JPS6047944A - Emission spectroscopic analytical apparatus - Google Patents

Emission spectroscopic analytical apparatus

Info

Publication number
JPS6047944A
JPS6047944A JP15702383A JP15702383A JPS6047944A JP S6047944 A JPS6047944 A JP S6047944A JP 15702383 A JP15702383 A JP 15702383A JP 15702383 A JP15702383 A JP 15702383A JP S6047944 A JPS6047944 A JP S6047944A
Authority
JP
Japan
Prior art keywords
discharge
spark
sampling
output
photometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15702383A
Other languages
Japanese (ja)
Other versions
JPS6411134B2 (en
Inventor
Naoki Imamura
直樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP15702383A priority Critical patent/JPS6047944A/en
Publication of JPS6047944A publication Critical patent/JPS6047944A/en
Publication of JPS6411134B2 publication Critical patent/JPS6411134B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4242Modulated light, e.g. for synchronizing source and detector circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enhance analytical efficiency while improving analytical sensitivity, by sampling photometric output in timing suitable for each element in one discharge, and integrating photometric outputs in a large number of times of discharges. CONSTITUTION:Photoelectric converter elements P1-Pn are arranged at bright line positions of elements to be respectively analyzed in the spectrum image surface of a spectroscope. Section integrators I1-In succeeding to the photoelectric converter elements are ones for taking in photometric outputs only during the application of a sampling pulse to integrate the same and the sampling pulse reset prior to the starting of integration is cooperated with the discharge operation in a spark discharge light emitting apparatus S and a trigger signal in synchronous relation to the trigger of spark discharge is applied to a sampling pulse generating circuit G. A multiplexer Mu completes one scanning of each of A/D converters ADC1-ADCn during one cycle of spark discharge while CPU discriminates the sampling photometric output of each element at every one discharge sent from the multiplexer Mu and inputs the same to the address corresponding to each element in memory Me to integrate the same.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は火花放電を光源とする発光分析装置で、複数種
の元素の同時分析に適するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention is an optical emission spectrometer using spark discharge as a light source, and is suitable for simultaneous analysis of multiple types of elements.

(ロ)従来技術 火花放電を用いた発光分析では放電条件を適当に選ぶこ
とによって分析感度2分析精度の向上が得られる。放電
条件としては通常ノーマルスパークとアークライクスパ
ークの2種が選択される。
(B) Conventional technology In optical emission analysis using spark discharge, improvement in analytical sensitivity and analytical accuracy can be obtained by appropriately selecting discharge conditions. Two types of discharge conditions are normally selected: normal spark and arc-like spark.

ノーマルスパークは高電圧で持続時間が60μ秒程度と
短いものでアリ、アークライクスパークは比較的低電圧
で持続時間が200μ秒程度とかなシ長い放電である。
A normal spark is a high voltage discharge with a short duration of about 60 microseconds, whereas an arc-like spark is a relatively low voltage discharge with a long duration of about 200 microseconds.

鋼中の炭素C2燐P、ホウ素B、ヒ素A s 、硫黄S
などはアークライクスパークを用いるとノーマルスパー
クの場合に比し2〜3倍程度感度が向上する。他方鋼中
のケイ素S1、マンガンMn等の分析にはノーマルスパ
ークが適している。
Carbon C2 Phosphorus P, Boron B, Arsenic A s, Sulfur S in steel
When using an arc-like spark, the sensitivity is improved by about 2 to 3 times compared to a normal spark. On the other hand, normal spark is suitable for analyzing silicon S1, manganese Mn, etc. in steel.

このため一つの試料について多元素分析を行う場合、従
来は分析を前後2段に分け、前段ではノーマルスパーク
による分析を行い、後段ではアークライクスパークによ
る分析を行うと云うような方法を採っていた。このよう
な分析のスケジュールの一例を第1図に示す。この図で
Aは試料面を清浄化し、発光を安定化させるだめの予備
放電期間、Bはノーマルスパークによる分析期間、Cは
アークライクスパークを行う前の予備放電期間でDはア
ークライクスパークによる分析期間である。
For this reason, when performing multi-element analysis on a single sample, the conventional method was to divide the analysis into two stages, with the first stage performing analysis using normal spark, and the second stage performing analysis using arc-like spark. . An example of such an analysis schedule is shown in FIG. In this figure, A is the pre-discharge period to clean the sample surface and stabilize the luminescence, B is the analysis period using normal spark, C is the pre-discharge period before performing arc-like spark, and D is analysis using arc-like spark. It is a period.

各分析期間には夫々数百回の放電発光による測光出力を
積分するので、5秒程度の時間を要し、2段階分析では
最低10秒位の時間が必要となる。
In each analysis period, the photometric output from several hundred discharge light emissions is integrated, so it takes about 5 seconds, and a two-stage analysis requires at least about 10 seconds.

生産工程における品質管理では短時間に多数の試料を分
析する必要があり、−試料について10秒余の時間を費
すような時間的余祐はなかなか得getいので、分析所
要時間の短縮が強く望まれている。また二段分析では途
中で放電条件を切換える際、−瞬放電を停止するので、
分析結果に予期しない悪影響が現われる。
In quality control in the production process, it is necessary to analyze a large number of samples in a short period of time, and it is difficult to save time by spending more than 10 seconds on each sample, so the time required for analysis is strongly reduced. desired. In addition, in two-stage analysis, when switching the discharge conditions midway through, the instantaneous discharge is stopped, so
Unexpected negative effects appear in the analysis results.

el) 目 的 本発明は多種元素に適した放電条件を適用しながら、・
しかも一段の分析で各元素の分析を行い得るようにする
ことによシ、短時間でかつ各元素とも高感度の分析がで
きるようにしようとするものである。
el) Purpose The present invention applies discharge conditions suitable for various elements, and
Moreover, by making it possible to analyze each element in a single stage of analysis, it is possible to analyze each element in a short time and with high sensitivity.

(ニ)構 成 本発明は一放電の間にノーマルスパークとそれに続くア
ークライクスパークとが行われるコンバインドスパーク
を用い、各放電毎に測光出力サンプリングのタイミング
を設定して一放電中に時分割的に複数の測光出力をサン
プリングし、これらのサンプリングデータを全放電回数
にわたって各別に積分するようにした発光分析装置を提
供する。
(d) Configuration The present invention uses a combined spark in which a normal spark and a subsequent arc-like spark are performed during one discharge, and sets the timing of photometric output sampling for each discharge to perform time-sharing during one discharge. Provided is a luminescence spectrometer that samples a plurality of photometric outputs and integrates these sampling data separately over the total number of discharges.

第2図は各種の放電条件による光電流の時間的第3図イ
は一個のコンバインドスパーク例おける光電流の変化を
示し、Aはノーマルスパーク領域、B[アークライクス
パーク領域で、測光出力サンプリングのタイミングを第
3図口のように設定するとノーマルスパークによる分析
データが得られ、同ハのように設定するとアークライク
スパークによる分析データが得られ、口、ハ両方のサン
プリングパルスを併用することで、一段の分析でノーマ
ルスパークによる分析とアークライクスパークに」:る
分析とが完了する。
Figure 2 shows the photocurrent over time under various discharge conditions. Figure 3A shows the change in photocurrent in one combined spark example, where A is the normal spark region, B is the arc-like spark region, and photometric output sampling. If you set the timing as shown in Figure 3, you will get analysis data using normal spark, and if you set it as shown in Figure 3, you will get analysis data based on arc-like spark.By using both sampling pulses, In one stage of analysis, the analysis by normal spark and the analysis by arc-like spark are completed.

(ホ)実施例 第4図は本発明の一実施例装置の構成を示す。(e) Examples FIG. 4 shows the configuration of an apparatus according to an embodiment of the present invention.

P1〜Pnは光電変換素子で図外の分光器のスペクトル
像面上で夫々分析しようとする元素の輝線位置に設置さ
れている。11〜Inは各光電変換素子に後続する区間
積分器で、第3図口或はノ・に示すようなサンプリング
パルスが印加されている間だけ測光出力を取入れ積分す
る積分器で、積分の開始に先立ちリセットされる。A 
:I) C1,〜Ai)Cni−1:A/D変換器で、
対応する積分器の積分動作終了後、積分出力をA / 
D変換する。Muはディジタルマルチプレクサで、各A
 / D変換器ADC1〜ADCnの出力データを順次
取出し制御コンピュータCPUに入力する。サンプリン
グパルスは火花放電発光装置Sにおける放電動作と連動
17ておシ、火花放電のトリガと同期したトリガ信号が
サンプリングパルス発生回路Gに印加される。
P1 to Pn are photoelectric conversion elements, which are respectively installed at the emission line positions of the elements to be analyzed on the spectral image plane of a spectrometer (not shown). 11 to In are interval integrators that follow each photoelectric conversion element, and are integrators that receive and integrate the photometric output only while the sampling pulse shown in Figure 3 is applied. will be reset prior to. A
:I) C1, ~Ai) Cni-1: A/D converter,
After the integration operation of the corresponding integrator is completed, the integration output is changed to A /
D-convert. Mu is a digital multiplexer, each A
/ Sequentially take out the output data of the D converters ADC1 to ADCn and input them to the control computer CPU. The sampling pulse is interlocked with the discharge operation in the spark discharge light emitting device S, and a trigger signal synchronized with the spark discharge trigger is applied to the sampling pulse generation circuit G.

サンプリングパルス発生回路は各独立にパルス幅が設定
できるモノマルチ回路群であって、−放電毎にサンプリ
ングパルスを発生し、所定の区間積分器工1〜Inに送
っている。各サンプリングパルスの幅及び立上りのタイ
ミングは夫々モノマルチの出力パルスの幅を調整するこ
とで、各元素につき最適に設定できる。マルチプレクサ
M uは火花放電の一周期の間に各A / D変換器A
DCI〜ADCnの一走査を完了し、CPUはマルチプ
レクサMuから送られて来る一放電毎の各元素のサンプ
リング測光出力の積分データを弁別してメモリMOにお
ける各元素対応アト゛レスに入力し積3つする。所定回
数の放電が終ったら、CPUはメモIJ M e内の各
元素のデータ積算値を読出し、CRTに表示すると共に
プリンタRによって印字する。
The sampling pulse generation circuit is a monomulti circuit group whose pulse width can be set independently, and generates a sampling pulse every - discharge and sends it to predetermined interval integrators 1 to In. The width and rise timing of each sampling pulse can be optimally set for each element by adjusting the width of the output pulse of the monomulti. The multiplexer M u connects each A/D converter A during one period of the spark discharge.
After completing one scan of DCI to ADCn, the CPU discriminates the integral data of the sampled photometric output of each element for each discharge sent from the multiplexer Mu, inputs it into the address corresponding to each element in the memory MO, and multiplies it by three. After a predetermined number of discharges have been completed, the CPU reads out the integrated data value for each element in the memo IJMe, displays it on the CRT, and prints it out using the printer R.

第5図は区間積分器の一例を示す。オペアンプOAとコ
ンデンサCとで通常の積分回路が構成されておシ、コン
デンサCと並列にリセット用のFETが接続してあり、
SHはサンプルホールド回路である。」二連したサンプ
リングパルス発生回路Gからはトリガ信号によシ発せら
れるリセットパルスとそれに続くサンプリングパルス(
第3図イ又は口が送られてくる。リセットパルスuFE
Tのゲートに印加され、FETが導通せしめられて積分
回路はリセットされ、引続き積分を開始する。
FIG. 5 shows an example of an interval integrator. A normal integrating circuit is formed by the operational amplifier OA and the capacitor C, and a reset FET is connected in parallel with the capacitor C.
SH is a sample and hold circuit. ” A reset pulse generated by a trigger signal and a subsequent sampling pulse (
Figure 3 A or Mouth is sent. Reset pulse uFE
It is applied to the gate of T, causing the FET to conduct and resetting the integrating circuit to continue integrating.

サンプルホールド回路はサンプリングパルスによって入
口ゲートが開かれ、積分回路の出力を取込み、サンプリ
ングパルスの立下り直前の積分出力をホールドし、この
ホールドされた信号が第4図におけるA / D変換器
ADCI〜ADC:nに入力される。
The sample and hold circuit has its entrance gate opened by the sampling pulse, takes in the output of the integration circuit, and holds the integration output just before the falling edge of the sampling pulse, and this held signal is sent to the A/D converter ADCI~ in Fig. 4. Input to ADC:n.

(へ)効 果 本発明によれば、−放電において各元素に適したタイミ
ングで測光出力をサンプリングして、多数回の放電につ
き、測光出力を積分す′るので、一段の分析期間で多種
元素を夫々最適放電条件により分析できることになり、
従来の多段分析に比し分析能率が向上し、しかも各元素
について最適条件が得られているので分析感度は良好で
ある。また多段分析における途中の放電停止がないから
、放電停止がはさまることにより生ずる悪影響が避けら
れる。
(f) Effects According to the present invention, the photometric output is sampled at a timing suitable for each element in the discharge, and the photometric output is integrated for many discharges, so that a wide variety of elements can be analyzed in one analysis period. can be analyzed using their respective optimal discharge conditions,
The analytical efficiency is improved compared to conventional multi-stage analysis, and the analytical sensitivity is good because optimum conditions are obtained for each element. Furthermore, since there is no discharge stop in the middle of multi-stage analysis, adverse effects caused by intervening discharge stops can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二段分析のスケジュールの一例のタイムチャー
ト、第2図は各種放電による発光曲線のグラフ、第3図
はコンバインドスパークにおける発光曲線とサンプリン
グパルスを示すグラフ、第4図は本発明の一実施例のブ
ロック図、第5図は区間積分器の一例の回路図である。 P1〜Pn・・・光電変換素子、A D C]〜A D
 Cn・・・A / D変換器、CPU・・・制御コン
ピュータ、Me・・・メモリ。 代理人 弁理士 縣 浩 介
Fig. 1 is a time chart of an example of a two-stage analysis schedule, Fig. 2 is a graph of luminescence curves due to various discharges, Fig. 3 is a graph showing luminescence curves and sampling pulses in a combined spark, and Fig. 4 is a graph of the luminescence curve of the present invention. FIG. 5, a block diagram of an embodiment, is a circuit diagram of an example of an interval integrator. P1~Pn...Photoelectric conversion element, ADC]~AD
Cn...A/D converter, CPU...control computer, Me...memory. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 一放電の間にノーマルスパークとアークライクスパーク
を含むコンバインドスパークを行わせる火花放電発光装
置と、火花放電と同期して一火花放電中に任意のタイミ
ングを設定するタイミングパルス発生器と、各元素に対
応させた光電変換器に後続し、上記タイミングパルス発
生器の出力パルスによって制御され、毎放電ごとに一放
電中の特定の期間だけ光電変換出力を取込み積分する区
間積分器と、各区間積分器の出力を所定放電回数分だけ
積分する積算手段とを有する発光分析装置。
A spark discharge light emitting device that generates a combined spark including a normal spark and an arc-like spark during one discharge; a timing pulse generator that synchronizes with the spark discharge and sets arbitrary timing during one spark discharge; An interval integrator that follows the corresponding photoelectric converter and is controlled by the output pulse of the timing pulse generator and captures and integrates the photoelectric conversion output for a specific period during each discharge for each discharge, and each interval integrator. and integrating means for integrating the output of the output for a predetermined number of discharges.
JP15702383A 1983-08-26 1983-08-26 Emission spectroscopic analytical apparatus Granted JPS6047944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15702383A JPS6047944A (en) 1983-08-26 1983-08-26 Emission spectroscopic analytical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15702383A JPS6047944A (en) 1983-08-26 1983-08-26 Emission spectroscopic analytical apparatus

Publications (2)

Publication Number Publication Date
JPS6047944A true JPS6047944A (en) 1985-03-15
JPS6411134B2 JPS6411134B2 (en) 1989-02-23

Family

ID=15640491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15702383A Granted JPS6047944A (en) 1983-08-26 1983-08-26 Emission spectroscopic analytical apparatus

Country Status (1)

Country Link
JP (1) JPS6047944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103541A (en) * 1985-06-30 1987-05-14 Shimadzu Corp Method of emission analysis
JPH01229942A (en) * 1987-11-30 1989-09-13 Shimadzu Corp Emission spectral analyzer
JPH08210980A (en) * 1987-11-30 1996-08-20 Shimadzu Corp Emission spectral analyzing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969183A (en) * 1972-11-02 1974-07-04
JPS5580040A (en) * 1978-12-13 1980-06-16 Shimadzu Corp Light source apparatus for luminous spectrochemical analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969183A (en) * 1972-11-02 1974-07-04
JPS5580040A (en) * 1978-12-13 1980-06-16 Shimadzu Corp Light source apparatus for luminous spectrochemical analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103541A (en) * 1985-06-30 1987-05-14 Shimadzu Corp Method of emission analysis
JPH01229942A (en) * 1987-11-30 1989-09-13 Shimadzu Corp Emission spectral analyzer
JPH08210980A (en) * 1987-11-30 1996-08-20 Shimadzu Corp Emission spectral analyzing device

Also Published As

Publication number Publication date
JPS6411134B2 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
US7423255B2 (en) System and methods for dynamic range extension using variable length integration time sampling
US4255051A (en) Apparatus for emission spectrochemical analysis
US20040051656A1 (en) System for digitizing transient signals
US4958928A (en) Photodiode array spectrometer
US7890074B2 (en) Data acquisition system
JPS6047944A (en) Emission spectroscopic analytical apparatus
CN210036964U (en) High-speed spectrometer
bChang et al. Optical multichannel detection
JP3324186B2 (en) Emission spectrometer
CN105717086B (en) AFS light source method for controlling frequency conversion based on digital micro-mirror
US10712201B2 (en) Optical emission spectrometer with cascaded charge storage devices
CN110793951B (en) Spectrometer atomic fluorescence detection method based on ultra-strong short pulse power supply HCL
JP2806615B2 (en) Time-resolved spectroscopy
JPS6052746A (en) Apparatus for emission spectrochemical analysis
JPS62105036A (en) Wavelength scanning type emission spectrochmical analyzing instrument
JPH0692916B2 (en) Sampling type time-resolved photometer
JPS6372057A (en) Mass spectrometer
JPH04363633A (en) Spectrometry apparatus
JPH0735688A (en) Analyzing method using ftir
JPH06100546B2 (en) Luminescence analysis method
JP2806616B2 (en) Time-resolved spectroscopy
JPH02168156A (en) Apparatus for mass spectroscopy
Docchio et al. Microprocessor-based systems for optical spectroscopy
JPS62278430A (en) Atomic absorption analyzer
JP2001153804A (en) Fine particle constituent analyzer