JPS6046478A - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPS6046478A
JPS6046478A JP15447383A JP15447383A JPS6046478A JP S6046478 A JPS6046478 A JP S6046478A JP 15447383 A JP15447383 A JP 15447383A JP 15447383 A JP15447383 A JP 15447383A JP S6046478 A JPS6046478 A JP S6046478A
Authority
JP
Japan
Prior art keywords
signal
hold
circuit
wave
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15447383A
Other languages
Japanese (ja)
Inventor
Hiroaki Tanaka
裕章 田中
Shigeyuki Akita
秋田 成行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP15447383A priority Critical patent/JPS6046478A/en
Publication of JPS6046478A publication Critical patent/JPS6046478A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/101Particularities of the measurement of distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/066Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring wheel-centre to ground distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/067Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring chassis to ground distance

Abstract

PURPOSE:To measure accurate distance through a simple ciruit with an ultrasonic wave pulse by sampling and holding a receive signal at every oscillation period, comparing two successive signals to decide the arrival time point of a reflected wave when the signal comparison is reduced. CONSTITUTION:An ultrasonic wave pulse radiated by an ultrasonic wave oscillator 11 is reflected by a target to enter a receiver 12. The receive signal is inputted to the 1st sample-and-hold circuit 103 to hold the maximum in every oscillation period with an analog switch 103A successively, and it is outputted from an amplifier 103B as a hold signal 1h. The signal 1h is held in a holding circuit 104 as the 2nd hold signal 1i elasping a specific time after sampling timing. The signals 1h and 1i are compared with each other by a comparing circuit 105, which outputs a peak detection signal when the signal 1i becomes larger to measure the time of reflected wave arrival.

Description

【発明の詳細な説明】 本発明は距離測定装置に関するもので、特に目標物に向
<J ”Cパルス的に超@波を発f5シ・、光4tiか
ら反射波の到達までの時間を基に上記目標物j(の距離
を測定11イ距離測定装置に関−するもので+Ij+る
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distance measuring device, and in particular to a distance measuring device that emits ultra-waves in the form of pulses toward a target (f5) and is based on the time from light (4ti) to arrival of reflected waves. The distance to the target object j is measured using a distance measuring device.

この種の装置では従来反射波が一定のレベルに達したこ
とにJ、りくの到達を検知しくいるが、反射波は伝達途
中の減衰により通話山形どなる−11.:目標物の硬軟
あるいは伝達媒体(、通1iは空気)のt:iA庶や1
rIa+身にJ、つCぞの減衰の程庶が責なるため、」
記の如き検知り法では正確な到達l)点が決定できない
Conventionally, this type of device detects the arrival of a signal when the reflected wave reaches a certain level, but the reflected wave becomes attenuated during transmission, resulting in a loud roar. : hard or soft target or transmission medium (t:i is air)
Because the extent of the attenuation of rIa + body J and C is to blame,
With the detection method described above, the exact arrival point cannot be determined.

ところで、パルス的に発信きれた超昌波の反射波強電は
上述の如く各種の条41千で変動覆るが、山形をなη反
Q・1波の強電がピークを示−:I IC’r点は不変
であることが知られでいる。−てこて゛、反射波の」記
ピークを検知しく一1超音波の光1λJ、り反射波がピ
ークどなるよ(゛の時開を測定]れば目標物ま−(・の
距離を止1イrに知ることができる。
By the way, as mentioned above, the reflected wave strong electricity of the supersolar wave that has been transmitted in a pulse-like manner fluctuates in various stripes, but the strong electricity of η anti-Q 1 wave shows a peak around the mountain. It is known that points are invariant. -Use the lever to detect the peak of the reflected wave.11 Ultrasonic light 1λJ, and the peak of the reflected wave (Measure the time opening of 2). r can know.

本発明IJ上記原理に基づき、きわめで簡単かつ安価な
回路構成にJこって上記反射波のピークを倹出し、しっ
て目標物までの正確な距離測定を可能としlζ距離測定
装置を提供づることを目的としている。
The present invention is based on the above principle, and provides a distance measuring device that uses an extremely simple and inexpensive circuit configuration to find the peak of the reflected wave, thereby making it possible to accurately measure the distance to the target. The purpose is

′!Jなわち、本発明の距離測定装置は目標物に向け′
C超音波をパルス的に発信する超音波発信手段ど、[1
椋物ににる反射波を受信りる超音波受信手段と、受信信
号をその振動周期毎にサンプルし第1のホールド信号と
してホールド覆る第1のリンプルホールド手段と、上記
第1のホールド信号を。
′! J That is, the distance measuring device of the present invention is aimed at the target object.
C Ultrasonic transmitting means for transmitting ultrasonic waves in a pulsed manner, etc. [1
an ultrasonic receiving means for receiving reflected waves from the wafer; a first ripple hold means for sampling the received signal at each vibration period and holding it as a first hold signal; .

第1のナンブルボールド手段のサンプルタイミングより
所定時間近れて1ノンプルし第2のホールド信号として
ホールドづる第2のリンプルホールド手段と、上記第1
のホールド信号と第2のボールド信翼の大ささを比較し
て前とよりも後者か人さくなった時に反射波到達信号を
発する比較手段と、超音波の発信より反QJ波の到達ま
C゛に要した時間を測定し−c−L記目標物までの距離
をn出する演紳手段どを具備している。
a second ripple hold means that performs one non-pull at a predetermined time interval from the sample timing of the first number bold means and holds it as a second hold signal;
Comparison means for comparing the size of the hold signal and the second bold wave and emitting a reflected wave arrival signal when the latter becomes smaller than the previous one, and a comparison means for emitting a reflected wave arrival signal when the second bold wave is smaller than the previous one, and a comparison means for emitting a reflected wave arrival signal from the ultrasonic transmission. The apparatus is equipped with a means for measuring the time required to reach the target object and calculating the distance to the target object.

以下、図示の実施例により本発明を説明する。The present invention will be explained below with reference to illustrated embodiments.

第1図、第2図tiL木発明の装置を車両の車軸に取り
fJIJC1中軸と路面間の距1加を知ることにJ、リ
タイ−2の空気圧低下を検知するようにした実施例を承
りものであるalなわち、図に(13い(タイ\]Wを
装着した中軸へには超?に波に’l】師検出器1が装着
しである。検出器1には路面[に向【)(国都の超ハ波
発イ5器および受信器が設(Jであり、路面[に向けて
超音波を発射しかつ反則波を受信J−るようにしである
。上記検知:(;1は別防のげ1p装置6゜2に接続し
てあり、演算装置2は検出器1に対して超音波発信指令
信号を出力するとともに反則波の到達信gを受け、発1
8にり受信までに賎した11.1間に基づいて検出器1
より路面トJまで゛の距離11ヲ粋出−りる。
Fig. 1, Fig. 2 tiWe have received an embodiment in which the device of the invention is mounted on the axle of a vehicle, and it is possible to detect the drop in air pressure of J and Reti-2 by knowing the distance between the center axle and the road surface. In other words, in the figure, a detector 1 is attached to the center shaft with the W attached to it. [) (Five ultra-high wave emitters and receivers in the national capital were installed (J) to emit ultrasonic waves towards the road surface and receive counter-waves.The above detection: (; 1 is connected to the separate protection noge 1p device 6゜2, and the arithmetic unit 2 outputs an ultrasonic transmission command signal to the detector 1, receives the arrival signal g of the foul wave, and transmits the ultrasonic wave 1p.
Detector 1 based on the period of 11.1 determined by 8.
The distance from the road surface to J is 11.

すなわ4)、8速をVどづるとtri ?’A波の送伝
より受信までに要づるah +ia tはt = 2h
 /vとなり、j’l’i 1li11hは1・k間I
にり一義的に決定される。そしく、検知器1は中軸へに
一体固定しであるh目ら、ターイA7Wの空気圧の変動
は」−記距離11の変動どイ1って現われる。そこで、
演算装置2は距t11. fiが一定(的以下にイ「る
とタイヤ空気圧の低下どし−(V!:報をn1る。
In other words, 4), if you change the 8th speed to V, is it tri? 'ah+iat required from transmission to reception of A wave is t = 2h
/v, and j'l'i 1li11h is I between 1 and k.
It is determined uniquely. Since the detector 1 is integrally fixed to the center shaft, the variation in the air pressure of the tire A7W appears as follows: - The variation in the recording distance 11. Therefore,
The calculation device 2 calculates the distance t11. If fi is constant (below the target), the tire air pressure will decrease (V!: the information will be n1).

第3図には検出器1の電気回路を示す。図中、11は超
音波受信器、12は超音波受信器である。
FIG. 3 shows the electrical circuit of the detector 1. In the figure, 11 is an ultrasonic receiver, and 12 is an ultrasonic receiver.

また、101は発信回路、102は受信回路、103は
第1のリンプルホールド回路、104は第2のリンプル
ホールド回路、105は比較回路である。
Further, 101 is a transmitting circuit, 102 is a receiving circuit, 103 is a first ripple hold circuit, 104 is a second ripple hold circuit, and 105 is a comparison circuit.

以下、第4図のタイムチャー1〜を参照しっつ1゜記各
回路の作動を説明する。なお、第4図中の細線は開聞軸
の拡大あるいは縮小を示すものである。
Hereinafter, the operation of each circuit will be explained with reference to time charts 1 to 1 of FIG. 4. Note that the thin lines in FIG. 4 indicate expansion or contraction of the open reading axis.

端子下を経て演算装置2(第1図参照)より入力する超
音波発信指令信号2a <第4図(1)参照)はゲート
で構成したフリップフし1ツブ101△、101Bを径
τ発信タイミング信号1a (第4図(3)参照)どな
る。上記タイミング信号1aは発信回路101Cから出
力される基準パルス111 <第4図(2)参照)に立
上りを同期ヒしめられている。そして、上記基準パルス
1bをカウンタ101 J)、101Eで分周せしめ(
所定の周波数どした発信確認信号IC(第4図(4)参
照)が」−開信号i aの立上りに同期して発信器11
に送出される。励振45号1cはD型フリップ−71]
1ツブ101Fのる端子が反Iphするまでの 定11
.7間t1 の間パルス的に出ツノされ、かつ信F’7
1 ’−1j21出柊γ11・1には上記O端子の反転
によて)で比較回路105を構成する単安定マルチバイ
ブレーク+ 050より発信確認信号1Jl(第4図(
16)参照)が端子下を介して演算装置2に出力される
The ultrasonic transmission command signal 2a (see Fig. 4 (1)) which is input from the arithmetic unit 2 (see Fig. 1) through the bottom of the terminal is the transmission timing signal of the diameter τ of the flip-flop 1 knob 101△, 101B composed of gates. 1a (See Figure 4 (3)) Howl. The timing signal 1a is synchronized with the rise of a reference pulse 111 (see FIG. 4 (2)) output from the oscillation circuit 101C. Then, the reference pulse 1b is frequency-divided by counters 101J) and 101E (
The transmission confirmation signal IC (see Fig. 4 (4)) at a predetermined frequency is sent to the transmitter 11 in synchronization with the rise of the open signal ia.
will be sent to. Excitation No. 45 1c is D type flip-71]
Constant 11 until the terminal connected to 1 knob 101F becomes anti-Iph
.. It is output in a pulsed manner for a period of 7 t1, and the signal F'7
1'-1j21 output γ11.1 is output by the output confirmation signal 1Jl (Fig. 4 (
16)) is output to the arithmetic unit 2 via the terminal below.

ト記光侶器11より発射された超音波は路面[(Ni1
図参照)C反IJ−1せしめられて受信器′12に入力
づる。受(1’i ’fiT号はアクデ(1ノイルタを
侶成す″るアンプ102A、102Bを経−(”j’ 
ン’7’ 102Cに人力しインピーダンス変換される
(信C,j ′1d、第4図(5)、(6)参照)。な
お、受信信号1dはアンプ106より出力される定電L
1:vfiIが基準レベルと1.劣っている。
The ultrasonic waves emitted from the optical device 11 hit the road surface [(Ni1
(See figure) C inverse IJ-1 is input to the receiver '12. The receiver (1'i'fiT) passes through amplifiers 102A and 102B, which form one inverter.
The impedance is converted manually to the pin '7' 102C (signal C, j '1d, see Figure 4 (5) and (6)). Note that the received signal 1d is a constant voltage L output from the amplifier 106.
1: vfiI is at reference level and 1. Inferior.

上記イに月1(1は第1の(ノンブ゛ル小−ル1−回路
゛103を構成するアナログスイッヂ103△に入カリ
−る 。
Month 1 (1 is input to the analog switch 103△ constituting the first (non-build small circuit) 103 in the above A).

信号1(1はまた微分回路を成すアンプ107にム入力
され、波形整形用のアジア′1 (’l /iを紅Cぞ
の振動周期1tJに「゛1ルベルとなり、が゛っ所定の
パルス幅△(を44’?Jる矩形パルス信号1c (第
4図(7)参照)と<蒙る。そして、上記信号1oの5
’l J、、 ”J Iff 1ri1期シー(’/”
 −h 10 、’3 を二がらは抵抗1゜31−ど]
1ンア゛ンtl 103 Gで決まるパルス幅を層重る
サンプル信号1f (第4図(8)参照)が出力され、
また、信号1eの立下りに同期しC第2のリンプルホー
ルド回路104を構成−するグー1〜−I O/I B
より抵抗104Cどコンデン?1’04Dで決まるパル
ス幅を1’4J−るリンーlル信pg1a<第4図(9
)4照)が出ノjされる。
The signal 1 (1 is also input to the amplifier 107 forming a differentiating circuit, and the waveform shaping Asia'1 ('l/i is changed to the vibration period 1tJ of the red C to become 1 level, and the predetermined pulse is Rectangular pulse signal 1c (see Fig. 4 (7)) with width △(44'?
'l J,, ``J If 1ri1st term sea ('/''
-h 10, '3 is the resistance 1゜31-]
A sample signal 1f (see Fig. 4 (8)) is output, which overlaps the pulse width determined by 1 antl 103G.
Further, in synchronization with the falling edge of the signal 1e, the signals 1 to 1 to IO/IB that constitute the second ripple hold circuit 104 are
What about a 104C capacitor? The pulse width determined by 1'04D is set to 1'4J-Rinrl signal pg1a<Figure 4 (9
) 4) will appear.

さC、ノ7プL1グスイッチ103Aは上6[T ’!
J′ンプルイ5号1「かイのC端子に人力づるfijに
導通する。
S, No. 7, L1 switch 103A is upper 6 [T'!
J'Plui No. 5 1 ``Connect the C terminal of KA to fij manually.

L $1ニJ、 ’)、受4@ (Hj31 (I t
’、L 各’lk 動因J!rJ K a3 I:J 
ル棒人値が順次iI−−ルドされ、アンプ10313 
、より第゛1のホールド値8′1hとしC出力される(
第4図(”10)参照)。
L $1 NiJ, '), Uke4@ (Hj31 (I t
', L Each 'lk Motivation J! rJ K a3 I:J
The 10313 Amp 10313
, the first hold value 8'1h is output as C (
(See Figure 4 ("10)).

1記第1のホールトイiN ’F: ’I hは上記リ
ングル伝月1[より一定時間△(ばれて出力される(J
ン1ル<m 号’l gに」、り作動せしめられイ)ア
ノ11グスイツプ10/4△により再度サンプルされ、
第2のホールド信号11としてホールドされる(第4図
(11)会照)、。
1. The first whole toy iN 'F: 'I h is output for a certain period of time △ (from the above Lingle Dengetsu 1 [J
11 < m No.'l g'', and was activated again.
It is held as the second hold signal 11 (see FIG. 4 (11)).

第1のホールド値す11)おJ、び第2のホールド信号
11は比較回路105を構成1ノる一1ンバレータ10
5Δで比較され、後者が曲者よりも人さくなった時に「
1」レベルとなるピーク検出信号1j (第4図(12
)、(13)参照)が出力される。信号1.iによりD
型フリップノロツブ105)13はヒラ1へされ、これ
により単安定マルγバーイブレータ105Gより所定パ
ルス幅の反射波到達信号11((第4図(15)参照)
が端子下を介して演埠装置2へ送出される。
The first hold value 11) and the second hold signal 11 constitute a comparison circuit 105.
When compared with 5Δ, when the latter became more personable than the songwriter,
1” level of the peak detection signal 1j (Fig. 4 (12)
), (see (13)) are output. Signal 1. D by i
The type flip knob 105) 13 is turned to the filler 1, which causes the monostable multi-gamma veribrator 105G to generate a reflected wave arrival signal 11 (see FIG. 4 (15)) with a predetermined pulse width.
is sent to the control device 2 via the terminal below.

なお、上記ピーク検出信号1jは第4図に示J如く実際
には受信信号1dがピークを示しlζ振動周期の次の振
動因+11]で出力されるが、超titl波の振動周期
は非常に短くかつ一定であるから使用上は問題ない。
Note that the peak detection signal 1j is actually output as the received signal 1d has a peak as shown in FIG. Since it is short and constant, there is no problem in using it.

j:た、コンパレータ109にj一つC第1の小−ルー
トイ言r′l l l、どカウンタ10 i l−の(
:)9銘1:了出力を整流平滑)ノ(得られる定電Jl
f、 V l+とが比較され、信号″11)が電圧vb
のレベル以!・の場合に(、L伝号1m(第11図<1
<>参照)に1、って上記ノリツソ゛ノ1」ツブ105
 Bのレットが禁lLされ(”反躬波到辻イ11月1に
は出力され2jい。
j: In the comparator 109, one C first small root toy word r'l l l, and the counter 10 i l- (
:) 9 marks 1: Rectifying and smoothing the output) (obtained constant current Jl)
f, V l+ are compared, and the signal "11) is the voltage vb
Above the level of!・In the case of (, L transmission 1 m (Fig. 11 < 1
(See <>) 1, the above-mentioned Noritsu Sono 1" Tsubu 105
The let of B is prohibited ("Reverse wave will be output on November 1st and 2j").

演q装置2は上述の超音波発信確認イム弓1!を得(か
ら反射波到達信号1kを1qるまでの時間(2に基づい
て路ff1i Eまでの距離を′a樟Jる。本実施例で
は演紳装置2は路面[の起伏ににる誤差をキ鵞?ンL)
L/づるために例えば1万回はどの上記演帥結果の平均
値より検出器1と路面Eの距1i11を確定し、これに
11¥づいてタイへ7の空気)に低下を[報″!」る。
The performance q device 2 is the above-mentioned ultrasonic transmission confirmation im bow 1! Based on the time (2) from which the reflected wave arrival signal 1k reaches 1q, the distance to the road ff1iE is calculated. (L)
For example, in order to calculate L/10,000 times, determine the distance 1i11 between the detector 1 and the road surface E from the average value of the above calculation results, and then report the decrease to 11 yen and 7 air to the tie. !”

かくの如く、本発明の距離測定装置は超音波の反9・1
波をでの振動周期毎にサンプルホールドする第1のリン
プルホールド回路と、上記第゛1のリンプルホールド回
路のホールド値を所定時間後に再度リンプルホールド回
路覆2のリンプルホールド回路とを設けて両Vンブルホ
ールド回路のホールドjf)を比較(することにより、
何’51’!1別−%il處ンへ?−jな−)、−ど1
.r < 12.川波のピークを検出すること4.(す
filiとした:l)t/)(、これにJ、りされめ(
筒中41回路構成で目標物までのjE確な距離測定を行
<K )ことがでさる、2 なA)、木jト明の装置は上記実施例の如さタイ11の
空気圧低下検知以外に一般的な距離測定等に5使用でさ
ることはもらろlυである、。
As described above, the distance measuring device of the present invention has an ultrasonic wave of 9.1
A first ripple hold circuit that samples and holds the wave at each vibration period, and a ripple hold circuit of the ripple hold circuit 2 which returns the hold value of the first ripple hold circuit after a predetermined time, are provided. By comparing (hold jf) of the pull hold circuit,
What '51'! 1 to another-%il place? -jna-), -do1
.. r<12. Detecting the peak of river waves 4. (Sfili:l)t/)(, J, Risarame(
The 41-circuit configuration in the cylinder makes it possible to accurately measure the distance to the target object.2 A) The device of Kimi Tomei is capable of detecting a decrease in the air pressure of the tie 11 as in the above embodiment. The best thing about using 5 for general distance measurement etc. is Moraro lυ.

J:た、反則波のレベルが【、1ぼ一定である場合(ニ
は上記実施例におい−(第1のボールド信号′1110
レベルを確認するために設(]た−1ンバレータ゛10
0は特には必要としない。
J: If the level of the foul wave is constant at about [, 1 (D is in the above embodiment - (first bold signal '1110
Set up to check the level (10)
0 is not particularly required.

以上の如く、本発明の距離測定’4+ n LL k’
l標物に縦割′I!シめられた超昌波の反則波のビー・
りを筒中7□路4.9工検出7.能お6,5ゎ。。1)
り走体1良72.1鴎り、nンバクI・かつ安価な一〇
のである1゜
As described above, the distance measurement of the present invention '4+ n LL k'
Vertically split the target 'I! The bee of the foul wave of the shunted super wave
Detection of 7□ road 4.9 in the cylinder 7. Noh 6.5ゎ. . 1)
1゜

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の装置含中両の中i11+ll
+、−設置J’(タイ曳2の空気l]低干検知を行41
−う実施例4示すbのC,第1図はそのj1面図、第2
図1.Jぐの側面図、第33図は電気回路図、第4図は
第ご)図にa3Iノる各杆イ13号の波形を示4り、イ
ムfヤード(゛ある1、 1・・・・・・rl」l:311検出器11・・・・・
超高波発信手段 12・・・・・・超高波発信手段 103・・・・・・第1のリン1ルホールド回路10’
l・・・・・・第2のリンゾルホールド回路1015・
・・・・・比較回路 2・・・・・・ンIQG−’;’丁J’、Q第1図 第2図
Figures 1 and 2 show the inside of the device of the present invention.
+, - installation J' (air l of tie pulling 2) low dry detection line 41
-C of Example 4 is shown.
Figure 1. Figure 33 shows the electrical circuit diagram, Figure 4 shows the waveforms of each rod No. 13, and the waveforms of each rod No. 13 are shown. ...rl"l:311 detector 11...
Super high wave transmitting means 12...Super high wave transmitting means 103...First ring hold circuit 10'
l...Second Linsol hold circuit 1015.
...Comparison circuit 2...N IQG-';'Ding J', Q Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 「1標物に向1ノで超音波をパルス的に発信りる超合波
発信f段と、rJ I物による反射波を受部する超凸波
受(、″i手段と、受信仇シ〕をその振動周1!IJ 
fυにザンブルし第1のホールド信号とし−(ホールド
する第1のリーンプルホールド手段と、」、間第1の小
−ルド信号を、第1の1)−ンプルホールド手段の(J
ンプルタイミングより所定時間遅れて(lンブル17、
第2のホールド信号としてホールドする第2のサンプル
ホールド手段と、上記第′1のホールド(ri号と第2
の小−ルド信号の大さざを比較して前者よりも後者が大
きくなった時に反射波到達信号を発−4′る比較手段ど
、超音波の発(、m J:り反射波の到達までに要した
時間を測定して1記11椋物までの距離を算出Jる演算
手段とを具備づる距離測定装置。
``A supermultiplexing transmitter f stage that emits ultrasonic waves in pulses in one direction toward one object, a superconvex wave receiver that receives reflected waves from an object,'' an i means, and a receiving object stage. ] is its vibration period 1!IJ
fυ and set it as a first hold signal.
After a predetermined time delay from the sample timing (17,
a second sample and hold means for holding as a second hold signal;
Comparison means compares the magnitudes of the small wave signals, and when the latter becomes larger than the former, a reflected wave arrival signal is emitted. A distance measuring device comprising calculation means for measuring the time required to reach the destination and calculating the distance to the object.
JP15447383A 1983-08-24 1983-08-24 Distance measuring device Pending JPS6046478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15447383A JPS6046478A (en) 1983-08-24 1983-08-24 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15447383A JPS6046478A (en) 1983-08-24 1983-08-24 Distance measuring device

Publications (1)

Publication Number Publication Date
JPS6046478A true JPS6046478A (en) 1985-03-13

Family

ID=15585015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15447383A Pending JPS6046478A (en) 1983-08-24 1983-08-24 Distance measuring device

Country Status (1)

Country Link
JP (1) JPS6046478A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977778A (en) * 1986-10-29 1990-12-18 Movats Incorporated Check valve testing system
US5154080A (en) * 1986-10-29 1992-10-13 Westinghouse Electric Corp. Integrated check valve testing system
US5159835A (en) * 1986-10-29 1992-11-03 Westinghouse Electric Corp. Check valve testing system
JP2008532845A (en) * 2005-03-14 2008-08-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング A device for recognizing the condition of a tire provided on a wheel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977778A (en) * 1986-10-29 1990-12-18 Movats Incorporated Check valve testing system
US5154080A (en) * 1986-10-29 1992-10-13 Westinghouse Electric Corp. Integrated check valve testing system
US5159835A (en) * 1986-10-29 1992-11-03 Westinghouse Electric Corp. Check valve testing system
JP2008532845A (en) * 2005-03-14 2008-08-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング A device for recognizing the condition of a tire provided on a wheel

Similar Documents

Publication Publication Date Title
US4700569A (en) Method and arrangement for signal transmission in ultrasonic echo sounding systems
JPH02502123A (en) distance measuring device
US2083344A (en) System and method of determining distances
US6314055B1 (en) Range measuring system
EP0142733A2 (en) Ultrasonic rangefinder
JP2000065614A (en) Zero-crossing detector, method for detecting zero- crossing, and ultrasonic flowmeter
JPS6046478A (en) Distance measuring device
US4603589A (en) Ultrasonic flowmeter
US3270316A (en) Acoustic attenuation logging system
US2429623A (en) Pulse distance measuring system
GB2152254A (en) Improvements relating to electrical circuits for timing signals
JPS6015143Y2 (en) Aircraft noise determination device
JPH048756B2 (en)
SU945676A1 (en) Device for measuring ultrasound speed in aggressive media
SU989504A1 (en) Device for recognizing underwater grounds
JP2003222675A (en) Apparatus and method for ultrasonic distance measurement
JPH07181249A (en) Ultrasonic distance measuring instrument
RU2039367C1 (en) Method of classification of moored mine provided with sonar equipment
SU1465715A2 (en) Hydraulic meter of sound velocity
JPH1010230A (en) Distance measuring apparatus
SU769364A1 (en) Temperature measuring device
SU930169A1 (en) Method of location of communication line damage
RU2032154C1 (en) Ultrasonic level meter
SU1043489A1 (en) Ultrasonic device for measuring distances in gaseous atmosphere
EP0075617A1 (en) Ultrasonic distance measuring device