせる。この二本の
ビームは収束レンズ5を通り、測定点6で干渉縞を形成
する。
A conventional laser-dog dual speed meter has the configuration shown in FIG. That is, a laser beam generated from a laser light source 1 passes through a polarization plane rotator 2 and then passes through a beam sinter 3.
Two beams of equal intensity are formed, and the beam frequency of one of them is shifted by a frequency shifter 4. These two beams pass through a converging lens 5 and form interference fringes at a measurement point 6.

粒子7がこの干渉縞を通過すると、散乱光パルスを発生
する。二本のビームはビームストッパ7でじゃへいし、
発生した散乱光パルスだけを集光レンズ8全通して集光
し、光電変換器9で電気信号に変換する。この電気信号
は第2図に示すようなバースト信号と呼ばれるもので、
これを周波数解析器10でバースト信号中の高周波成分
である。
When particles 7 pass through this interference pattern, they generate scattered light pulses. The two beams are blocked by beam stopper 7,
Only the generated scattered light pulses are collected through the condensing lens 8 and converted into electrical signals by the photoelectric converter 9. This electrical signal is called a burst signal as shown in Figure 2.
This is detected by the frequency analyzer 10 as a high frequency component in the burst signal.

ドラグラ信号の周波数fDを解析し、これから次式を用
いて計算器12で粒子の速度を計算していた。
The frequency fD of the drag signal was analyzed, and the speed of the particle was calculated from this using the following equation in the calculator 12.

fD・λ。fD・λ.

・・・・・・・・・・・・・・・・・・・・・・・・・
・・(1)θ 28川− ここで、λ0はレーザビームの波長、θはレーザビーム
の交叉角、■は粒子の速度である。
・・・・・・・・・・・・・・・・・・・・・・・・
...(1) θ 28 River - Here, λ0 is the wavelength of the laser beam, θ is the intersection angle of the laser beam, and ■ is the speed of the particle.

しかし、従来のシステムでは、第2図に示したバースト
信号による情報伝達を十分に活用していない。
However, conventional systems do not fully utilize the information transmission by burst signals shown in FIG.

この原因は第2図のバースト信号の中で粒子径を示す信
号として、ペデスタル信号の振幅Apとドッグ2−信号
の振幅AsO比A p /A sが考えられており、こ
れらを同時に処理する必要があり、この信頼性が充分に
得られていないためである。
The reason for this is thought to be the amplitude Ap of the pedestal signal and the amplitude AsO ratio A p /A s of the dog 2 signal as signals indicating the particle diameter in the burst signal in Fig. 2, and it is necessary to process these simultaneously. This is because this reliability has not been sufficiently obtained.

しかし、最近、ある特定の粒子径の粒子を二種類、気流
中に同伴させ、これをペデスタル信号の大きさで分別し
て測定した例(日本機械学会誌、vo+ 84. If
x756. P66. 昭和56年11月号)もあるが
、広い分布中をもつ粒子については未だ研究中である。
However, recently, there has been an example in which two types of particles with a certain particle size are entrained in an airflow, and they are separated and measured based on the magnitude of the pedestal signal (Journal of the Japan Society of Mechanical Engineers, vo+ 84. If
x756. P66. (November 1981 issue), but research on particles with a wide distribution is still under way.

また、従来、レーザ・ドラグラ速度計は気流の運動を解
析するだめに用いられており、ある程度均一な粒子径の
粉体を気流中に添加し、この粉体の速度から気流の運動
を解析していた。このため、粉体の粒子径と速度の関係
は特別に必要な情報ではなかったので、注目されていな
かった。
In addition, conventionally, laser dragler velocimeters have been used to analyze the movement of airflow, by adding powder with a somewhat uniform particle size to the airflow, and analyzing the movement of the airflow from the velocity of this powder. was. For this reason, the relationship between powder particle size and velocity was not particularly necessary information and did not receive much attention.

〔発明の目的〕[Purpose of the invention]

本発明の目的はレーザードラグラ速度計に粒径解析機能
をもたせ、粒子径と粒子速度の相関関係から、気流中の
粒子濃度全測定するし〜ザ・ドラグラ速度計を提供する
にある。
An object of the present invention is to provide a laser dragura velocimeter that has a particle size analysis function and can measure the total particle concentration in an air stream based on the correlation between particle diameter and particle velocity.

〔発明の概要〕[Summary of the invention]

本発明は粒子径を示す信号が前述のA p /A sで
はなく、ペデスタル信号の振幅Apだけで充分ではない
かと考え、これを実験的に確認した事実に基づくもので
ある。
The present invention is based on the fact that it was thought that the amplitude Ap of the pedestal signal alone, rather than the above-mentioned A p /A s, would be sufficient as a signal indicating the particle diameter, and this was experimentally confirmed.

実験は第3図のシステムを用い、常温常圧の空気を搬送
ガスとし、この中へ粒子として平均粒径5μmのフライ
アッシュを同伴させ、同一の条件の粒子径を等度吸引し
て光散乱方式のダストモニタで測定し、まだ、同じ点で
レーザードツプラ法で測定したペデスタル信号の振幅A
pとの相関関係をもとめると、第4図のようになった。
The experiment was carried out using the system shown in Figure 3. Air at room temperature and pressure was used as the carrier gas, fly ash with an average particle size of 5 μm was entrained into the air, and particles with the same size were attracted to the same level to cause light scattering. Amplitude A of the pedestal signal measured by the method dust monitor and still measured by the laser Doppler method at the same point
The correlation with p was found as shown in Figure 4.

すなわち、ペデスタル信号の振幅Apと光散乱方式ダス
トモニタで測定した粒子径Dpとは良い相関関係がらり
、次式の関係で示される。
That is, there is a good correlation between the amplitude Ap of the pedestal signal and the particle diameter Dp measured by the light scattering type dust monitor, which is expressed by the following equation.

Ap=C−D、 ・・・・・・・・・・・・・・・・・
・・・・(2)ここで、Cは二次電子増倍管の増幅率や
レーザビーム強度等で決まる係数であり、αはレーザー
の光学系で定まる定数である。
Ap=C-D, ・・・・・・・・・・・・・・・・・・
(2) Here, C is a coefficient determined by the amplification factor of the secondary electron multiplier, laser beam intensity, etc., and α is a constant determined by the laser optical system.

(2)式により、ペデスタル信号の振幅Apがら粒子径
が換算できるという知見を初めて明らかにできた。従っ
て、粒子の粒子径と速度を同時に測定できることになる
。この結果を第5図に示す。この結果から、常温常圧の
空気を搬送ガスとし、ガス流速を1 m / s程度と
した場合には1μm以上の粒子では気流の流れから徐々
にずれてくることがわかる。すなわち、気流の速度を計
算する場合には、1μm以下の粒子の平均速度をとれば
よいことがわかった。
For the first time, we have found that the particle diameter can be calculated from the amplitude Ap of the pedestal signal using equation (2). Therefore, the particle size and velocity of particles can be measured simultaneously. The results are shown in FIG. This result shows that when air at room temperature and pressure is used as the carrier gas and the gas flow velocity is about 1 m/s, particles of 1 μm or more gradually deviate from the air flow. That is, it has been found that when calculating the speed of airflow, it is sufficient to take the average speed of particles of 1 μm or less.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図を用いて説明する。 An embodiment of the present invention will be described below with reference to FIG.

第3図が第1図と異なるのは第2図に示すようなバース
ト信号を高周波成分と低周波成分に分離して解析する点
である。すなわち、高周波成分は従来と同様に周波数解
析器lOで解析し、低周波成分はパルス波高値解析器1
3で解析し、この両者の信号が同期しているかどうかを
信号解析器14で判別し、同期していれば、この両者の
信号が測定点を通過した一個の粒子から発生した信号で
あるとみなして、バッファメモリ11へ記録する。これ
を多数回繰り返し、計算器12’Th用いて統計処理し
て、粒子速度と同時に粒子径を測定する。
The difference between FIG. 3 and FIG. 1 is that the burst signal shown in FIG. 2 is separated into high frequency components and low frequency components for analysis. That is, the high frequency components are analyzed by the frequency analyzer 1O as before, and the low frequency components are analyzed by the pulse wave height value analyzer 1.
3, and the signal analyzer 14 determines whether or not these two signals are synchronized. If they are synchronized, it is determined that both signals are generated from a single particle that passed through the measurement point. and records it in the buffer memory 11. This is repeated many times, and statistical processing is performed using the calculator 12'Th to measure the particle speed and particle diameter.

次に、粒子径の計算方法を第6図金剛いて説明する。第
3図のバッファメモリ11には、バースト信号中の流速
成分であるドツプラー信号の周波数と粒径成分であるペ
デスタル信号のパルス波高値が一対として記録されてい
る。このバッファメモリllから、ドツプラ信号の周波
数fDは演算124TL/−ザーの波長λ。とレーザー
光の交叉角θとで(1)式の演算が行なわれ、粒子の速
度Vに変換される。一方、パルス波高値Apは乗算器2
1で係数1/C及びl/αとで、次式の演算により粒子
径Dpに変換される。変換された各々の粒子径Drと粒
子速度Vは、演算器22によりDpo+Vo・・・Dp
m 、 VBなるように一定の順序に並べかえられ、さ
らに、演算器23により算出されたそれらの頻度F。・
・・F、と共に一対としてDp6 g Vo +Fo 
・・・Dp−、V、 、 Fゎとして記録される。
Next, a method for calculating the particle diameter will be explained with reference to FIG. In the buffer memory 11 of FIG. 3, the frequency of the Doppler signal, which is the flow velocity component in the burst signal, and the pulse height value of the pedestal signal, which is the particle size component, are recorded as a pair. From this buffer memory 11, the frequency fD of the Doppler signal is calculated as 124TL/-the wavelength λ of the laser. The calculation of equation (1) is performed using the intersection angle θ of the laser beam and the velocity V of the particle. On the other hand, the pulse peak value Ap is calculated by the multiplier 2.
1, the coefficients 1/C and l/α are used to calculate the particle diameter Dp using the following equation. The converted particle diameter Dr and particle velocity V are calculated by the computing unit 22 as Dpo+Vo...Dp
m, VB, and their frequencies F calculated by the calculator 23.・
...Dp6 g Vo +Fo as a pair with F
...Recorded as Dp-, V, , Fゎ.

以上の操作により、レーザー・ドラグラ速度計のバース
ト信号全ドツプラー信号とペデスタル信号に分離して解
析することにより、粒子速度Vだけでなく、その時の粒
子径Dpも同時に測定しうる。
Through the above operations, by separating and analyzing the burst signal of the laser dragler velocimeter into the entire Doppler signal and the pedestal signal, not only the particle velocity V but also the particle diameter Dp at that time can be measured simultaneously.

また、第5図に示したように、1μm以下の粒子は、は
ぼ、ガスの流れ全表わすのに対して、1μm以上の粒子
ではガスの流れからずれてくることが明らかである。従
って、第6図を更に発展させた実施例として、第7図が
考えられる。
Furthermore, as shown in FIG. 5, it is clear that particles of 1 μm or less indicate the entire gas flow, whereas particles of 1 μm or more deviate from the gas flow. Therefore, FIG. 7 can be considered as an embodiment that is a further development of FIG. 6.

第7図の例は第6図とペデスタル信号のパルス波高値A
Pを粒子径Dpに換算する部分までは等しいが、それ以
後の信号処理法が異なる。第7図では、粒子径り、をま
す、ガスの流れとほとんどずれない粒子径D1 ガス流
速が1 m/ sてあれば、第5図から1μmと演算器
31で比較して、粒子径り以下の粒子の平均速度V(、
計算し、これ全測定した点におけるガス流速とし、更に
、その流れに対して相対するレーザービームの交点の断
面積S1 このSは光学系(レーザービームの大きさ、
レンズ系など)で決まる値との積、っまゎ、断面積Sを
通過するガス量Q猷乗算器32で計算される。一方、演
算器21で計算された粒子径Dpの粒子の重量m、は粒
子の比重ρlと粒子径Dpを演算器33に入力して計算
される。この操作を多数個の粒子例ついて行ない、演算
器34で計算して累積重量Mとして出力する。次に、こ
の累積重量Mとこの時のサンプリング時間における平均
ガスj&Qとを入力することにより、演算器34で計算
して、その時の単位ガス量当りの重量Wとして出力する
The example in Figure 7 is the same as Figure 6 and the pulse height value A of the pedestal signal.
Although they are the same up to the part where P is converted to the particle diameter Dp, the subsequent signal processing methods are different. In Fig. 7, the particle diameter D1 is almost equal to the gas flow.If the gas flow velocity is 1 m/s, the particle diameter is compared with 1 μm from Fig. 5 using the calculator 31. Average velocity V(,
Calculate this as the gas flow velocity at all measured points, and furthermore, the cross-sectional area S1 of the intersection of the laser beam facing the flow. This S is the optical system (the size of the laser beam,
The product of Q and the amount of gas passing through the cross-sectional area S is calculated by the multiplier 32. On the other hand, the weight m of the particle having the particle diameter Dp calculated by the calculator 21 is calculated by inputting the specific gravity ρl of the particle and the particle diameter Dp to the calculator 33. This operation is performed for a large number of particle examples, and the calculation unit 34 calculates and outputs the cumulative weight M. Next, by inputting this cumulative weight M and the average gas j&Q at this sampling time, the calculator 34 calculates and outputs the weight W per unit gas amount at that time.

第7図の例によれば、測定点における粒子の速度、粒子
径に加えて粒子濃度さも算出し得る。
According to the example shown in FIG. 7, in addition to the particle velocity and particle diameter at the measurement point, the particle concentration can also be calculated.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、レーザー・ドラグラ速度計により、粒
子速度と同時に粒子径及び粒子濃度を測定できる。
According to the present invention, particle size and particle concentration can be measured simultaneously with particle velocity using a laser draglar velocimeter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザー・ドラグラ速度計の系統図、第
2図はバースト信号の模式図、第3図は本発明のレーザ
・ドラグラ速度計の系統図、第4図はパルス波高値と粒
子径の校正曲線図、第5図はガス流速と粒子径の特性図
、第6図は本発明の計算方法の一例を示すブロック図、
第7図は本発明の他の実施例のブロック図である。 l・・・レーザ光源、2・・・偏波面回転器、3・・・
ビーム−”j’)ツ1−14・・・周波数シフター、5
・・・収束レンズ、7・・・ビーム拳ストッパ、8・・
・集光レンズ、9・・・光電変換器、10・・・周波数
解析器、11・・・バッファメモリ、12・・・計算器
、21・・・乗算器、24・・・演算器、31・・・演
算器、32・・・乗算器、準4図 #L4 (l DP (pm) 電S図 a手性DP(P−′rrI) 第1頁の続き 0発 明 者 大 塚 馨 象 日立市幸町3丁目所内
Figure 1 is a system diagram of a conventional laser dragler speedometer, Figure 2 is a schematic diagram of a burst signal, Figure 3 is a system diagram of a laser dragler speedometer of the present invention, and Figure 4 is a pulse peak value and particle Diameter calibration curve diagram, Figure 5 is a characteristic diagram of gas flow rate and particle diameter, Figure 6 is a block diagram showing an example of the calculation method of the present invention,
FIG. 7 is a block diagram of another embodiment of the invention. l...Laser light source, 2...Polarization plane rotator, 3...
Beam-"j')tsu1-14...Frequency shifter, 5
... Converging lens, 7... Beam fist stopper, 8...
- Condenser lens, 9... Photoelectric converter, 10... Frequency analyzer, 11... Buffer memory, 12... Calculator, 21... Multiplier, 24... Arithmetic unit, 31 ... Arithmetic unit, 32... Multiplier, quasi-4 diagram #L4 (l DP (pm) Electron S diagram a-manual DP (P-'rrI) Continued from page 1 0 Inventor Kaoru Otsuka Sho Hitachi City Saiwaimachi 3-chome premises

Claims (1)

【特許請求の範囲】 1、 レーザ光源と、このレーザ光源より出たビームを
二本のビームに分割するビームスグリツタ−と、この二
本のビームを集光する光学系と、前記二本のビームの交
点を通過した粒子から発生した散乱光を電気信号に変換
する光電変換器と、この光電変換器からの信号をうけ、
このうちトップ2−信号の周波数を計測する周波数解析
器と、ペデスタル信号の波高値を計測するパルス波高値
解析器と、前記ドツプラー信号と前記ペデスタル信号の
発生時間を計測し、同期の検定を行なう同期解析器と、
前記ドツプラー信号と前記ペデスタル信号が同期した場
合に、これらの信号を取り込むバッファメモリと、この
バッファメモリからデータを読みこみ、これを計算する
計算器とからなることを特徴とするレーザ・ドラグラ速
度計。 2 前記ペデスタル信号の波高値から粒子径を換算する
ことを特徴とする特許請求の範囲第1項記載のレーザ・
ドラグラ速度計。 3、ガスの流れを粒子径1μm以下の粒子が測定点を通
過した時の粒子の重量の累積値Mとガス量Qの比M/Q
で前記測定点における単位ガス量あたりの粒子濃度とす
ることを特徴とする特許請求の範囲第1項記載のレーザ
・ドラグラ速度計。
[Claims] 1. A laser light source, a beam sinter that splits the beam emitted from the laser light source into two beams, an optical system that focuses the two beams, and a A photoelectric converter converts the scattered light generated from particles passing through the intersection of the beams into an electrical signal, and a signal from the photoelectric converter is received.
Among these, the top 2 - a frequency analyzer that measures the frequency of the signal, a pulse peak value analyzer that measures the peak value of the pedestal signal, and a synchronization test that measures the generation times of the Doppler signal and the pedestal signal. a synchronous analyzer,
A laser dragler speedometer comprising a buffer memory that captures the Doppler signal and the pedestal signal when these signals are synchronized, and a calculator that reads data from the buffer memory and calculates the data. . 2. The laser according to claim 1, wherein the particle diameter is calculated from the peak value of the pedestal signal.
dragura speedometer. 3. Ratio M/Q of cumulative weight M of particles and gas amount Q when particles with a particle diameter of 1 μm or less pass through a measurement point in a gas flow
2. The laser draglar velocimeter according to claim 1, wherein: is the particle concentration per unit gas amount at the measurement point.
JP15490683A 1983-08-26 1983-08-26 Laser doppler speedometer Pending JPS6047965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15490683A JPS6047965A (en) 1983-08-26 1983-08-26 Laser doppler speedometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15490683A JPS6047965A (en) 1983-08-26 1983-08-26 Laser doppler speedometer

Publications (1)

Publication Number Publication Date
JPS6047965A true JPS6047965A (en) 1985-03-15

Family

ID=15594541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15490683A Pending JPS6047965A (en) 1983-08-26 1983-08-26 Laser doppler speedometer

Country Status (1)

Country Link
JP (1) JPS6047965A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197866A (en) * 1987-10-09 1989-04-17 Mitsubishi Electric Corp Laser doppler vibration meter
JPH0197868A (en) * 1987-10-09 1989-04-17 Mitsubishi Electric Corp Laser doppler speedometer
JPH0222587A (en) * 1988-07-11 1990-01-25 Mitsubishi Electric Corp Laser doppler speed meter
JPH0288182U (en) * 1988-12-23 1990-07-12

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197866A (en) * 1987-10-09 1989-04-17 Mitsubishi Electric Corp Laser doppler vibration meter
JPH0197868A (en) * 1987-10-09 1989-04-17 Mitsubishi Electric Corp Laser doppler speedometer
JPH0222587A (en) * 1988-07-11 1990-01-25 Mitsubishi Electric Corp Laser doppler speed meter
JPH0288182U (en) * 1988-12-23 1990-07-12

Similar Documents

Publication Publication Date Title
Taylor Absolute measurement of acoustic particle velocity
US5296910A (en) Method and apparatus for particle analysis
Huber et al. Characterization of the cross-sectional particle concentration distribution in pneumatic conveying systems
US5383024A (en) Optical wet steam monitor
JPH0559383B2 (en)
GB1377831A (en) Interferometers for fluid flow measurements
Garg et al. Measurements of a supersonic turbulent boundary layer by focusing schlieren deflectometry
Valiere et al. Acoustic velocity measurements in the air by means of laser Doppler velocimetry: dynamic and frequency range limitations and signal processing improvements
US3548655A (en) Measurement of fluid or surface velocities
US5526109A (en) Multi-velocity component LDV
US5012118A (en) Apparatus and method for particle analysis
JPS6047965A (en) Laser doppler speedometer
JP2001159595A (en) Light detecting device and method for determining particle size distribution in vibrating fluid
Adrian A bipolar, two component laser-Doppler velocimeter
Durst et al. Laser anemometry: a report on Euromech 36
Vehrenkamp et al. Direct measurement of velocity correlation functions using the Erdmann-Gellert rate correlation technique
Rudd The laser anemometer-a review
Bachalo et al. Time-resolved measurements of spray drop size and velocity
Aizu et al. New Generation of Phase‐Doppler Instruments for particle velocity, size and concentration measurements
Gjelstrup et al. Experimental verification of novel spectral analysis algorithms for laser Doppler anemometry data
JPS60147607A (en) Method for measuring particle size using laser doppler speedometer
Byun et al. A miniature laser-Doppler velocimeter for simultaneous three-velocity-component measurements
Humphreys, Jr et al. Digital PIV measurements of acoustic particle displacements in a normal incidence impedance tube
Johnson Laser Doppler Anemometry
Jedelsky et al. Software-based processing system for phase Doppler systems