JPS6047732B2 - How to coat electronic parts - Google Patents

How to coat electronic parts

Info

Publication number
JPS6047732B2
JPS6047732B2 JP52066719A JP6671977A JPS6047732B2 JP S6047732 B2 JPS6047732 B2 JP S6047732B2 JP 52066719 A JP52066719 A JP 52066719A JP 6671977 A JP6671977 A JP 6671977A JP S6047732 B2 JPS6047732 B2 JP S6047732B2
Authority
JP
Japan
Prior art keywords
resin
electronic component
resin composition
coating
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52066719A
Other languages
Japanese (ja)
Other versions
JPS543260A (en
Inventor
克己 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP52066719A priority Critical patent/JPS6047732B2/en
Publication of JPS543260A publication Critical patent/JPS543260A/en
Publication of JPS6047732B2 publication Critical patent/JPS6047732B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】 本発明は、抵抗器、コンデンサ、半導体素子等の電子
部品の外周に施される保護被膜等の被覆方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of coating a protective film or the like on the outer periphery of an electronic component such as a resistor, a capacitor, or a semiconductor element.

従来、抵抗器、コンデンサ、半導体素子等の電子部品
の外周に施される保護被膜等の被覆方法として、液状の
熱硬化樹脂をデイツピング、注型あるいはロール転写方
式等の方法により上記電子部品本体外周に付着し、しか
る後上記樹脂を加熱して上記電子部品外周に溶融硬化せ
しめる方法、あるいは熱硬化性樹脂粉末を空気流等によ
り流動状態にし、あらかじめ予備加熱した上述の如き電
子部品を上記熱硬化性樹脂粉末の流動層中に浸漬して上
記電子部品外周に上記粉末を付着せしめ、し−かる後に
上記粉末を加熱し上記電子部品外周上に溶融硬化せしめ
る方法等が行なわれている。
Conventionally, as a method for coating the outer periphery of electronic components such as resistors, capacitors, and semiconductor elements, protective coatings, etc., have been applied by coating liquid thermosetting resin on the outer periphery of the electronic component body using methods such as dipping, casting, or roll transfer. The above-mentioned electronic component is heated and then heated to melt and harden it on the outer periphery of the electronic component, or the thermosetting resin powder is brought into a fluid state by air flow, etc., and the preheated electronic component is then thermosetted. A method has been used in which the powder is immersed in a fluidized bed of plastic resin powder to adhere to the outer periphery of the electronic component, and then the powder is heated to melt and harden on the outer periphery of the electronic component.

しかし、上述のような方法では、電子部品本体に内蔵さ
れる空気あるいは熱硬化性樹脂の付着時に該樹脂内にま
き込んだ空気等の気泡が上記樹脂を加熱−溶融する際に
電子部品外周に付着した樹脂膜を突き破るようにして出
てきて硬化樹脂層にピンホールを発生させる等の問題を
有している。 そこで、上述のような問題点を解決する
ため次のような各種の方法がとられている。
However, in the above-mentioned method, the air built into the electronic component body or air bubbles drawn into the resin when the thermosetting resin is attached may cause damage to the outer periphery of the electronic component when the resin is heated and melted. There is a problem that the resin comes out by breaking through the adhered resin film and causes pinholes in the cured resin layer. Therefore, in order to solve the above-mentioned problems, the following various methods have been adopted.

そのうちの一例として、電子部品本体に内蔵される空
気によつてピンホール等が形成されてしまうのを防止す
るため、あらかじめ粘度の低い樹脂を上記電子部品外周
に塗布しておき、その後熱硬化性樹脂を重ねて被覆する
方法、他の例として熱硬化性樹脂を電子部品外周に多数
回被覆する方法、さらに他の例として熱硬化後の組成物
が多孔質になるような熱硬化性樹脂をあらかじめ電子部
品外周に被覆し上記樹脂を硬化せしめた後粘度の低い樹
脂を上記多孔質となる樹脂に含浸せしめる方法などが用
いられている。
As an example, in order to prevent the formation of pinholes etc. due to the air contained in the electronic component body, a low viscosity resin is applied to the outer periphery of the electronic component in advance, and then a thermosetting resin is applied. Another example is a method of coating the outer periphery of an electronic component with a thermosetting resin multiple times, and another example is a method of coating a thermosetting resin in which the composition becomes porous after thermosetting. A method is used in which the outer periphery of an electronic component is coated in advance, the resin is cured, and then a low-viscosity resin is impregnated into the porous resin.

上記のような各方法にあつては、いずれも樹脂を少な
くとも2回以上塗布する多重回塗布を必要とするため被
覆工程が複雑となつてしまう。
In each of the above methods, the coating process becomes complicated because the resin must be applied multiple times at least twice.

また、下層被覆の形成あるいは多孔質な樹脂に含浸させ
るために用いる粘度の低い樹脂とするには各種の溶剤を
用いるため、電子部品を製造する工場内等の作業環境を
悪化させる等して作業者の健康上の管理等にも問題を生
じてしまう。 特に、円筒形セラミックコンデンサの如
く中空状をした円筒形セラミック素体を構成要素にして
いるような電子部品にあつては、その構造上電子部品本
体内に比較的多量の空気を内蔵するため上述したような
従来のいずれの方法によつても被覆することができない
In addition, various solvents are used to form low-viscosity resins used for forming the lower layer coating or impregnating porous resins, which may worsen the working environment in factories where electronic parts are manufactured. This may also cause problems in the health management of people. In particular, in the case of electronic components such as cylindrical ceramic capacitors, which have a hollow cylindrical ceramic body as a component, a relatively large amount of air is contained within the electronic component body due to its structure. It cannot be coated by any of the conventional methods.

上記のような円筒形セラミックコンデンサのような電子
部品を樹脂で被覆するため熱硬化性樹脂を用いる方法も
考えられるが、円筒形セラミックコンデンサの如く金属
性の電極キャップをセラミック素体の両端に嵌合するよ
うなもの、あるいはリード線を用いているものにあつて
は、上記光硬化性樹脂が金属表面との接着性が悪いため
、金属を用いているリード線あるいは電極キャップ等と
上記樹脂との界面から水分等の浸入等が発生し、電子部
品としての信頼性を維持することが極めて難しいとの欠
点を有している。
Although it is possible to use a thermosetting resin to cover electronic components such as the cylindrical ceramic capacitor mentioned above with resin, it is also possible to use a thermosetting resin to cover electronic components such as the cylindrical ceramic capacitor mentioned above. For products that are compatible with each other or products that use lead wires, the above-mentioned photocurable resin has poor adhesion to metal surfaces. The drawback is that moisture and the like can enter through the interface, making it extremely difficult to maintain reliability as an electronic component.

ところで、本発明は上述したような問題点を解決し、電
子部品外周に被覆される被覆層にピンホール等が発生す
ることなく、そして確実に被覆するようにし、特に円筒
形セラミックコンデンサの如く構造上電子部品本体内に
多量の空気を内蔵するようなものについても被覆を可能
にしたものである。
By the way, the present invention solves the above-mentioned problems and ensures that the coating layer is coated on the outer periphery of an electronic component without causing pinholes or the like and is particularly suitable for structures such as cylindrical ceramic capacitors. This makes it possible to coat even electronic parts that contain a large amount of air inside their bodies.

以下、本発明の実施例を工程順に、併せて使用する具体
的な材料を示しながら説明する。
Examples of the present invention will be described below in the order of steps and specific materials used.

第1図及び第2図は本発明による方法によつて樹脂によ
る被覆がなされる電子部品の一例である円筒形セラミッ
クコンデンサを示すものである。
1 and 2 show a cylindrical ceramic capacitor, which is an example of an electronic component coated with resin by the method according to the present invention.

1はチタン酸バリウム、チタン酸ストロンチウム、酸化
チタン等のセラミックから成る中空状の円筒形のセラミ
ック素体であり、この円筒形セラミック素体1の内周面
1aおよび外周面1bに導電性ペイント、例えば銀(A
g)ペイントを所定の形状に塗布し、所定の条件下で焼
成を行ない第1および第2の電極2a,2bからなる対
向電極を形成する。
Reference numeral 1 denotes a hollow cylindrical ceramic body made of ceramic such as barium titanate, strontium titanate, titanium oxide, etc., and conductive paint, For example, silver (A
g) Paint is applied in a predetermined shape and fired under predetermined conditions to form opposing electrodes consisting of the first and second electrodes 2a and 2b.

すなわち、上記の対向電極は、その一方の第1の電極2
aがセラミック素体1の内周面1aから一端を介して外
周面1bまで連続し、かつセラミック素体1の外周面1
bにおいて他方の第2の電極2bと接触しない充分な間
隔だけ離隔して形成してある。そして、上述の如くして
形成した第1および第2の電極2a,2bに対応する金
属導電性の電極キャップ3a,3bが上記のセラミック
素体1の両端部分に適宜な圧入力をもつて圧入嵌着され
ている。
That is, the above-mentioned counter electrode is one of the first electrodes 2
a is continuous from the inner circumferential surface 1a of the ceramic body 1 to the outer circumferential surface 1b via one end, and the outer circumferential surface 1 of the ceramic body 1
b, the two electrodes are spaced apart from each other by a sufficient distance so that they do not come into contact with the other second electrode 2b. Then, metal conductive electrode caps 3a and 3b corresponding to the first and second electrodes 2a and 2b formed as described above are press-fitted into both end portions of the ceramic body 1 with an appropriate pressing force. It is fitted.

なお、上記の各電極3a,3bは、セラミック素体1の
外周面上1bの第1および第2の電極2a,2bの一部
を露出するように嵌着される。また、上記の各電極キャ
ップ3a,3bと第1および第2の電極2a,2bとは
セラミック素体1内部の気密性を保ち接合するように、
その一部が露出している部分において光硬化性の導電性
塗料等の導電性塗料4を塗布し、光の照射等によつて上
記の導電性塗料4を硬化して、その電気的および機械的
結合が行なわれている。
Note that each of the electrodes 3a and 3b described above is fitted so that a portion of the first and second electrodes 2a and 2b on the outer peripheral surface 1b of the ceramic body 1 is exposed. In addition, each of the electrode caps 3a, 3b and the first and second electrodes 2a, 2b are joined to each other while maintaining airtightness inside the ceramic body 1.
A conductive paint 4 such as a photocurable conductive paint is applied to the partially exposed part, and the conductive paint 4 is cured by irradiation with light, etc., and the electrical and mechanical properties are A physical connection is being made.

上述のように形成された円筒形セラミックコンデンサの
外周に、下記第1表に示すように配合された熱硬化性樹
脂Aと下記第2表に示すように配合された光硬化樹脂B
を混合して得られる樹脂組成物を塗布等の方法によつて
付着する。
Thermosetting resin A blended as shown in Table 1 below and photocurable resin B blended as shown in Table 2 below were applied to the outer periphery of the cylindrical ceramic capacitor formed as described above.
A resin composition obtained by mixing the above is applied by a method such as coating.

第 1 表 A:熱硬化性樹脂 エポキシ樹脂エピコート828(商品名)9鍾量部エポ
キシ樹脂エピコート1001(商品名)1鍾量部触
媒BF3モノエチルアミン錯塩5重量部 第
2 表B:光硬化性樹脂 ポリエステル系の光硬化樹脂 1(4)重量部(商
品名、[JVR−100サンユレジン(株)製)監触
媒 ジフェニルサルファイド 2重量部触 媒 ベ
ンゾイルパーオキサイド1重量部次いで、上記熱硬化性
樹脂Aと光硬化性樹脂Bを混合した樹脂組成物を約20
0p程度の厚さにデイツピング、ロール転写法等の方法
によつて付着させた後、1KW−2KW程度の紫外線ラ
ンプにより約1鰍間程度照射させ上記樹脂組成物中の光
硬化性樹脂Bをまず光硬化させる。
Table 1 A: Thermosetting resin Epoxy resin Epicoat 828 (trade name) 9 weighing parts Epoxy resin Epikoat 1001 (trade name) 1 weighing part Touch
5 parts by weight of medium BF3 monoethylamine complex salt
2 Table B: Photocurable resin Polyester-based photocurable resin 1 (4) parts by weight (trade name, [JVR-100 manufactured by Sanyu Resin Co., Ltd.) Supervised contact
Medium diphenyl sulfide: 2 parts by weight Catalyst: 1 part by weight of benzoyl peroxide Next, about 20 parts of the resin composition obtained by mixing the above thermosetting resin A and photocurable resin B were added.
After adhering to a thickness of about 0p by dipping, roll transfer method, etc., the photocurable resin B in the resin composition is first irradiated with about 1 kW to 2 kW ultraviolet lamp. Light cure.

しかる後150′C程度の温度で約2[株]間熱して上
記樹脂組成物中の熱硬化性樹脂Aを熱硬化させる。この
ように、電子部品の外周には付着させた樹脂組成物を2
段階に亘つて硬化させるようにして上記円筒形セラミッ
クコンデンサ等の電子部品に被覆を施すようにしたもの
である。ところで、上記熱硬化性樹脂Aと上記光硬化性
樹脂Bを下記第3表に示すような割合で混合して得たサ
ンプルであるNO.lからNO.5までの樹脂組成物を
第1図及び第2図に示したリード線付きの円筒形セラミ
ックコンデンサにそれぞれ約200μの厚さに付着し後
、1KWの紫外線ランプで10秒間照射し、その後15
0′Cの温度で20分間加熱して樹脂膜を形成した上記
円筒形セラミツクコンデンサを各サンプルについて各5
?ずつ得て、温度40℃、実効湿度95〜98%RHの
恒温恒湿中において、定格負荷寿命試験を行なつた。
Thereafter, the resin composition is heated at a temperature of about 150'C for about 2 hours to thermoset the thermosetting resin A in the resin composition. In this way, the attached resin composition is applied to the outer periphery of the electronic component.
The coating is applied to electronic components such as the cylindrical ceramic capacitor by curing the coating in stages. By the way, sample No. 1 was obtained by mixing the thermosetting resin A and the photocuring resin B in the proportions shown in Table 3 below. l to NO. The resin compositions up to 5 were applied to the cylindrical ceramic capacitors with lead wires shown in FIGS.
For each sample, five cylindrical ceramic capacitors were heated at 0'C for 20 minutes to form a resin film.
? A rated load life test was conducted under constant temperature and humidity conditions at a temperature of 40° C. and an effective humidity of 95 to 98% RH.

即ち、コンデンサの定格直流電圧50Vを500時間印
加した後、取り出し、常温常湿中に1時間放置後、コン
デンサの耐電圧、容量変化率、絶縁抵抗値、ピンホール
発生等の測定を行ない、試験測定の規格に対する不良発
生数を確認した所、下記第4表に示すような試験結果を
得た。すなわち、熱硬化性樹脂Aを全く含まない樹脂組
成物をもつて被覆したサンプルNO.lについて1(4
)時間経過後1個についてピンホールの発生を見、25
(ト)間経過後には7個について絶縁抵抗が500MΩ
以下になり、5叩時間経過後に至つては50個中3?印
こついて絶縁抵抗が500MΩ以下になつてしまつた。
That is, after applying the rated DC voltage of 50V to the capacitor for 500 hours, it was taken out and left at room temperature and humidity for 1 hour, and the capacitor's withstand voltage, capacitance change rate, insulation resistance value, pinhole occurrence, etc. were measured and tested. After confirming the number of defects generated according to the measurement standards, the test results shown in Table 4 below were obtained. That is, sample No. 1 coated with a resin composition containing no thermosetting resin A. 1(4) for l
) After the passage of time, the occurrence of pinholes was observed in one piece, and 25
(g) After the period has passed, the insulation resistance of 7 pieces is 500MΩ.
The result is 3 out of 50 after 5 hits. The insulation resistance became less than 500MΩ.

また光硬化性樹脂Aを全く含まない樹脂組成物をもつて
被覆したサンプルNO.5については100I寺間経過
後2驕についてピンホールの発生を見、少なくとも25
0時間経過後に至つては5嘩全てにピンホールの発生を
見た。このように、熱硬化性樹脂Aと光硬化性樹脂Bを
第3表のサンプルNO。2からNO.4に示すような割
合で混合して得た樹脂組成物を用いて本発明方法によつ
て得た被覆をした円筒形セラミックコンデンサについて
はピンホールの発生及び絶縁抵抗の低下を全く見ない、
すなわち不良品を全く発生することなく被覆を施すこと
ができる。
Sample No. 1 coated with a resin composition containing no photocurable resin A. Regarding 5, after 100I Terama passed, pinholes were observed for 2 years, and at least 25
After 0 hours had elapsed, pinholes were observed in all five cases. In this way, thermosetting resin A and photocuring resin B were used as sample No. in Table 3. 2 to NO. Regarding the coated cylindrical ceramic capacitor obtained by the method of the present invention using the resin composition obtained by mixing the resin composition in the ratio shown in 4, no occurrence of pinholes and no decrease in insulation resistance are observed.
That is, the coating can be applied without producing any defective products.

また、本発明方法に用いる樹脂組成物を構成する熱硬化
性樹脂Aと光硬化性樹脂Bは下記第5表に示すようなも
のであつてもよい。
Further, the thermosetting resin A and the photocuring resin B constituting the resin composition used in the method of the present invention may be as shown in Table 5 below.

第 5 表 A:熱硬化性樹脂 フェノール樹脂スミラツクPC−1(商品名住友ジユレ
ツ(株)製)B:光硬化性樹脂 ポリエステル系の光硬化性樹脂(商品名、UVR−10
0サンユレジン(株)製) 10鍾量部触 媒 ジ
フェニルサルファイド2重量部触 媒 ベンゾイルパ
ーオキサイド1重量部そして、上記第5表に示す熱硬化
性樹脂Aと光硬化性樹脂Bを前記した第3表に示したよ
うな割合で混合して得たサンプルであるNO.lからN
O.5までの樹脂組成物を前記した場合と同様に第1図
及び第2図に示したリード線付きの円筒形セラミックコ
ンデンサにそれぞれ約200μの厚さに付着し後、1K
Wの紫外線ランプでw秒間照射し、その後150′Cの
温度で2鰍間加熱して樹脂膜を形成した上記円筒形セラ
ミックコンデンサを各サンプルについて各5嘲ずつ得て
、温度40℃、実効湿度95〜98%RHの恒温恒湿中
において、定格負荷寿命試験を行なつた。
Table 5 A: Thermosetting resin phenolic resin Sumilak PC-1 (trade name, manufactured by Sumitomo Juretsu Co., Ltd.) B: Photocurable resin Polyester-based photocurable resin (trade name, UVR-10)
(manufactured by Sanyu Resin Co., Ltd.) 10 parts by weight Catalyst 2 parts by weight of diphenyl sulfide Catalyst 1 part by weight of benzoyl peroxide; No. 1, which is a sample obtained by mixing in the proportions shown in the table. l to N
O. The resin compositions up to No. 5 were applied to the cylindrical ceramic capacitors with lead wires shown in FIGS. 1 and 2 to a thickness of about 200μ in the same manner as described above, and then
The above cylindrical ceramic capacitors were irradiated with a W ultraviolet lamp for W seconds and then heated at a temperature of 150'C for 2 hours to form a resin film. Five pieces of each sample were obtained at a temperature of 40C and an effective humidity. A rated load life test was conducted in a constant temperature and humidity environment of 95 to 98% RH.

即ちコンデンサの定格直流電圧50Vを50時間印加し
た後取り出し、常温常湿中に1時間放置後、コンデンサ
の耐電圧、容量変化率、絶縁抵抗値、ピンホール発生等
の測定を行ない、試験測定の規格に対する不良発生数を
確認した所、下記第6表に示すような試験結果を得た。
すなわち、熱硬化性樹脂Aを全く含まない樹脂組成物を
もつて被覆したサンプルNO.lについて10011寺
間経過後1個についてピンホールの発生を見、25時間
経過後には7個について絶縁抵抗が500MΩ以下とな
り、50C@間経過後に至つては50個中あ個について
絶縁抵抗が500MΩ以下になつてしまつた。また光硬
化性樹脂Aを全く含まない樹脂組成物をもつて被覆した
サンプルNO.5については10(ロ)間経過後2聞に
ついてピンホールの発生を見、少なくとも250時間経
過後には48個についてピンホールの発生を見、さらに
50(転)間経過後に至つては5柵全てについてピンホ
ールの発生を見た。また、熱硬化性樹脂Aの混合割合の
高いサンプルNO.4について500F1寺間経過後5
個について絶縁抵抗が500MΩ以下となつた。このよ
うな熱硬化性樹脂Aについてフェノール樹脂を用いた場
合であつても、光硬化性樹脂Bと第3表のサンプルNO
.2及びNO.3に示すような範囲の割合で混合して得
た樹脂組成物を用いて本発明方法によつて得た被覆をし
た円筒形セラミックコンデンサについてはピンホールの
発生及び絶縁抵抗の低下を全く見ない、すなわち不良品
を全く発生することなく被覆を施すことができる。
That is, after applying the rated DC voltage of 50V to the capacitor for 50 hours, take it out and leave it for one hour at room temperature and humidity. When we checked the number of defects that occurred in accordance with the standards, we obtained test results as shown in Table 6 below.
That is, sample No. 1 coated with a resin composition containing no thermosetting resin A. After 10011 Terama passed, pinholes were observed in 1 piece, and after 25 hours the insulation resistance of 7 pieces was 500 MΩ or less, and after 50 C@, the insulation resistance of 1 out of 50 pieces was 500 MΩ. It became the following. Sample No. 1 coated with a resin composition containing no photocurable resin A. Regarding 5, pinholes were observed in 2 fences after 10 (b) hours had passed, pinholes were found in 48 fences after at least 250 hours, and all 5 fences had been found after 50 (roll) hours had passed. The occurrence of pinholes was observed. In addition, sample No. with a high mixing ratio of thermosetting resin A. About 4 500F1 Terama after 5
Insulation resistance was 500MΩ or less for each piece. Even when phenolic resin is used for such thermosetting resin A, photocurable resin B and sample No. 3 in Table 3
.. 2 and NO. Regarding the coated cylindrical ceramic capacitor obtained by the method of the present invention using the resin composition obtained by mixing the resin composition in the range shown in 3, no occurrence of pinholes or decrease in insulation resistance is observed. In other words, the coating can be applied without producing any defective products.

上述した各実施例にあつては内部に極めて多量の空気を
内蔵しかつセラミック素体と金属キャップとを接合する
円筒形セラミックコンデンサを用いて得た結果からして
他の抵抗素子等の電子部品についても同様の結果、若し
くはそれ以上の結果が得られることはもちろんである。
上述したように、本発明方法は、熱硬化性樹脂と光硬化
性樹脂を適宜混合して得た樹脂組成物を電子部品本体外
周に付着させた後、上記樹脂組成物を順次光硬化させ次
いで熱硬化させる段階的方法によつて上記電子部品に被
覆を施すようにしたものである。
In each of the above-mentioned embodiments, the results obtained using a cylindrical ceramic capacitor that contains an extremely large amount of air and connects a ceramic body and a metal cap suggest that other electronic components such as resistive elements may not be used. It goes without saying that similar or even better results can be obtained.
As described above, in the method of the present invention, a resin composition obtained by appropriately mixing a thermosetting resin and a photocurable resin is attached to the outer periphery of an electronic component body, and then the resin composition is sequentially photocured. The coating is applied to the electronic component using a stepwise method of heat curing.

従つて、本発明方法によれば、樹脂組成物の電子部品へ
の塗布工程を1回だけで済ませることがてきる。
Therefore, according to the method of the present invention, the step of applying the resin composition to the electronic component can be completed only once.

上記樹脂組成物を光硬化し、熱硬化と段階的に硬化させ
るだけでピンホールの発生のない信頼性の高い被覆を行
うことができる。また、樹脂組成物中に熱硬化性樹脂を
混合していることから、金属体であるソーF線や電極キ
ャップ等を有する電子部品についても接着性の良い被覆
を行うことができ信頼性の高いものを得られる。さらに
、円筒形セラミックコンデンサの如く素体内部に大量の
空気を内蔵するような電子部品についても被覆すること
ができる。さらに、また溶剤で粘度を低くするいわゆる
溶剤型の樹脂を用いる必要がないので作業環境を悪化さ
せることもない。“
A highly reliable coating without the occurrence of pinholes can be achieved simply by photocuring the resin composition and curing it stepwise with heat curing. In addition, since a thermosetting resin is mixed into the resin composition, it is possible to coat electronic parts with good adhesion even on metal bodies such as saw F wires and electrode caps, making it highly reliable. You can get things. Furthermore, it is also possible to coat electronic components such as cylindrical ceramic capacitors that contain a large amount of air inside their bodies. Furthermore, since there is no need to use a so-called solvent-type resin whose viscosity is lowered with a solvent, the working environment will not be degraded. “

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明を適用する円筒形セラミック
コンデンサを示すものであり、第1図はその側面図であ
り第2図はその断面図である。
1 and 2 show a cylindrical ceramic capacitor to which the present invention is applied, with FIG. 1 being a side view thereof and FIG. 2 being a sectional view thereof.

Claims (1)

【特許請求の範囲】[Claims] 1 全樹脂のうち10〜40重量%が熱硬化性のエポキ
シ樹脂又はフェノール樹脂を含有する光硬化可能な樹脂
組成物を電子部品本体に被覆し、光硬化させ、しかる後
に熱硬化させるようにした電子部品の被覆方法。
1. A photocurable resin composition containing a thermosetting epoxy resin or phenol resin in 10 to 40% by weight of the total resin is coated on an electronic component body, photocured, and then thermally cured. Method of coating electronic parts.
JP52066719A 1977-06-08 1977-06-08 How to coat electronic parts Expired JPS6047732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52066719A JPS6047732B2 (en) 1977-06-08 1977-06-08 How to coat electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52066719A JPS6047732B2 (en) 1977-06-08 1977-06-08 How to coat electronic parts

Publications (2)

Publication Number Publication Date
JPS543260A JPS543260A (en) 1979-01-11
JPS6047732B2 true JPS6047732B2 (en) 1985-10-23

Family

ID=13323982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52066719A Expired JPS6047732B2 (en) 1977-06-08 1977-06-08 How to coat electronic parts

Country Status (1)

Country Link
JP (1) JPS6047732B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3015772A1 (en) * 1980-04-24 1981-10-29 Standard Elektrik Lorenz Ag, 7000 Stuttgart METHOD FOR COVERING AN ELECTRICAL COMPONENT WITH A HARDENABLE RESIN
JPS6014416A (en) * 1983-07-05 1985-01-25 Tdk Corp Manufacture of electronic component
JPS6146054A (en) * 1984-08-10 1986-03-06 Toyobo Co Ltd Sealed ic module or element
CN109133901A (en) * 2018-10-29 2019-01-04 惠州嘉科实业有限公司 Thermistor containing iron series and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958153A (en) * 1972-06-26 1974-06-05
JPS50154703A (en) * 1974-06-04 1975-12-13
JPS5145313A (en) * 1974-10-16 1976-04-17 Matsushita Electric Ind Co Ltd DENDOSO FUKI
JPS51101855A (en) * 1975-03-03 1976-09-08 Matsushita Electric Ind Co Ltd
JPS51125200A (en) * 1974-09-13 1976-11-01 Hitachi Chem Co Ltd Curable resin composition
JPS51125482A (en) * 1975-04-04 1976-11-01 Nok Corp Photo-curable latex composition
JPS5235862A (en) * 1975-09-16 1977-03-18 Sony Corp Method of coating electronic parts
JPS5298749A (en) * 1976-02-17 1977-08-18 Toyo Ink Mfg Co Ltd Method of forming protective coating

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711403Y2 (en) * 1975-06-19 1982-03-05

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958153A (en) * 1972-06-26 1974-06-05
JPS50154703A (en) * 1974-06-04 1975-12-13
JPS51125200A (en) * 1974-09-13 1976-11-01 Hitachi Chem Co Ltd Curable resin composition
JPS5145313A (en) * 1974-10-16 1976-04-17 Matsushita Electric Ind Co Ltd DENDOSO FUKI
JPS51101855A (en) * 1975-03-03 1976-09-08 Matsushita Electric Ind Co Ltd
JPS51125482A (en) * 1975-04-04 1976-11-01 Nok Corp Photo-curable latex composition
JPS5235862A (en) * 1975-09-16 1977-03-18 Sony Corp Method of coating electronic parts
JPS5298749A (en) * 1976-02-17 1977-08-18 Toyo Ink Mfg Co Ltd Method of forming protective coating

Also Published As

Publication number Publication date
JPS543260A (en) 1979-01-11

Similar Documents

Publication Publication Date Title
JP2005325357A5 (en)
JP2005325357A (en) Terminal coating
US4168520A (en) Monolithic ceramic capacitor with free-flowed protective coating and method for making same
JPS6047732B2 (en) How to coat electronic parts
EP0726581B1 (en) Method of making an insulator
JP5617851B2 (en) Resin electrode paste and electronic component having resin electrode formed using the same
JPS58190015A (en) Solid electrolytic condenser
JPH08339942A (en) Electronic component
JPH0737573A (en) Manufacture of lithium battery with terminal
DE19839631C1 (en) Production of a temperature sensor, especially a thermistor, comprises liberating the sensor element from residual moisture before encapsulating in a vacuum and dipping into a polymeric solution to form a polymer layer
JPS63268241A (en) Solid electrolytic capacitor
JP2877364B2 (en) Case exterior type electronic components
CA1078935A (en) Electrical device containing a silicone resin
JP2592790B2 (en) Electronic components
JP2010182996A (en) Method of manufacturing electronic component
JPS5872046A (en) Preparation of humidity sensitive element
JPH0456332A (en) Outer casing of electronic component
JP3341360B2 (en) Varistor and its manufacturing method
JPS62153830A (en) Preparation of liquid crystal display element
JPS6032338B2 (en) Porcelain capacitor with conductive paint-baked electrodes
JPS6032337B2 (en) Manufacturing method of magnetic capacitor
JP3171693B2 (en) Solid electrolytic capacitors
WO2008101786A1 (en) Method for producing a protective layer on the surface of an electronic sensor element, and an electronic sensor element having a protective layer
JPH01257306A (en) Manufacture of voltage monlinear resistor
JPS5858806B2 (en) How to package electronic parts