JPS6047712B2 - High frequency heating device - Google Patents

High frequency heating device

Info

Publication number
JPS6047712B2
JPS6047712B2 JP55061546A JP6154680A JPS6047712B2 JP S6047712 B2 JPS6047712 B2 JP S6047712B2 JP 55061546 A JP55061546 A JP 55061546A JP 6154680 A JP6154680 A JP 6154680A JP S6047712 B2 JPS6047712 B2 JP S6047712B2
Authority
JP
Japan
Prior art keywords
antenna
frequency
tip
drive shaft
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55061546A
Other languages
Japanese (ja)
Other versions
JPS56159088A (en
Inventor
信夫 池田
博文 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55061546A priority Critical patent/JPS6047712B2/en
Publication of JPS56159088A publication Critical patent/JPS56159088A/en
Publication of JPS6047712B2 publication Critical patent/JPS6047712B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • H05B6/725Rotatable antennas

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 本発明は高周波発振器からの高周波エネルギーを回転
アンテナを使用して加熱室に供給する方式の高周波加熱
装置に関するもので、特に電熱ヒー ターによる調理も
可能な複合タイプの高周波加熱装置に使用する回転アン
テナのもつ従来よりの製造上の問題点を解決し、同時に
アンテナ先端部分 でのスパーク等を防止し、安価で信
頼度の高い回転アンテナを提供するものである。
[Detailed Description of the Invention] The present invention relates to a high-frequency heating device that uses a rotating antenna to supply high-frequency energy from a high-frequency oscillator to a heating chamber. The present invention solves the conventional manufacturing problems of rotating antennas used in heating devices, and at the same time prevents sparks at the tip of the antenna, thereby providing an inexpensive and highly reliable rotating antenna.

従来電熱ヒー ター付でしかも焼切り式のセルフクリー
ニングの機能を持つような高周波加熱装置の場合は庫内
温度が非常に高くなる為に回転アンテナの回転駆動軸に
はセラミック等の高耐熱誘電体材料を使用している。と
ころが周知のごとくセラミックは非常に固く又割れやす
いので、これと金属性アンテナを信頼性のある方法でし
かも安価に接続することは量産を考えると非常に難しい
ものてあつた。従来から提案され又一部実施されて来た
方法は1セ ラミック製の回転駆動軸とアンテナの両方
にそれぞれメネジ又はオネジを切り、これにより接続す
る。2セラミック軸の表面の一部をメタライズ処理し、
ろう付けによりアンテナと接続する。
In the case of conventional high-frequency heating devices that are equipped with an electric heater and also have a burn-out self-cleaning function, the temperature inside the refrigerator becomes extremely high, so the rotary drive shaft of the rotating antenna is made of a highly heat-resistant dielectric material such as ceramic. materials used. However, as is well known, ceramic is extremely hard and easily broken, so it has been extremely difficult to connect it to a metal antenna in a reliable and inexpensive manner from the perspective of mass production. A method that has been proposed and partially implemented in the past is to cut female or male threads in both the ceramic rotary drive shaft and the antenna, respectively, and connect them using these. 2. Part of the surface of the ceramic shaft is metallized,
Connect to the antenna by brazing.

3セラミック軸とアンテナの両方の側面に小さな穴を・
あけ、この穴にリベット又はピン等を通してカシメル等
である。
3. Small holes on both sides of the ceramic shaft and antenna.
Drill and insert a rivet or pin into this hole using a rivet or the like.

1の場合はセラミックは焼成工程に於ける収縮が非常に
大きい為ネジの精度を出ずことが難しく結果的に非常に
高くつくという欠点があり、2の場合もセラミックのメ
タライズから・ろう付けの一連の工程が相当高くつくと
いう欠点があつた。
In case 1, the shrinkage of ceramic during the firing process is very large, so it is difficult to maintain the precision of the screws, resulting in very high costs. The drawback was that the series of steps was quite expensive.

3の場合はコスト的には比較的安く出来るが、カシメ時
の衝撃によりガイシが割れたり、クラックが入いる等の
品質上の問題点があつた。
In the case of No. 3, the cost is relatively low, but there are quality problems such as the insulators breaking or cracking due to the impact during crimping.

一方アンテナの先端近傍は非常に高電界になる為にオー
プンを空焼や径負荷で動作させ、定在波比が非常に大き
くなつた時、アンテナ先端部近傍でスパークが発生する
という問題があつた。そこで本発明は簡単な構成で上記
従来の問題点を解決し、安価て信頼性のある回転アンテ
ナを提供するものである。以下添付図面とともに本発明
の一実施例を説明する。
On the other hand, since the electric field near the tip of the antenna is very high, there is a problem that sparks occur near the tip of the antenna when the open circuit is operated with dry firing or radial load and the standing wave ratio becomes very large. Ta. Therefore, the present invention solves the above-mentioned conventional problems with a simple configuration and provides an inexpensive and reliable rotating antenna. An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図において、1は高周波加熱装置の本体、2は本体
内に形成された加熱室、3は加熱室2の前面開口部を開
閉自在にするドアー、4は高周波発振器、5は高周波発
振器4て発生した高周波エネルギーを加熱室2との結合
部に伝送する導波管、6は導波管5で伝送された高周波
エネルギーを加熱室内に供給する回転アンテナで、駆動
源であるモーター7に連結されたセラミック等の誘電体
材料よりなる駆動軸8に接続されている。
In FIG. 1, 1 is the main body of the high-frequency heating device, 2 is a heating chamber formed in the main body, 3 is a door that allows the front opening of the heating chamber 2 to be opened and closed, 4 is a high-frequency oscillator, and 5 is a high-frequency oscillator 4. A waveguide 6 transmits the high frequency energy generated by the waveguide to a joint with the heating chamber 2, and 6 is a rotating antenna that supplies the high frequency energy transmitted by the waveguide 5 into the heating chamber, and is connected to a motor 7 which is a driving source. It is connected to a drive shaft 8 made of a dielectric material such as ceramic.

11はグリル料理等も可能にするための電熱ヒーターで
ある。
Reference numeral 11 is an electric heater for making grilled food possible.

第2図に回転アンテナの構成を示すようにアンテナ本体
部9と補助部10とよりなる。
As shown in FIG. 2, the rotary antenna is composed of an antenna main body part 9 and an auxiliary part 10.

a図に於いて、アンテナ本体部9の垂直部分の先端部分
には軸方向にスリットが切られており、スリットと直交
する壁の部分には外側から内側に向つて一対の突起が設
けられている。図bに於いてセラミックよりなる回転駆
動軸8には軸方向に直角に穴があいており、アンテナ本
体9に駆動軸を挿入するとアンテナ本体に設けられたス
リットの為に先端が開き、スムーズに駆動軸を挿入する
ことが出来、駆動軸の穴とアンテナ本体に設けられた突
起が嵌め合わされて固定される。アンテナ本体9はステ
ンレス鋼で作られているがL字状の曲げ加工を必要とす
る為この加工を容易にする為になまし処理がされており
、あまりバネ性がなくなつている。従つて駆動軸8を挿
入した後は第2図bの様に先端が少し拡がつている。次
に同図cのようにアンテナ補助部10をアンテナ本体の
下の方からかふせて先端部まで押し上けていくとアンテ
ナ補助部の内径は、本体の外径にほぼ等しく作られてい
るのて本体の先端の拡がりがしぼられて駆動軸とアンテ
ナ本体は確実に接接される。
In Figure a, a slit is cut in the axial direction at the tip of the vertical part of the antenna main body 9, and a pair of protrusions are provided in the part of the wall perpendicular to the slit from the outside to the inside. There is. In Figure b, the rotary drive shaft 8 made of ceramic has a hole perpendicular to the axial direction, and when the drive shaft is inserted into the antenna body 9, the tip opens due to the slit provided in the antenna body, and the shaft rotates smoothly. The drive shaft can be inserted, and the hole in the drive shaft and the projection provided on the antenna body are fitted and fixed. The antenna body 9 is made of stainless steel, but since it requires bending into an L-shape, it has been smoothed to facilitate this process, so it has less springiness. Therefore, after inserting the drive shaft 8, the tip is slightly expanded as shown in FIG. 2b. Next, as shown in figure c, when the antenna auxiliary part 10 is covered from the bottom of the antenna body and pushed up to the tip, the inner diameter of the antenna auxiliary part is made almost equal to the outer diameter of the main body. The expanse of the tip of the main body is then narrowed to ensure that the drive shaft and the antenna main body are in contact with each other.

この後アンテナ本体9と補助部10をろう付け等により
処理することにより電気的にも確実な接続が得られる。
最後にアンテナ本体を第2図dのようにL字状に曲げて
完成する。
Thereafter, by processing the antenna body 9 and the auxiliary part 10 by brazing or the like, a reliable electrical connection can be obtained.
Finally, bend the antenna body into an L-shape as shown in Figure 2d to complete the process.

尚アンテナ補助部とアンテナ本体の接続をスポット溶接
で行なう場合には第3図のような構造で出来る。但しこ
の場合はアンテナ本体の先端の拡がりを別の治具等てし
ぼつた後でスポット溶接する必要がある。以上の様な方
法でアンテナを作ると駆動軸は単なる直直ぐな棒状で良
いので、従来例のネジ切り゛式に比べて非常に簡単であ
るし、又セラミックの表面のメタライズ加工も不要なの
でコスト的にも安く出来、さらにアンテナ先端を割つて
、駆動軸を挿入してからアンテナ補助部によつて衝撃を
かけないでアンテナ先端をしぼりこむことによりアンテ
ナと駆動軸を固定するので、駆動軸のクラック割れ等の
心配が無い。
Incidentally, when the antenna auxiliary part and the antenna main body are connected by spot welding, a structure as shown in FIG. 3 can be obtained. However, in this case, it is necessary to spot weld the tip of the antenna body after squeezing it out using another jig or the like. When an antenna is made using the method described above, the drive shaft can be simply a straight bar, so it is much simpler than the conventional threaded type, and there is no need to metalize the ceramic surface, so the cost is reduced. In addition, the antenna and drive shaft are fixed by splitting the antenna tip, inserting the drive shaft, and then squeezing the antenna tip using the antenna auxiliary part without applying impact. There is no need to worry about cracks, etc.

(セラミックは衝撃には弱いが圧縮力には強い。)更に
アンテナ本体の先端につけられたアンテナ補助部はアン
テナ本体よりも径が大きくなつており、その先端は丸み
を持たせてあるし、アンテナ補助部の先端と駆動軸の間
には隙間が保たれているので、アンテナ先端から駆動軸
表面を伝つて導波管上壁との間てスパークするという問
題も解決出来る。
(Ceramics are weak against impact, but strong against compressive force.) Furthermore, the antenna auxiliary part attached to the tip of the antenna body has a larger diameter than the antenna body, and its tip is rounded, making it easier to use the antenna. Since a gap is maintained between the tip of the auxiliary part and the drive shaft, the problem of sparks occurring from the tip of the antenna along the surface of the drive shaft and the upper wall of the waveguide can be solved.

(駆動軸は誘電体材料て出来ているが、誘電体の部分は
電気力線が集中しやすい為、アンテナの先端が駆動軸表
面に接しているか又は非常に近いとスパークを起こし易
いということがわかった。)又アンテナの導波管内の寸
法の少しの変化が高周波発振器の動作点に非常に大きな
影響を与えるが、例えば第2図bのような構成のままだ
と、アンテナの導波管内の寸法には駆動軸にあけられた
二つの穴の間のピッチの寸法バラツキとアンテナ先端か
ら突起までの寸法バラツキの両方が含まれる為比較的大
きな寸法バラツキが生ずるが、同図cの様な方法にする
と、アンテナ補助部をかぶせる時に治具を使用して駆動
軸の上の穴とアンテナ補助部の先端の間の寸法を合わせ
れば良いのでバラツキの巾は狭く出来、高周波発振器の
動作点も理想的な範囲内におさめることが出来る。
(The drive shaft is made of a dielectric material, and since electric lines of force tend to concentrate in the dielectric part, sparks are likely to occur if the tip of the antenna is in contact with or very close to the drive shaft surface.) ) Also, a slight change in the dimensions inside the antenna's waveguide has a very large effect on the operating point of the high-frequency oscillator, but if the configuration shown in Figure 2b remains, for example, the inside of the antenna's waveguide will The dimensions include both the variation in the pitch between the two holes drilled in the drive shaft and the variation in the dimension from the tip of the antenna to the protrusion, so there is a relatively large variation in dimensions, but as shown in Figure c. With this method, when covering the antenna auxiliary part, you can use a jig to match the dimensions between the hole on the drive shaft and the tip of the antenna auxiliary part, so the width of variation can be narrowed, and the operating point of the high frequency oscillator can also be adjusted. It can be kept within the ideal range.

更にアンテナの先端部を大きくしたことによりアンテナ
自体に広帯域の周波数特性を持たせることが出来、周波
数変動、バラツキに対しても安定したアンテナ機能を発
揮することが出来る。以上説明したように本発明によれ
ば、簡単な構成により安価て作業性が良く、寸法精度が
良く動作中にスパーク等をおこすことがなく、しかし周
波数特性の改善された信頼度の高い回転アンテナを提供
することが出来る。
Furthermore, by enlarging the tip of the antenna, the antenna itself can have broadband frequency characteristics, and can exhibit stable antenna function even in the face of frequency fluctuations and variations. As explained above, the present invention provides a highly reliable rotating antenna that has a simple configuration, is inexpensive, has good workability, has good dimensional accuracy, does not cause sparks during operation, and has improved frequency characteristics. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す高周波加熱装置の縦断
面図、第2図a−dは同要部の回転アンテナの断面図お
よび側面図である。 4・・・・・・高周波発振器、5・・・・・・導波管、
6・・・・・・回転アンテナ、7・・・・・・モーター
、8・・・・・・駆動軸、9・・・・・アンテナ本体、
10・・・・・・アンテナ補助部。
FIG. 1 is a longitudinal cross-sectional view of a high-frequency heating device showing an embodiment of the present invention, and FIGS. 2 a to 2 d are a cross-sectional view and a side view of a rotating antenna of the same essential part. 4...High frequency oscillator, 5... Waveguide,
6...Rotating antenna, 7...Motor, 8...Drive shaft, 9...Antenna body,
10... Antenna auxiliary part.

Claims (1)

【特許請求の範囲】 1 加熱室と、この加熱室内に高周波エネルギーを供給
する高周波発振器と、この高周波発振器で発振した高周
波電磁波を伝送する導波管と、この導波管で伝送された
高周波電磁波を加熱室内に放射する回転アンテナとより
なり、前記回転アンテナの導波管内にある先端近くに複
数個のスリットを軸方向に平行に設け、同時にスリット
がある部分の円周上の任意の点に外側から軸中心に向つ
て少くとも1つの突起を設け、この突起を介して前記ア
ンテナと回転駆動軸を一体に接合したことを特徴とする
高周波加熱装置。 2 アンテナの先端をスリットのある部分で軸方向に対
して略直角に折り曲げ、前記折り曲げ部分に、前記アン
テナの直径よりも大きな直径を有する、アンテナ補助部
を溶接又はろう付け等で接合したことを特徴とする特許
請求の範囲第1項記載の高周波加熱装置。 3 アンテナ先端のアンテナと駆動軸の接合部近傍に一
方の内径がアンテナの外径にほぼ等しく、他方の外径が
アンテナの外径よりも大きな二段の径をもつアンテナ補
助部をかぶせたことを特徴とする特許請求の範囲第1項
記載の高周波加熱装置。
[Scope of Claims] 1. A heating chamber, a high-frequency oscillator that supplies high-frequency energy into the heating chamber, a waveguide that transmits the high-frequency electromagnetic waves oscillated by the high-frequency oscillator, and the high-frequency electromagnetic waves transmitted by the waveguide. It consists of a rotating antenna that radiates into a heating chamber, and a plurality of slits are provided in parallel to the axial direction near the tip in the waveguide of the rotating antenna, and at any point on the circumference of the part where the slits are located. A high-frequency heating device characterized in that at least one protrusion is provided from the outside toward the shaft center, and the antenna and the rotational drive shaft are integrally joined via the protrusion. 2. The tip of the antenna is bent approximately at right angles to the axial direction at the slit part, and an antenna auxiliary part having a diameter larger than the diameter of the antenna is joined to the bent part by welding, brazing, etc. A high-frequency heating device according to claim 1. 3. An antenna auxiliary part having two diameters, one of which has an inner diameter approximately equal to the outer diameter of the antenna and the other outer diameter which is larger than the outer diameter of the antenna, is placed near the joint between the antenna and the drive shaft at the tip of the antenna. A high-frequency heating device according to claim 1, characterized in that:
JP55061546A 1980-05-08 1980-05-08 High frequency heating device Expired JPS6047712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55061546A JPS6047712B2 (en) 1980-05-08 1980-05-08 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55061546A JPS6047712B2 (en) 1980-05-08 1980-05-08 High frequency heating device

Publications (2)

Publication Number Publication Date
JPS56159088A JPS56159088A (en) 1981-12-08
JPS6047712B2 true JPS6047712B2 (en) 1985-10-23

Family

ID=13174221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55061546A Expired JPS6047712B2 (en) 1980-05-08 1980-05-08 High frequency heating device

Country Status (1)

Country Link
JP (1) JPS6047712B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60264092A (en) * 1984-06-11 1985-12-27 松下電器産業株式会社 High frequency heater

Also Published As

Publication number Publication date
JPS56159088A (en) 1981-12-08

Similar Documents

Publication Publication Date Title
EP1734798A1 (en) Coaxial microwave plasma torch
EP1147684B1 (en) Method and device for drilling, cutting, nailing and joining solid non-conductive materials using microwave radiation
JP2002535155A5 (en)
JP3149002B2 (en) Coaxial microwave plasma generator
AU2062600A (en) Device for machining the end of a coaxial high-frequency cable
US4660572A (en) Container, for fixing an animal to be tested in a biochemical test
JPS6047712B2 (en) High frequency heating device
KR880005827A (en) Microwave oven with heater
EP2288232B1 (en) A wave stirrer for a microwave oven
JPH0124356B2 (en)
JPS5935160B2 (en) Power supply device in high frequency heating equipment
JPS642281B2 (en)
JP4894170B2 (en) High frequency heating device
JPS5848799Y2 (en) High frequency heating device
JPH017995Y2 (en)
JPS58181289A (en) High frequency heater
JPS5985927A (en) Thermistor temperature probe
JPH08195277A (en) High frequency heating device
US3462316A (en) Terminal construction
JPS6172936A (en) Electronic range
JPS6133963Y2 (en)
EP1485932B1 (en) Magnetron arrangements
KR940008588Y1 (en) Magnetron
KR890007019Y1 (en) Equivalent heating apparatus of microwave range
KR890005192B1 (en) Magnetron