JPS6047207B2 - Method for producing cupric hydroxide - Google Patents

Method for producing cupric hydroxide

Info

Publication number
JPS6047207B2
JPS6047207B2 JP14028181A JP14028181A JPS6047207B2 JP S6047207 B2 JPS6047207 B2 JP S6047207B2 JP 14028181 A JP14028181 A JP 14028181A JP 14028181 A JP14028181 A JP 14028181A JP S6047207 B2 JPS6047207 B2 JP S6047207B2
Authority
JP
Japan
Prior art keywords
cupric
ammonia
chloride
copper
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14028181A
Other languages
Japanese (ja)
Other versions
JPS5841721A (en
Inventor
博三 川崎
貞夫 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP14028181A priority Critical patent/JPS6047207B2/en
Publication of JPS5841721A publication Critical patent/JPS5841721A/en
Publication of JPS6047207B2 publication Critical patent/JPS6047207B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は、塩化第二銅、塩化第二銅を用いる銅のエッチ
ング処理排液、塩化銅アンモニウム等を原料とする高純
度の水酸化第二銅の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-purity cupric hydroxide using cupric chloride, copper etching wastewater using cupric chloride, cupric ammonium chloride, etc. as raw materials. It is.

水酸化第二銅は青色結晶粉末て、高価であり、船底塗料
、農薬等の原料として有用である。
Cupric hydroxide is a blue crystalline powder that is expensive and useful as a raw material for ship bottom paints, agricultural chemicals, etc.

従来、水酸化第二銅の製造方法は、原料として硫酸銅を
用いて行われているが、具体的には(a)硫酸アンモニ
ウム複塩に苛性ソーダを加えて水酸化第二銅を得る方法
(米国特許第1800828号)(b)硫酸銅とリン酸
三ソーダとの複塩に苛性ソータを加えて水酸化第二銅を
得る方法(米国特許第2666688号)が挙げられる
Conventionally, methods for producing cupric hydroxide have been carried out using copper sulfate as a raw material, but specifically, (a) a method for obtaining cupric hydroxide by adding caustic soda to ammonium sulfate double salt (U.S. Patent No. 1,800,828) (b) A method of obtaining cupric hydroxide by adding a caustic sorter to a double salt of copper sulfate and trisodium phosphate (US Pat. No. 2,666,688).

(a)の方法は硫酸銅溶液にアンモニア水を加えて硫酸
銅アンモニウム複塩の濃紫色溶液を得て、これに苛性ソ
ーダ水溶液を加えて水酸化第二銅を沈澱させ、濾過分離
して製品とする。
In method (a), ammonia water is added to a copper sulfate solution to obtain a deep purple solution of cupric ammonium sulfate double salt, a caustic soda aqueous solution is added to this to precipitate cupric hydroxide, and the product is separated by filtration. do.

その反応式は下記の如くてある。CuS04+4NH4
OH →CU(NHa)4SO4+4H2O CU(NH3)4S04+2NaOH+4H2O″ →
CU(OH)2+Na2SO4+4NH4OH上記の反
応式から明らかな様に、硫酸銅lmolに対して4mo
1のアンモニアが必要であり、又水酸化第二銅を濾過し
た濾液には約20%の硫酸銅アンモニウム複塩、芒硝、
及びアンモニアが溶存す7る。
The reaction formula is as follows. CuS04+4NH4
OH →CU(NHa)4SO4+4H2O CU(NH3)4S04+2NaOH+4H2O″ →
CU(OH)2+Na2SO4+4NH4OHAs is clear from the above reaction formula, 4 mol per mol of copper sulfate
1 of ammonia is required, and the filtrate obtained by filtering cupric hydroxide contains approximately 20% copper ammonium sulfate double salt, mirabilite,
and ammonia are dissolved7.

該アンモニアは循環して使用することが出来るために濾
液に新たに原料の硫酸銅を加えて、苛性ソーダを添加し
て第2回目の反応も行うと、新たに加えた硫酸銅に相当
する水酸化第二銅が得られるが、濾液中には前回と同様
に約20%の硫酸銅アンモニウム複塩及び2回分の芒硝
が溶存し、さらに液量が増加するので濃度が若干薄くな
る。この様にして逐次反応回数が多くなると、生成した
芒硝が多量になり水酸化第二銅の収量はわずかに増加す
るが、結晶粒子が細かく青味が薄く不安定となり品質が
低下する。従つてこの方法では少くとも反応を2回繰返
した後には冷却して芒硝の結晶を除去する必要があり、
又芒硝の結晶を分離する際に結晶に付着している液、即
ち若干の硫酸銅アンモニウム複塩とアンモニアを含む液
を回収することができないので排液として放棄するため
、その排水処理の問題点がある。次に(b)の方法は下
記の反応式により行なわれる。
Since the ammonia can be recycled and used, when the raw material copper sulfate is newly added to the filtrate and a second reaction is performed by adding caustic soda, hydroxide corresponding to the newly added copper sulfate is generated. Cupric acid is obtained, but as in the previous case, approximately 20% cupric ammonium sulfate double salt and two doses of Glauber's salt are dissolved in the filtrate, and the liquid volume further increases, so the concentration becomes slightly diluted. When the number of sequential reactions increases in this manner, a large amount of Glauber's salt is produced and the yield of cupric hydroxide increases slightly, but the crystal grains become fine and the blue color becomes weak and unstable, resulting in a decrease in quality. Therefore, in this method, it is necessary to cool the reaction after repeating the reaction at least twice to remove the Glauber's salt crystals.
In addition, when separating the crystals of Glauber's salt, the liquid adhering to the crystals, that is, the liquid containing some copper ammonium sulfate double salt and ammonia, cannot be recovered and is discarded as wastewater, which poses problems in the treatment of wastewater. There is. Next, method (b) is carried out according to the following reaction formula.

即ち、硫酸銅溶液に計算量の燐酸三ソーダ溶液を加えて
リン酸銅ソーダ複塩を作り、これに苛性ソーダ溶液を加
えて水酸化第二銅の沈澱を得るのであるが、この製造方
法ではリン酸三ソーダを循環して使用することが出来る
ので、直ちに水酸化第二銅の沈澱を分離せずに数回の反
応液量を収容−することのできる大型の溶器を用いて第
1回目の反応が終了して沈澱の生成している溶液に、第
2回目の硫酸銅を結晶のまま加えて、遊離しているリン
酸三ソーダと複塩を作らせ、又苛性ソーダ液を加えて水
酸化第二銅の沈澱を得る。
That is, a calculated amount of trisodium phosphate solution is added to a copper sulfate solution to make a copper sodium phosphate double salt, and a caustic soda solution is added to this to obtain a precipitate of cupric hydroxide. Since trisodium acid can be used in circulation, the first reaction is carried out using a large vessel that can accommodate several reaction volumes without immediately separating the cupric hydroxide precipitate. To the solution in which the reaction has been completed and a precipitate has been formed, add the second copper sulfate in its crystal form to form a double salt with the free trisodium phosphate, and add a caustic soda solution to the solution to form a precipitate. A precipitate of cupric oxide is obtained.

このようにJして容器が許す範囲内で反応を繰返えした
後、水酸化第二銅を濾別し、一方リン酸三ソーダを含有
する濾液は硫酸銅を加えて新たな反応を行い、リン酸銅
ソータ複塩を生成し、新たな反応を開始するのてある。
この方法により生成する水酸化第二;銅は色調がやや青
味が薄く不安定であり、又リン酸銅ソーダ複塩はゲル状
の沈澱のために水酸化第二銅の回収をする為の濾過が困
難である問題点がある。本発明は、このような従来技術
の問題点を克服4するために鋭意研究を行つた結果、原
料として塩化第二銅または/およびそれを主成分とした
水溶液を用いることにより、脱水されにくい、貯蔵性の
良い、高純度の水酸化第二銅を高収率て得ることの出来
る方法を知見し、本発明の完成に至つたものである。
After repeating the reaction in this manner to the extent permitted by the container, the cupric hydroxide is filtered off, while the filtrate containing trisodium phosphate is subjected to a new reaction by adding copper sulfate. , forming a copper phosphate sorter double salt and starting a new reaction.
Cupric hydroxide produced by this method; copper has a slightly bluish color and is unstable, and the copper-sodium phosphate double salt forms a gel-like precipitate, making it difficult to recover cupric hydroxide. There is a problem that filtration is difficult. As a result of intensive research in order to overcome the problems of the prior art, the present invention uses cupric chloride and/or an aqueous solution containing it as a main component as a raw material, thereby making it difficult to dehydrate. The present invention has been completed by discovering a method for obtaining high-yield cupric hydroxide with good storage stability and high purity.

即ち、本発明は塩化第二銅または/およびそれを主成分
とする水溶液とアンモニアを反応させて塩化銅アンモニ
ウム複塩を製造し、次いで該塩に苛性アルカリを反応さ
せることを特徴とする水酸化第二銅の製造方法である。
That is, the present invention is a hydroxide method characterized by reacting cupric chloride or/and an aqueous solution containing it as a main component with ammonia to produce a cupric ammonium chloride double salt, and then reacting the salt with a caustic alkali. This is a method for producing cupric copper.

本発明の原料としては、塩化第二銅または/およびそれ
を主成分とする水溶液が用いられるが、フ塩化第二銅を
主成分とする水溶液は、主成分として塩化第二銅を含有
している水溶液であれば、その種類は問わないが、通常
、塩化銅エッチング処理排液または/および塩化銅アン
モニウム結晶〔CuCl22NH4Cl2ll2O〕の
水溶液が用いられる。塩化銅エッチング処理排液は塩化
第二銅の水溶液を用いて銅のプリント配線基板のエッチ
ングを行なつた処理排液であり、その組成には通常次の
ものが含まれている。その他若干の有機物、Ni.Zn
.PO4−イオン等が含まれる。
As the raw material of the present invention, cupric chloride or/and an aqueous solution containing it as a main component is used, but an aqueous solution containing cupric chloride as a main component contains cupric chloride as a main component Although the type of aqueous solution is not limited as long as it is present, an aqueous solution of copper chloride etching treatment waste liquid and/or copper ammonium chloride crystals [CuCl22NH4Cl2ll2O] is usually used. The copper chloride etching process waste liquid is a process waste liquid obtained by etching a copper printed wiring board using an aqueous solution of cupric chloride, and its composition usually contains the following: Some other organic substances, Ni. Zn
.. This includes PO4- ions and the like.

プリント配線基板のエッチングは塩化第二銅を使用した
場合次の様な反応機構で行なわれている。この楊合0℃
1の濃度が高くなると水溶性がなくなりスラッジが発生
する為、CuClがあまり多くならない程度て使用をや
めるか、HClを加えて空気酸化 −ーニニニニ
ニ) を行なわせるか、NaClを加゛Ii?症第一銅食塩水
の型て錯体を作り水溶性の型にするか、いずれかの方法
がとられ塩化第一銅スラッジの発生がおこらない様にし
ている。
Etching of printed wiring boards is carried out using the following reaction mechanism when cupric chloride is used. This temperature is 0℃
When the concentration of 1 becomes high, water solubility disappears and sludge is generated, so either stop using it until the amount of CuCl does not increase too much, add HCl and perform air oxidation, or add NaCl. In order to prevent the generation of cuprous chloride sludge, either a complex is made into a water-soluble form by molding cuprous chloride saline or the like.

したがつて塩化第二銅を含有した組成の溶液となり本発
明に用いることが出来る。次に、上記の原料を用いて行
われる本発明の製造方法を詳細に説明する。
Therefore, the solution has a composition containing cupric chloride and can be used in the present invention. Next, the manufacturing method of the present invention using the above raw materials will be explained in detail.

原料である上記の塩化銅溶液或はこれに若干の塩酸を含
む溶液、例えは塩化銅エッチング処理排液または/およ
び塩化銅アンモニウム結晶の水溶液に常温で計算量以上
のアンモニア水を加えて下記の反応により塩化銅アンモ
ニウム複塩の溶液を作る。
Add more than the calculated amount of ammonia water to the above-mentioned raw material copper chloride solution or a solution containing some hydrochloric acid, such as copper chloride etching wastewater or/and cupric ammonium chloride crystal aqueous solution at room temperature, and make the following. The reaction produces a solution of copper ammonium chloride double salt.

(らXll本〜JU(VAAノ2tt1ANbJlノこ
の反応ては原料中の塩化第二銅1m01に対してアンモ
ニアは2n101相当以上必要とする。
In this reaction, ammonia equivalent to 2n101 or more is required for 1m01 of cupric chloride in the raw material.

この際原料溶液中に塩酸を含む場合にはこれに相当する
アンモニアを追加する。但し、f−HClは遊離塩酸を
示す。
At this time, if the raw material solution contains hydrochloric acid, a corresponding amount of ammonia is added. However, f-HCl indicates free hydrochloric acid.

反応溶液はアンモニアの添加により最初は緑色沈澱から
紫色沈澱を作り計算量を加えると濃紫色透明な溶液とな
る。
The reaction solution initially changes from a green precipitate to a purple precipitate by adding ammonia, and when the calculated amount is added, it becomes a dark purple and transparent solution.

次に加えたアンモニアと等量以上の苛性アルカリとして
例えば苛性ソーダを加えて、下記の反応により水酸化第
二銅の沈澱を生成させる。&LA■Fyl! A1いV
A暴 1轟4CkV番争 ● ―一ーーーー得られた
水酸化第二銅の沈澱は濾過、水洗、乾燥して製品とする
が収量は通常約85%程度で残部は濾液中に溶解してい
る。
Next, for example, caustic soda is added as a caustic alkali in an amount equal to or more than the added ammonia, and a precipitate of cupric hydroxide is generated by the following reaction. &LA■Fyl! A1 V
A 1 Todoroki 4 CkV issue ● -1 - The cupric hydroxide precipitate obtained is filtered, washed with water, and dried to produce a product, but the yield is usually about 85% and the remainder is dissolved in the filtrate. .

濾液中には残部の塩化銅アンモニウム複塩、食塩、およ
びアンモニアが溶解しているが、この濾液を加熱してア
ンモニアを蒸発させて回収し、次回の原料てある塩化第
二銅または/およびそれを主成分とする水溶液に吸収反
応させるが、この際濾液中に残つている塩化銅アンモニ
ウムの複塩は分解して黒色の酸化第二銅の沈澱となるの
で、これを濾別して塩酸に溶解して原料溶液に戻す。し
たがつて濾液は食塩のみを含有する無色透明な溶液とな
る。本発明に用いられる苛性アルカリとしては、苛性ソ
ーダ、苛性カリがあるが、通常安価なこと、反応生成物
が食塩てあり処理しやすいことのため苛性ソーダを使用
するほうが有利てある。
The remaining copper ammonium chloride double salt, common salt, and ammonia are dissolved in the filtrate, and the filtrate is heated to evaporate and recover the ammonia, which is used as the next raw material for cupric chloride and/or it. The copper ammonium chloride double salt remaining in the filtrate decomposes into a black precipitate of cupric oxide, which is filtered and dissolved in hydrochloric acid. and return to the raw material solution. Therefore, the filtrate becomes a colorless and transparent solution containing only common salt. The caustic alkali used in the present invention includes caustic soda and caustic potash, but it is more advantageous to use caustic soda because it is usually inexpensive and the reaction product is common salt and can be easily treated.

アンモニアを再利用するために水酸化第二銅の沈澱を分
離した濾液を加熱するが、加熱温度はアンモニアが蒸発
する温度以上であることが必要であり、通常80〜95
℃である。
In order to reuse ammonia, the filtrate from which the cupric hydroxide precipitate has been separated is heated, but the heating temperature needs to be above the temperature at which ammonia evaporates, and is usually 80 to 95%.
It is ℃.

このようにして、本発明は原料として従来使用されてい
た硫酸銅溶液に対して塩化第二銅溶液を用いて、従来の
方法に比較して半量のアンモニアを添加して塩化銅アン
モニウム複塩を生成し、さらに苛性ソーダで中和するこ
とにより水酸化第二銅の結晶を濾過して得ることが出来
る。
In this way, the present invention uses a cupric chloride solution to the copper sulfate solution conventionally used as a raw material, and adds half the amount of ammonia compared to the conventional method to produce cupric ammonium chloride double salt. It is produced and further neutralized with caustic soda, and cupric hydroxide crystals can be obtained by filtration.

又濾液中に残留するアンモニアは加熱することにより蒸
発させ原料液に吸収させて回収し、再利用することが出
来、この際濾液中に残留する塩化銅アンモニウム複塩の
分解により生ずる酸化第二銅は塩酸に溶解して原料中に
戻し使用することが出来る。最終濾液は食塩のみを含む
水溶液として回収される。次に本発明の効果を列挙する
と以下の通りである。
In addition, the ammonia remaining in the filtrate can be evaporated by heating, absorbed into the raw material liquid, recovered, and reused. can be dissolved in hydrochloric acid and returned to the raw material for use. The final filtrate is recovered as an aqueous solution containing only common salt. Next, the effects of the present invention are listed below.

(1)原料として硫酸銅を用いる従来法の場合は銅1m
01に対してアンモニア4m01を使用するが、塩化第
二銅を用いる本発明の場合は銅1m01に対して2n1
01のアンモニアで反応が行われるので、本発明ではア
ンモニアの消費量が少ない。
(1) In the case of the conventional method using copper sulfate as a raw material, 1 m of copper
4m01 of ammonia is used for 01, but in the case of the present invention using cupric chloride, 2n1 is used for 1m01 of copper.
Since the reaction is carried out with 01 ammonia, the amount of ammonia consumed is small in the present invention.

(2)水酸化第二銅を分離した濾液を加熱して蒸発する
アンモニアを、次回に使用する塩化銅水溶液に吸収させ
て再利用するために各回に溶存する食塩はその回の反応
により生ずるもののみと6なり、食塩の蓄積に依る製品
の劣化は全く無い。(3) 塩化第二銅溶液のアンモニ
アガス吸収は非常に効率が高く完全にアンモニアガスを
捕集するので多少のアンモニア過剰てもその逃散は殊ん
ど無い。
(2) The ammonia that evaporates by heating the filtrate from which cupric hydroxide has been separated is absorbed into the copper chloride aqueous solution to be used next time and reused.The salt dissolved in each reaction is generated by the reaction of that reaction. 6, and there is no deterioration of the product due to salt accumulation. (3) Ammonia gas absorption by a cupric chloride solution is very efficient and completely captures ammonia gas, so even if there is a slight excess of ammonia, there is little chance of it escaping.

次に実施例及び比較例により本発明をさらに詳細に説明
する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 塩化銅21.29kg(銅量として10.01k9)、
遊離塩酸(以下、f塩酸と称す)1.90kgを含む1
20eの溶液に、濃度2鍾量%のアンモニア水56.3
5eを添加した。
Example 1 21.29 kg of copper chloride (10.01 k9 as copper amount),
1 containing 1.90 kg of free hydrochloric acid (hereinafter referred to as f-hydrochloric acid)
20e solution, ammonia water with a concentration of 2% by weight 56.3
5e was added.

この場合添加したアンモニア量は銅分1m01に対して
2rr101、塩酸1m0Iに対して1m0Iの計1算
量の約10%過剰である。得られた塩化銅とアンモニア
との複塩及ひ塩化アンモニウムを含む溶液に、苛性ソー
ダ14.76k9を約2鍾量%の溶液として約1時間で
添加した。この場合苛性ソーダ量は添加したアンモニア
量とほぼ当量である。更にそ)のまま約3吟間反応を継
続して得られた水酸化第二銅の沈澱を濾過し、少量の水
で付着液を濾液中に落し、沈澱は洗滌槽に移して、水洗
、濾過、乾燥し水酸化第二銅の製品を得た。収量13.
01k9、収率84.22%である。濾液は別の容器に
移し加熱して発生するアンモニアを次回使用する塩化第
二銅水溶液中に導く様に装置を作り、90〜95℃で2
.時間加熱して発生したアンモニアガスを次回の実施例
2で使用する塩化第二銅の水溶液に吸収させた。この時
に得られた黒色の酸化銅は収量1.74kg、収率13
.81%であつた。実施例2実施例1と同じ塩化銅原料
液を用いて全液量を200eに薄めた。
In this case, the amount of ammonia added was approximately 10% in excess of the calculated amount of 2rr101 per 1 m01 of copper and 1 m0I per 1 m0I of hydrochloric acid. To the obtained solution containing the double salt of copper chloride and ammonia and ammonium chloride, 14.76k9 of caustic soda was added as a solution of about 2% by weight over about 1 hour. In this case, the amount of caustic soda is approximately equivalent to the amount of ammonia added. Further, the reaction was continued for about 3 minutes, and the precipitate of cupric hydroxide obtained was filtered, the adhering liquid was dropped into the filtrate with a small amount of water, and the precipitate was transferred to a washing tank and washed with water. After filtration and drying, a cupric hydroxide product was obtained. Yield 13.
01k9, yield 84.22%. The filtrate was transferred to another container, and a device was constructed to introduce the generated ammonia into the cupric chloride aqueous solution to be used next time.
.. Ammonia gas generated by heating for a period of time was absorbed into an aqueous solution of cupric chloride to be used in the next Example 2. The black copper oxide obtained at this time had a yield of 1.74 kg and a yield of 13
.. It was 81%. Example 2 Using the same copper chloride raw material liquid as in Example 1, the total liquid volume was diluted to 200e.

(組成は塩化銅21.29kg、f塩酸1.90k9、
液量200e)この液に実施例1で回収したアンモニア
ガスを吸収させた。実施例1と同様に苛性ソーダ14.
76kgを約20重量%の溶液として加え塩化第二銅を
沈澱させ、実施例1と同様に処理して水酸化第二銅を得
た。収量12.75k9、収率82.55%である。又
製品分離後の濾液を90〜95℃に加熱して発生するア
ンモニアを次回の実施例3の塩化銅の原料水溶液に吸収
させた際に得られた黒色酸化銅は収量2.15k9、収
率17.07%であつた。実施例3 塩化銅21.29kg、f塩酸1.90k9、液量15
0eの原料溶液に、実施例2で回収したアンモニアガス
を吸収させ、実施例1と同様に苛性ソーダ14.76k
9を約2唾量%の溶液として加え水酸化第二銅を得た。
(The composition is copper chloride 21.29kg, f hydrochloric acid 1.90k9,
Liquid volume: 200e) The ammonia gas recovered in Example 1 was absorbed into this liquid. 14. Caustic soda as in Example 1.
76 kg was added as an approximately 20% by weight solution to precipitate cupric chloride, and the same procedure as in Example 1 was carried out to obtain cupric hydroxide. Yield: 12.75k9, yield: 82.55%. Further, the black copper oxide obtained when the ammonia generated by heating the filtrate after product separation to 90 to 95°C was absorbed into the raw material aqueous solution of copper chloride in Example 3 had a yield of 2.15k9. It was 17.07%. Example 3 Copper chloride 21.29 kg, f hydrochloric acid 1.90k9, liquid volume 15
The ammonia gas recovered in Example 2 was absorbed into the raw material solution of 0e, and 14.76k of caustic soda was added in the same manner as in Example 1.
9 was added as a solution of about 2% by volume to obtain cupric hydroxide.

収量13.28k9、収率は85.98%である。又濾
液のアンモニアを加熱回収して次回の実施例4の原料溶
液に吸収させた際に得られた黒色酸化銅は収量1.62
k9、収率12.86%である。実施例4塩化銅21.
29k9、f塩酸1.90k9、液量150′の実.施
例3と同じ組成の原料溶液に実施例3で回収したアンモ
ニアガスを吸収させ、実施例1と同様の方法で苛性ソー
ダを16k9に増量して約2鍾量%の濃度の溶液として
添加し水酸化第二銅を得た。
Yield: 13.28k9, yield: 85.98%. In addition, the black copper oxide obtained when the ammonia in the filtrate was recovered by heating and absorbed into the raw material solution of Example 4 had a yield of 1.62.
k9, yield 12.86%. Example 4 Copper chloride 21.
29k9, f hydrochloric acid 1.90k9, liquid volume 150' fruit. The ammonia gas recovered in Example 3 was absorbed into a raw material solution with the same composition as in Example 3, and in the same manner as in Example 1, caustic soda was increased to 16k9 and added as a solution with a concentration of about 2% by weight. Cupric oxide was obtained.

その収量は13.28k9、収率あ.98%である。こ
の水酸!化第二銅の品質は実施例1〜3の製品と同一で
あり、苛性ソーダを過剰に用いても品質に影響は出てい
ない。又アンモニアを回収した際得られた黒色の酸化銅
は収量1.54k9、収率12.22%てある。実施例
5〜7実施例1〜4と全く同様の方法て、塩化銅21.
29kg、塩酸1.90kgを含む原料水溶液に、その
前の回(実施例)により回収したアンモニアを吸収させ
苛性ソーダ14.76k9で処理した。
The yield was 13.28k9, and the yield was a. It is 98%. This hydric acid! The quality of cupric oxide is the same as that of the products of Examples 1 to 3, and the quality is not affected even if caustic soda is used in excess. Further, the yield of black copper oxide obtained when ammonia was recovered was 1.54k9, and the yield was 12.22%. Examples 5 to 7 Copper chloride 21.
The ammonia recovered in the previous step (Example) was absorbed into a raw material aqueous solution containing 29 kg of hydrochloric acid and 1.90 kg of hydrochloric acid, and treated with 14.76 k9 of caustic soda.

実施例1〜7の結果を第1表にまとめて示す。但し、実
施例1〜7において、実施例6の原料である塩化第二銅
水溶液に実施例5の加熱して回収したアンモニアを吸収
させた液は静置した際、微に紫色沈澱が認められた事か
ら最初に実施例1において10%過剰に加えたアンモニ
アが損失した事となり、アンモニアは5回循環使用して
いるので、1回の損失の平均は約2%となる。この損失
の原因は製品の濾過の際、吸引濾過を用いたの)で、主
にこの時の排気により排出されたものであるため、該排
気を原料液中に導いて吸収させればアンモニアの逃散は
殆んど無くす事が出来る。比較例1比較例として硫酸銅
を原料とする水酸化第二銅の製造方法(米国特許第18
00828号の方法)により行つた実験結果を示す。
The results of Examples 1 to 7 are summarized in Table 1. However, in Examples 1 to 7, when the solution in which the aqueous cupric chloride solution, which was the raw material in Example 6, absorbed the ammonia recovered by heating in Example 5, a slight purple precipitate was observed when it was allowed to stand still. Therefore, the ammonia that was added in excess of 10% in Example 1 was lost, and since the ammonia was recycled five times, the average loss per time was about 2%. The cause of this loss is that suction filtration was used when filtering the product), and it is mainly the exhaust gas that is emitted during this process.If the exhaust gas is introduced into the raw material liquid and absorbed, ammonia can be removed. Escaping can be almost completely eliminated. Comparative Example 1 As a comparative example, a method for producing cupric hydroxide using copper sulfate as a raw material (U.S. Pat. No. 18
The results of an experiment conducted using the method of No. 00828 are shown below.

硫酸銅(CUSO45F[20)40kgを160eの
水に溶解した水溶液に2踵量%のアンモニア水98eを
添加(約10%過剰)した。
To an aqueous solution in which 40 kg of copper sulfate (CUSO45F [20) was dissolved in 160 e of water, 98 e of 2% ammonia water was added (approximately 10% excess).

さらに苛性ソーダ14kgを501の水に溶解した水溶
液を加え水酸化第二銅の沈澱を作り、6℃迄冷却して芒
硝の結晶を析出させて、水酸化第二銅と共に濾別した。
芒硝が水に溶けるので水酸化第二銅の沈澱と芒硝の結晶
の附着液を水て押し出して回収する操作は行つていない
。水酸化第二銅は水洗に依り芒硝と分離し洗滌、乾燥し
たが、製品は原料として塩化銅を行いた実施例の製品と
全く同じ外見である。収量10.99k9、収率70.
29%であつた。濾液中には収率70.29%の残りの
銅分(約30%)が残留している。比較例2 比較例1の濾液に硫酸銅40k9を加えて溶解し、苛性
ソーダ13.5k9を50eの水に溶解した水溶液を加
えて比較例1と同様に処理して水酸化第二銅を得た。
Further, an aqueous solution of 14 kg of caustic soda dissolved in 501 water was added to precipitate cupric hydroxide, and the mixture was cooled to 6°C to precipitate Glauber's salt crystals, which were filtered together with cupric hydroxide.
Because Glauber's Salt is soluble in water, we did not perform an operation to recover the cupric hydroxide precipitate and the adhering liquid of Glauber's Salt crystals through water. The cupric hydroxide was separated from the mirabilite by washing with water, washed and dried, but the product had exactly the same appearance as the product of the example in which copper chloride was used as the raw material. Yield 10.99k9, yield 70.
It was 29%. The remaining copper content (approximately 30%) remains in the filtrate with a yield of 70.29%. Comparative Example 2 Copper sulfate 40k9 was added and dissolved in the filtrate of Comparative Example 1, and an aqueous solution of caustic soda 13.5k9 dissolved in 50e of water was added and treated in the same manner as Comparative Example 1 to obtain cupric hydroxide. .

収量15.75k9、収率100.73%である。比較
例1の収率70.29%の残りとほぼ同量の銅分(約3
0%)が沈澱とならず濾液中に残つている事にな.る。
比較例3 比較例2の濾液に硫酸銅40k9を加えて溶解し、苛性
ソーダ13.5k9を50eの水に溶解した水溶液を加
えて、比較例1と同様に処理して水酸化第二銅,を得た
The yield is 15.75k9, and the yield is 100.73%. Approximately the same amount of copper (approximately 3
0%) remains in the filtrate without becoming a precipitate. Ru.
Comparative Example 3 Copper sulfate 40k9 was added and dissolved in the filtrate of Comparative Example 2, and an aqueous solution of caustic soda 13.5k9 dissolved in 50e of water was added and treated in the same manner as Comparative Example 1 to obtain cupric hydroxide. Obtained.

収量15.85k9、収率101.37%である。濾液
中には約30%弱の銅分が残留していることになる。比
較例4比較例3の濾液に硫酸銅40k9を加えて溶解し
、苛性ソーダ13.5k9を50eの水に溶解した水溶
液を加えて得られた水酸化第二銅の沈澱を濾過温度25
℃で芒硝の結晶を析出させずに濾過した。
The yield is 15.85k9, and the yield is 101.37%. This means that a little less than 30% of the copper content remains in the filtrate. Comparative Example 4 Copper sulfate 40k9 was added and dissolved in the filtrate of Comparative Example 3, and an aqueous solution of caustic soda 13.5k9 dissolved in 50e of water was added to precipitate cupric hydroxide, which was then filtered at a filtration temperature of 25
It was filtered at ℃ without precipitation of Glauber's salt crystals.

その結果得られた水酸化第二銅の収量は16.02k9
、収率105.02%であつた。従つて生成した芒硝の
溶存する状態では濾液中に残留している銅分の量は約2
5%である。比較例5〜7 前回の比較例により得られた濾液に硫酸銅40k9、苛
性ソーダ13.5k9を加えて比較例4と同様の方法で
行つた。
The resulting yield of cupric hydroxide was 16.02k9
, yield was 105.02%. Therefore, when the produced mirabilite is dissolved, the amount of copper remaining in the filtrate is approximately 2
It is 5%. Comparative Examples 5 to 7 The same method as in Comparative Example 4 was conducted except that 40k9 of copper sulfate and 13.5k9 of caustic soda were added to the filtrate obtained in the previous comparative example.

得られた水酸化第二銅の沈澱の濾過温度は約25℃であ
る。比較例1〜7の結果をまとめて第2表に示す。
The filtration temperature of the cupric hydroxide precipitate obtained is about 25°C. The results of Comparative Examples 1 to 7 are summarized in Table 2.

比較例4〜7では濾過温度約25℃で濾過しているため
に芒硝の溶存量が逐次増加し、その結果製品の水酸化第
二銅の色調が逐次青味が薄くなり結晶粒子が細かく、カ
サ高の製品となり、従つて酸化銅に変り易いものとなつ
た。従つて製品の品質に均一性を保たせる為にはこの比
較例の方法では少なくとも2回に一度は濾液を冷却して
芒硝の結晶を排出する必要がある。又アンモニアの循環
再使用では比較例4の濾液でアンモニアが不足の状態と
なり、比較例5で311比較例6で2eを追加している
In Comparative Examples 4 to 7, since the filtration was carried out at a filtration temperature of about 25°C, the dissolved amount of Glauber's salt gradually increased, and as a result, the color tone of the cupric hydroxide in the product gradually became less bluish and the crystal particles became finer. This resulted in a product with a high bulk and therefore easily converted to copper oxide. Therefore, in order to maintain uniformity in product quality, in the method of this comparative example, it is necessary to cool the filtrate at least once every two times to discharge the Glauber's salt crystals. Furthermore, in the case of circulating and reusing ammonia, the filtrate of Comparative Example 4 ran out of ammonia, and 311 in Comparative Example 5 and 2e in Comparative Example 6 were added.

従つて本発明の塩化銅を原料とする実施例1〜7と比較
してアンモニアの損失が多く、この損失は芒硝に付着7
する銅液に依るために両者の差が出たものと判断出来る
。次に上記の実施例と比較例を対比する。
Therefore, compared to Examples 1 to 7 in which copper chloride of the present invention was used as a raw material, the loss of ammonia was large, and this loss was due to the 7
It can be concluded that the difference between the two is due to the copper solution used. Next, the above example and comparative example will be compared.

本発明の方法では加熱によりアンモニアを回収して循環
使用するのに対し、比較例の硫酸銅アンクモニウム法で
は冷却して芒硝を分離する必要があり、そのために芒硝
に付着する液の損失分だけ硫酸銅アンモニウム法の方が
銅分とアンモニアの損失が多い。
In the method of the present invention, ammonia is recovered by heating and recycled for use, whereas in the copper ammonium sulfate method of the comparative example, it is necessary to separate the sodium sulfate by cooling. The cupric ammonium sulfate method has higher losses of copper and ammonia.

Claims (1)

【特許請求の範囲】 1 塩化第二銅または/およびそれを主成分とする水溶
液とアンモニアを反応させて塩化銅アンモニウム複塩を
製造し、次いで該塩に苛性アルカリを反応させることを
特徴とする水酸化第二銅の製造方法。 2 塩化第二銅を主成分とする水溶液として塩化銅エッ
チング処理排液または/および塩化銅アンモニウム結晶
〔CuCl_22NH_4Cl2H_2O〕の水溶液を
用いる特許請求の範囲第1項記載の水酸化第二銅の製造
方法。 3 塩化第二銅または/およびそれを主成分とする水溶
液とアンモニアを反応させて塩化銅アンモニウム複塩を
製造し、次いで該塩に苛性アルカリを反応させて水酸化
第二銅の沈澱を得、これを濾別した後濾液を加熱するこ
とによりアンモニアを回収し、そのアンモニアを繰返し
塩化第二銅または/およびそれを主成分とする水溶液と
反応させることを特徴とする水酸化第二銅の製造方法。 4 塩化第二銅を主成分とする水溶液として塩化銅エッ
チング処理排液または/および塩化銅アンモニウム結晶
〔CuC_22NH_4Cl2H_2O〕の水溶液を用
いる特許請求の範囲第3項記載の水酸化第二銅の製造方
法。
[Claims] 1. A process characterized by reacting cupric chloride or/and an aqueous solution containing it as a main component with ammonia to produce cupric ammonium chloride double salt, and then reacting the salt with a caustic alkali. A method for producing cupric hydroxide. 2. The method for producing cupric hydroxide according to claim 1, which uses a copper chloride etching treatment waste liquid and/or an aqueous solution of cupric ammonium chloride crystals [CuCl_22NH_4Cl2H_2O] as the aqueous solution containing cupric chloride as the main component. 3. Copper ammonium chloride double salt is produced by reacting cupric chloride or/and an aqueous solution containing it as a main component with ammonia, and then reacting the salt with caustic alkali to obtain cupric hydroxide precipitate; Production of cupric hydroxide, which is characterized by recovering ammonia by heating the filtrate after filtering it, and repeatedly reacting the ammonia with cupric chloride or/and an aqueous solution containing it as a main component. Method. 4. The method for producing cupric hydroxide according to claim 3, which uses a copper chloride etching treatment waste liquid and/or an aqueous solution of cupric ammonium chloride crystals [CuC_22NH_4Cl2H_2O] as the aqueous solution containing cupric chloride as a main component.
JP14028181A 1981-09-08 1981-09-08 Method for producing cupric hydroxide Expired JPS6047207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14028181A JPS6047207B2 (en) 1981-09-08 1981-09-08 Method for producing cupric hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14028181A JPS6047207B2 (en) 1981-09-08 1981-09-08 Method for producing cupric hydroxide

Publications (2)

Publication Number Publication Date
JPS5841721A JPS5841721A (en) 1983-03-11
JPS6047207B2 true JPS6047207B2 (en) 1985-10-21

Family

ID=15265124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14028181A Expired JPS6047207B2 (en) 1981-09-08 1981-09-08 Method for producing cupric hydroxide

Country Status (1)

Country Link
JP (1) JPS6047207B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231702A (en) * 1986-04-01 1987-10-12 南機械株式会社 Method of treating veneer in layup system
KR100379903B1 (en) * 2000-05-30 2003-04-14 주식회사 명진화학 Preparation of highly pure copper oxide from waste etchant
KR20020045253A (en) * 2000-12-08 2002-06-19 황의영 Preparation of copper oxychloride from acidic copper etchant
CN114853053A (en) * 2022-06-15 2022-08-05 云南润久科技有限公司 High-purity copper hydroxide and preparation method thereof

Also Published As

Publication number Publication date
JPS5841721A (en) 1983-03-11

Similar Documents

Publication Publication Date Title
US2346140A (en) Production of pure salts from trona
CN1033379C (en) A process for removing sodium oxalate from the solution of sodium aluminate in bayer's cycle
JPH072512A (en) Preparation of pure amorphous silica from rock
CN109516479A (en) The preparation method of LITHIUM BATTERY lithium hydroxide
CN109592699A (en) The preparation method of LITHIUM BATTERY lithium hydroxide
JPS6047207B2 (en) Method for producing cupric hydroxide
US4490337A (en) Preparation of cupric hydroxide
EP0046048B1 (en) Process for manufacture of calcium hypochlorite
US1505202A (en) Recovery of magnesium compounds from brines
KR101562263B1 (en) Method for preparing sodium nitrate using a waste solution containing nitric acid
US4380533A (en) Process for the production of dibasic magnesium hypochlorite
JP2010105912A (en) METHOD FOR PREPARING HIGH PURITY COPPER OXIDE CONTAINING A TRACE AMOUNT OF CHLORINE FROM WASTE LIQUID CONTAINING Cu(NH3)4Cl2
US1382165A (en) Process of making fluorids
JPS6036328A (en) Manufacture of aluminum-fluorine compound
JP2753855B2 (en) Manufacturing method of copper plating material
US4195070A (en) Preparation of a MgCl2 solution for Nalco's MgCl2 process from MgSO4 and other MgSO4 salts
NO161130B (en) PROCEDURE FOR THE PREPARATION OF A DOUBLE COBOLT POWDER WITH A ROUGH, RELATIVE UNIFORM PARTICLE SIZE.
US3350167A (en) Method of preparing hydrated nickel carbonate and the product thereof
KR100882896B1 (en) Method for preparing high purity copper oxide containing a trace amount of chlorine from waste copper tetramine chloride solution
US4248838A (en) Preparation of useful MgCl2. solution with subsequent recovery of KCl from carnallite
JP4323668B2 (en) Method for recovering copper from waste liquid containing copper ions
JPS5950603B2 (en) Production method of cuprous oxide
RU2714201C1 (en) Extraction of oxalic acid from industrial ferric oxalate
US3919403A (en) Method for the production of alpha alumina monohydrate
JP2004521060A (en) Method for removing sodium sulfate from nickel hydroxide waste stream