JPS6046301A - Method for molding minute metal - Google Patents

Method for molding minute metal

Info

Publication number
JPS6046301A
JPS6046301A JP58056497A JP5649783A JPS6046301A JP S6046301 A JPS6046301 A JP S6046301A JP 58056497 A JP58056497 A JP 58056497A JP 5649783 A JP5649783 A JP 5649783A JP S6046301 A JPS6046301 A JP S6046301A
Authority
JP
Japan
Prior art keywords
metal
binder
minute
lumpy
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58056497A
Other languages
Japanese (ja)
Other versions
JPS6315335B2 (en
Inventor
Masao Tomari
泊 正雄
Mikio Harada
幹雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Jiryoku Senko Co Ltd
Original Assignee
Nippon Jiryoku Senko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Jiryoku Senko Co Ltd filed Critical Nippon Jiryoku Senko Co Ltd
Priority to JP58056497A priority Critical patent/JPS6046301A/en
Publication of JPS6046301A publication Critical patent/JPS6046301A/en
Publication of JPS6315335B2 publication Critical patent/JPS6315335B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a steel manufacturing stock material generating no bumping in charging the same into a molten metal, by forming a mixture obtained by mixing a phenolic resin type binder and heavy oil with a pulverized minute metal into a lumpy form by compression molding. CONSTITUTION:0.5-1.0wt% of a phenolic resin type binder is added to a pulverized minute metal recovered from a metal trash or steel manufacturing slag. In this case, 0.2-0.5wt% of heavy oil or kerosene is further added. After these components are mixed under stirring, the resulting mixture is put in a mold frame and subjected to compression molding. By this method, the minute metal can be easily formed into a lumpy form. This lumpy substance has such a structure that the voids between metal minute particles are filled with the binder and the surface thereof is perfectly coated with said binder. Therefore, bumping is not generated even if said lumpy substance is charged into a molten metal. In addition, because of high burst strength and falling strength, said lumpy substance is sufficiently reacted with the molten metal in charging.

Description

【発明の詳細な説明】 本発明は粉粒状の微小金属の成型方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for molding fine metal particles.

各種工場から発生する金属屑と称される物の中でダライ
粉等の繊維状あるいは線状の物は、それらを単に圧縮成
型するのみで塊状物と゛なるのでそのまま又は該塊状物
をその後加熱、加圧成型し製鋼原料に用いる等取扱い易
いが、もっと小さな粉粒状の金属屑や、製銑製鋼工程に
於ける各種スラグから磁選回収された微小な金属物等は
それらを単に圧縮しても成型せず、高温高圧下でも相当
な温度と高い圧力を要する。又更にこの様な微小な金属
は水分を多く保有し易(、その様な場合には乾燥を要す
るが乾燥の過程で酸化し易いので002ガス、N2ガス
あるいは不活性ガス雰囲気中で乾燥しなければならない
という難点がある。そして上記諸困難を伴って微小金属
を成型、又はそれら微小金属を缶の中に収納した状態で
成型しても該成型体内になお空隙が多く該空隙部や又は
缶内部に空気が存在しサビ発生の原因となるし、更には
溶tly中に投入すると存在する空気あるいはサビから
発生ずるガスが急激に膨張し突沸現象を起こすという欠
点がある。
Among the so-called metal scraps generated from various factories, fibrous or linear materials such as dry powder become lumps by simply compression molding them, so they can be used as they are or after heating and processing the lumps. Although it is easy to handle by pressure forming and using it as a raw material for steelmaking, it is not possible to form metal scraps in the form of smaller particles or minute metal objects recovered by magnetic separation from various types of slag in the ironmaking and steelmaking process even if they are simply compressed. First, it requires considerable temperature and pressure, even at high temperatures and pressures. Furthermore, such minute metals tend to retain a lot of moisture (in such cases, they must be dried, but they are easily oxidized during the drying process, so they must be dried in an atmosphere of 002 gas, N2 gas, or inert gas). With the above-mentioned difficulties, even when molding minute metals or molding those minute metals while being housed in a can, there are still many voids inside the molded body, and the voids and/or the can. There is air inside, which causes rust, and furthermore, when it is put into melting, the existing air or the gas generated from the rust expands rapidly, causing a bumping phenomenon.

そこで最近ではこれら微小金属をバインダーを用いて塊
状化する方法が開発されており、その方法として■セメ
ントやベントナイト等の無機ノヘインダーを用いる方法
、■ポリウレタン系の熱硬化性1(脂を用いる方法、■
ポリビニルアルコール(PVA)やカルボキシルメチル
セルロース(CMC)を用いる方法があるがいずれの方
法も−長−短がありなお改善の余地が残されている。即
ち■の方法は用いるバインダー量を10重気量位の多、
量とし水を加えて混練し高圧成型する方法であるが、用
いろバインダー量が多い為に金属品位が低下すると共に
8分が増加する難点があり、更にはこれらのバインダー
は水和反応で固まっている為に溶湯中に投入すると瞬時
的に粉化し塊状化の効果が少ない。又この方法による塊
状物は落下強度が小で約3mの高さから落下すると割れ
たり粉化したりしてその取扱いが不便である。次に■の
方法は原料を180〜200℃に加熱しバインダーを約
1〜5重量%添加混合し成型するものであり、CI。
Recently, methods have been developed to make these minute metals into lumps using a binder. ■
There are methods using polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC), but each method has advantages and disadvantages and still leaves room for improvement. That is, in the method (■), the amount of binder used is about 10%
This method involves kneading with water and molding under high pressure, but since a large amount of binder is used, the metal quality deteriorates and the processing time increases.Furthermore, these binders solidify due to hydration reaction. Because of this, when it is poured into molten metal, it instantly turns into powder and has little effect on clumping. In addition, the lumps produced by this method have low fall strength, and if dropped from a height of about 3 m, they will crack or turn into powder, making them inconvenient to handle. Next, in method (2), the raw materials are heated to 180-200°C, about 1-5% by weight of binder is added and mixed, and molded.

S、P等の有害成分を殆んど含まない点は望ましいがバ
インダーが高価な事、加熱に手間と費用を要する事等実
操業上の問題がある。又■の方法は少量(約0.5重量
%)のバインダーを添加し、散水し乍ら混合し常温常圧
下で成型する事により重合反応によって塊状化でき、原
料表面をこのバインダーがコーティングしてその後の酸
化を防止できるが、やはりバインダーが高価すぎる事と
得られる塊状物の落下強度が小であるという問題がある
Although it is desirable that it contains almost no harmful components such as S and P, there are problems in actual operation, such as the fact that the binder is expensive and heating requires time and money. In addition, method (2) adds a small amount of binder (approximately 0.5% by weight), mixes it while sprinkling water, and molds it at room temperature and normal pressure, so that it can be made into a lump by a polymerization reaction, and the surface of the raw material is coated with this binder. Although subsequent oxidation can be prevented, there are still problems in that the binder is too expensive and the resulting lumps have low drop strength.

本発明は上記諸問題を解消する微小金属の塊状化方法を
提供せんとするものであり、その要旨はm 小金属にフ
ェノール樹脂系のバインダーを0.5〜1.0重量%添
加後、混合し塊状物となすことを特徴とする微小金属の
成型方法及び微小金属にフェノール樹脂系のバインダー
を0.4〜0.7重量%と、重油あるいは灯油を0.2
〜0.5重量%添加後、混合し塊状物となす乙とを特徴
とする微小金属の成型方法である。
The present invention aims to provide a method for agglomerating fine metals that solves the above-mentioned problems, and the gist thereof is to add 0.5 to 1.0% by weight of a phenolic resin binder to small metals, and then mix them. A method for molding minute metals characterized by forming them into lumps, and adding 0.4 to 0.7% by weight of a phenolic resin binder to the minute metals and 0.2% of heavy oil or kerosene.
This is a method for molding minute metals, which is characterized by adding ~0.5% by weight and then mixing to form a lump.

以下本発明を開発するに至った試験及びその結果を示す
The tests that led to the development of the present invention and their results are shown below.

く試験及びその結果〉 製鋼スラグから回収した粒状鉄(以下粒鉄という)と、
製銑や脱硫スラグから回収した粒状鉄(以下粒銑という
)を原料とし、バインダーとしテフェノール樹脂系ノA
P−P200とAP−M750(二液混合方式の樹脂の
商品名)及びHp−300OA(商品名)更には重油、
灯油を各種割合に混合し、成型型枠に詰め、コンクリー
ト耐圧試験機で圧縮強度を変えて円柱状(約36+++
m f X約30−m)に成型し、6〜7日間空気中で
養生後、落下試験を行ない、良好な結果を得た物につき
、大型圧縮*(プレス圧500t)でバインダー量、圧
縮強度を変え、円柱状(130m+n f×100〜2
00口 粒鉄、粒銑の場合4kg/ケと8kg/ケ)物
を作って約4〜7日間空気中で養生した。
Tests and results> Granular iron recovered from steelmaking slag (hereinafter referred to as granular iron),
Granular iron recovered from pig iron and desulfurization slag (hereinafter referred to as granular pig iron) is used as a raw material, and the binder is tephenol resin-based No.A.
P-P200 and AP-M750 (product name of two-component mixing resin) and Hp-300OA (product name) as well as heavy oil,
Mix kerosene in various proportions, pack it into a mold, and use a concrete pressure tester to change the compressive strength to form a cylinder (approximately 36+++
m f x approx. 30-m), and after curing in the air for 6 to 7 days, a drop test was conducted.For those that obtained good results, the binder amount and compressive strength were determined by large-scale compression* (press pressure 500 tons). cylindrical shape (130m+n f×100~2
In the case of granular iron and granular pig iron, 4 kg/piece and 8 kg/piece) were made and cured in the air for about 4 to 7 days.

又、同様の操作で混合後、団鉱機の成団圧力を変えて団
鉱(33X 33X 10〜12m+n )を作り、約
4〜7日間空気中で養生し、5mの高さまでリフマグで
吊って、鉄板の上に落下させ、破壊状況を調べた。なお
、成型物をハイアルミナルツボに入れて、シリコニット
電気炉に入れて昇温させ、約100℃間隔で鉄棒にてつ
つき溶解するまで状況を調べた。使用原料の化学分析値
を第1表に、粒度分布を第2表に示す。
After mixing in the same manner, the briquette (33X 33X 10~12m+n) was made by changing the briquetting pressure of the briquette machine, cured in the air for about 4~7 days, and hung up to a height of 5m with a riff mug. , and dropped it onto a steel plate to examine the state of destruction. The molded product was placed in a high-aluminum crucible, placed in a siliconite electric furnace, heated, and poked at intervals of about 100° C. with an iron rod to check the condition until it melted. The chemical analysis values of the raw materials used are shown in Table 1, and the particle size distribution is shown in Table 2.

第1表 化学分析値(重量%) 粒銑及び又は粒鉄に対し、第3表に示す如き割合にバイ
ンダーを配合し、上述の如くして成型圧力3.5ton
/c+/で得た円柱状物及び団鉱物についての各性状を
第4表に示す。
Table 1 Chemical analysis values (wt%) Binder was blended with granulated pig iron and/or granulated iron in the proportions shown in Table 3, and the molding pressure was 3.5 tons as described above.
Table 4 shows the properties of the cylinders and aggregate minerals obtained in /c+/.

第3表 (重量%) 第4表 なお上記第4表中で強度というのは圧装強度を示し5個
の試料の平均値であり、単位はkg / cdである。
Table 3 (Weight %) Table 4 In Table 4 above, strength indicates compression strength and is the average value of five samples, and the unit is kg/cd.

又これら13種の試料の嵩比重はNo、1が5.40で
No、 2〜No、 13は全て5.46であった。
The bulk specific gravity of these 13 samples was 5.40 for No. 1, and 5.46 for No. 2 to No. 13.

次いてバインダー景の最適値をめろ為にその量を変化さ
せてその圧装強度と落下試験状況をめた結果を第5,6
.7表にそれぞれ示す。
Next, in order to find the optimum value of the binder density, we varied the amount and measured the compression strength and drop test conditions.
.. They are shown in Table 7.

第5表 第6表 (バインダー、 Hp−300OAを0.8重量%添加
)第7表 (バインダー、灯油0.3重量%。
Table 5 Table 6 (Binder, 0.8% by weight of Hp-300OA added) Table 7 (Binder, 0.3% by weight of kerosene.

Hp−300OA 0.8重量%添加)次にバインダー
を変えt:成型物の電気炉による加熱溶解試験結果を以
下に述べる。
(Addition of 0.8% by weight of Hp-300OA) Next, the binder was changed and the results of a heating melting test of the molded product in an electric furnace are described below.

イ)加熱から溶解までの観察結果 第5表に示すNo、5. No、9. No、14+N
o、18の供試体につき、粘土ルツボに入れ、シリコニ
1.ト電気炉中(酸化雰囲気)で加熱し、約100℃こ
とに鉄棒でつつき、こわれるかどうか、供試体の変化状
況を調べた。
b) Observation results from heating to melting No. 5 shown in Table 5. No, 9. No, 14+N
o, 18 specimens were placed in a clay crucible and silicone 1. The specimens were heated in an electric furnace (oxidizing atmosphere) and poked with an iron rod at approximately 100°C to check whether they would break or not.

約300℃で合成樹脂の軟化と同様に供試体の表面に若
干、軟化泡立ち状の様に見うけられるが、煙の発生や燃
焼の現象は見られず、1350℃まで棒でつついても全
くこオ〕れないし、非常にかたい。しかし、1430℃
で表面部、側可部から溶解が始まって、全て溶解した。
At approximately 300°C, the surface of the specimen appears to be slightly softened and bubbly, similar to the softening of synthetic resins, but no smoke or combustion phenomena are observed, and even when poked with a stick up to 1350°C, no bubbles appear on the surface of the specimen. It doesn't stick and is very hard. However, 1430℃
Dissolution started from the surface and side parts, and everything was dissolved.

又、1500℃の溶湯(soo g )中にNo、5.
 No、9゜No、14.No、18の供試体を各々5
0gづつ投入したが、破壊現象は見られず、湯の中を若
干、動きながら約2分て溶解した。
In addition, No. 5.
No, 9°No, 14. 5 each of No. 18 specimens
Although 0 g was added at a time, no breakage was observed, and the solution was dissolved in about 2 minutes while moving slightly in the hot water.

口)溶解歩留試験結果 粘土ルツボに約500gの供試体を入れ、1200℃2
5分間加熱後、1500℃で5分間保持、炉外て空冷し
、溶解歩留を測定し、第8表に示す。
Mouth) Results of dissolution yield test: Approximately 500g of specimen was placed in a clay crucible and heated to 1200℃2.
After heating for 5 minutes, the mixture was held at 1500° C. for 5 minutes, taken out of the furnace and cooled in air, and the melting yield was measured and is shown in Table 8.

第8表 すなオ)ち、樹脂が重合し、微小金属の表面をコーティ
ングしているために、酸化されにくいためか、溶解歩留
も向上する。
(8) Particularly, since the resin polymerizes and coats the surface of the minute metal, it is less likely to be oxidized, and the dissolution yield also improves.

次に実際に製鋼用原料として用いた場合の実施例を示す
Next, an example will be shown in which it is actually used as a raw material for steel manufacturing.

〈実施例 1〉 RMzstをペイローラーでホッパーに入れ、ベビーコ
ンベアーで抜き出し、500kgづつを秤量し、遊ME
キサ−に入れて、攪拌しながら、バインダーHp−30
0OAを40kg入れて、約3分間攪拌後、成型機前の
ホッパーに切り出して、5ootプレス機の回転式円柱
状型枠(13emfX 30cm )に、約8kg入れ
て、3.5t/cwtで圧縮成型し、次に回転後、押し
出す方式で順次成型して約5〜6日間空気中で養生(乾
燥)後、リフマグで吊ってトラックに積み込み、製鋼原
料として使用した。
<Example 1> Put RMzst into a hopper with a pay roller, take it out with a baby conveyor, weigh 500 kg each, and put it in the play ME.
Add binder Hp-30 to the mixer and stir while stirring.
Pour 40kg of 0OA, stir for about 3 minutes, then cut into the hopper in front of the molding machine, put about 8kg into the rotary cylindrical form (13emfX 30cm) of a 5oot press, and compression mold at 3.5t/cwt. Then, after being rotated, it was successively molded using an extrusion method, and after curing (drying) in the air for about 5 to 6 days, it was hung with a riff mug and loaded onto a truck, where it was used as a raw material for steelmaking.

〈実施例 2〉 粒@ 250kgづつを秤量後、ベビーコンベアーで、
小型遊星ミキサーに入れ、攪拌しながら灯油0.70−
を添加して、約2分間攪拌後、更にバインダー Hp−
100OAを0.125kgを添加後、3分間攪拌して
、団鉱機前のポツパーに取り出して、高圧団鉱機(孔型
、 33X33X12陶線圧、 3tにて連続成型し、
約5日間空気中で養生(乾燥)後、実施例1と同様にリ
フマグで吊って、トラックに積み込み、製鎖原料として
使用した。
<Example 2> After weighing grains @ 250 kg each, on a baby conveyor,
Pour into a small planetary mixer and add 0.70- kerosene while stirring.
After stirring for about 2 minutes, add binder Hp-
After adding 0.125 kg of 100OA, it was stirred for 3 minutes, taken out to a popper in front of the briquette machine, and continuously molded using a high pressure briquette machine (hole type, 33X33X12 ceramic wire pressure, 3t).
After curing (drying) in the air for about 5 days, it was hung with a riffmag similar to Example 1, loaded onto a truck, and used as a raw material for chain making.

又、実施例1,2ての成型物を使用した製鋼メーカーで
は型銑の使用量と同じくして比較試験を行ったが優劣の
差はなく問題なかった。
In addition, a comparative test was carried out by a steel manufacturer using the molded products of Examples 1 and 2 using the same amount of mold pig iron, and there was no difference in superiority or inferiority, and there were no problems.

なお、使用前に落下試験どして製鋼原料の上やスクラッ
プ置場でリフマグに吊って約4〜5mから落下させたが
問題なかった。
Before use, a drop test was carried out on steelmaking raw materials or in a scrapyard where the product was hung from a riff mug and dropped from about 4 to 5 meters without any problems.

なお、成型物を空気中で4〜7日間養生しても良いが、
50℃〜100℃程の熱があれば硬化重合時間は非常に
早くなり約3時間以内で、十分な強度が得られる。
Note that the molded product may be cured in air for 4 to 7 days, but
If heat of about 50° C. to 100° C. is used, the curing polymerization time will be very fast, and sufficient strength can be obtained within about 3 hours.

以上述べて来た如く本発明によれば、粒銑2粒鉄あるい
はダストや微小研磨粉等の微小金属を常温で容易に塊状
化する事が出来、しかも用いるバインダー量微小金属同
士の空隙を完全に埋めると共に、微小金属表面を完全に
コーティングするので、乾燥や塊状化の為に新たなエネ
ルギーを必要とする事なく、かつまた使用するバインダ
ーも安価、少量て済み製造コストは安価となる。そして
得られる製品はバインダー量が少ないので金属品位は高
く、かつ表面はv1111!でコーティングされている
のでサビが発生する事なく、又製品中に空陳も少ないの
で空気を含有する事も少なく溶湯中に投入しても突沸現
象を起こす事はない。更に本発明の製品はその圧装強度
、落下強度が大であるので取扱いに便で溶湯中に投入し
た場合溶湯と十分なる反応を起こすという優れた効果が
あり、製鋼用原料や冷却材として有用なものである。
As described above, according to the present invention, minute metals such as two grains of iron, dust, and minute abrasive powder can be easily agglomerated at room temperature, and the amount of binder used can completely eliminate the voids between the minute metals. Since the surface of the minute metal is completely coated, no additional energy is required for drying or agglomeration, and the binder used is also inexpensive, requiring only a small amount, resulting in low manufacturing costs. The resulting product has a low binder content, so the metal quality is high, and the surface is V1111! Since the product is coated with molten metal, it will not rust, and since there is little empty space in the product, it will not contain air and will not cause bumping even if it is poured into molten metal. Furthermore, the product of the present invention has a high compression strength and high drop strength, so when it is thrown into molten metal for convenience, it has the excellent effect of causing a sufficient reaction with the molten metal, making it useful as a raw material for steelmaking and as a coolant. It is something.

特許出願人 日本磁力選鉱株式会社 代理人有吉教晴  C−Patent applicant: Japan Magnetic Separation Co., Ltd. Agent Noriharu Ariyoshi C-

Claims (1)

【特許請求の範囲】 1、微小金属にフェノール樹脂系のバインダーを0.5
〜1.0重量%添加後、混合し塊状物となすことを特徴
とする微小金属の成型方法。 2、微小金属にフェノール樹脂系のバインダーを0.4
〜0.7重量%と、重油あるいは灯油を0.2〜0.5
重量%添加後、混合し塊状物となすことを特徴とする微
小金属の成型方法。
[Claims] 1. Adding 0.5 phenolic resin binder to minute metal
A method for molding minute metals, which comprises adding ~1.0% by weight and then mixing to form a lump. 2. Add 0.4 phenolic resin binder to minute metal
~0.7% by weight and 0.2~0.5% of heavy oil or kerosene
A method for forming fine metals, which is characterized by adding % by weight and then mixing to form a lump.
JP58056497A 1983-03-30 1983-03-30 Method for molding minute metal Granted JPS6046301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58056497A JPS6046301A (en) 1983-03-30 1983-03-30 Method for molding minute metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58056497A JPS6046301A (en) 1983-03-30 1983-03-30 Method for molding minute metal

Publications (2)

Publication Number Publication Date
JPS6046301A true JPS6046301A (en) 1985-03-13
JPS6315335B2 JPS6315335B2 (en) 1988-04-04

Family

ID=13028733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58056497A Granted JPS6046301A (en) 1983-03-30 1983-03-30 Method for molding minute metal

Country Status (1)

Country Link
JP (1) JPS6046301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040019425A (en) * 2002-08-26 2004-03-06 민병창 Compound iron and mineral material including mineral rock and fragment iron as an essential element and method of manufacturing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040019425A (en) * 2002-08-26 2004-03-06 민병창 Compound iron and mineral material including mineral rock and fragment iron as an essential element and method of manufacturing it

Also Published As

Publication number Publication date
JPS6315335B2 (en) 1988-04-04

Similar Documents

Publication Publication Date Title
US6676725B2 (en) Cold bonded iron particulate pellets
WO1995034517A1 (en) Production of mineral fibers
RU2224007C1 (en) Elevated-strength coal briquette and a method of fabrication thereof
JP2001517189A (en) Insulation material
CN100529122C (en) Refining material for reductive steel refining and granulation method thereof
WO2021087582A1 (en) Process for producing an iron ore fines agglomerate and the agglomerate product
EP0059088B1 (en) Silicate solutions, their production and uses as binders
JP2012504189A (en) Agglomerate formation method of alloy iron fine powder such as ferromanganese fine powder, ferrochrome fine powder and ferrosilicon fine powder
JP2840592B2 (en) Briquette containing silicon-containing residue as metallurgical additive and method for producing the same
US3316083A (en) Briquetting of foundry materials
JPS6046301A (en) Method for molding minute metal
US4199348A (en) Mineral ore pellets
JP2732898B2 (en) Agglomeration method of powdered metal
CN1283533A (en) Grcular particles of insulating agent for molten steel and its preparing process
JPS61201740A (en) Method for agglomerating fine ore or metal
JPH01201032A (en) Granulation of glass material
JPH0135885B2 (en)
JP2022543468A (en) Methods, corresponding particulates and kits, apparatus and uses for manufacturing articles for use in the foundry industry
JPS608284B2 (en) Manufacturing method of briquettes for modified carburizers
JPS6130634A (en) Forming additive containing chromium for steel making and manufacture thereof
JPS6227527A (en) Method for utilizing desiliconization slag
RU2171852C1 (en) Method of reducing agent production
CN116730729A (en) Silicon carbide composite material and preparation method and application thereof
SU1019000A1 (en) Mixture for modifying briquets
CA1208109A (en) Flux for continuous casting