JPS6046188B2 - Diaphragm method Alkali chloride electrolysis method - Google Patents

Diaphragm method Alkali chloride electrolysis method

Info

Publication number
JPS6046188B2
JPS6046188B2 JP52109452A JP10945277A JPS6046188B2 JP S6046188 B2 JPS6046188 B2 JP S6046188B2 JP 52109452 A JP52109452 A JP 52109452A JP 10945277 A JP10945277 A JP 10945277A JP S6046188 B2 JPS6046188 B2 JP S6046188B2
Authority
JP
Japan
Prior art keywords
alkali chloride
diaphragm
anode chamber
solid
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52109452A
Other languages
Japanese (ja)
Other versions
JPS5443197A (en
Inventor
隆司 山下
峰人 朝山
勝 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP52109452A priority Critical patent/JPS6046188B2/en
Publication of JPS5443197A publication Critical patent/JPS5443197A/en
Publication of JPS6046188B2 publication Critical patent/JPS6046188B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、隔膜法塩化アルカリ電解方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diaphragm alkaline chloride electrolysis method.

隔膜法塩化アルカリ電解は、隔膜としてアスベスト膜の
ような濾隔膜やイオン交換膜を用いて、塩化アルカリ水
溶液を電解し、苛性アルカリ及び”塩素を得るものであ
る。
Diaphragm method alkali chloride electrolysis uses a filter diaphragm such as an asbestos membrane or an ion exchange membrane as a diaphragm to electrolyze an aqueous alkali chloride solution to obtain caustic alkali and chlorine.

具体的には、隔膜で陽極と陰極を仕切り、陽極室、陰極
室を形成してなる電解槽を用い、陽極室に精製された飽
和又は飽和に近い塩水(液中のCa分、Mg分等の不純
物を除去する)を供給し、これを電解に付して、塩化ア
ルカリを電解し、陽極室から塩素を、陰極室から苛性ソ
ーダを得るものである。かゝる電解方法において、本発
明者の知見によると、陽極室内の液(以下陽極液という
)の塩化アルカリ濃度が上昇するに伴い電流効率の上昇
、電解電圧の低下、高純度の塩素ガスが得られることが
判つた。
Specifically, an electrolytic cell is used in which an anode and a cathode are separated by a diaphragm to form an anode chamber and a cathode chamber, and purified saturated or nearly saturated salt water (Ca content, Mg content, etc. The alkali chloride is electrolyzed by electrolysis to obtain chlorine from the anode chamber and caustic soda from the cathode chamber. According to the findings of the present inventor, in such an electrolysis method, as the alkali chloride concentration of the solution in the anode chamber (hereinafter referred to as anolyte) increases, the current efficiency increases, the electrolysis voltage decreases, and high purity chlorine gas increases. I found out that I can get it.

しかしながら、たとえ陽極室に飽和又は飽和に近い塩化
アルカリ水溶液を供給しても、陽極室て塩化アルカリが
電解により分解消費されるので、陽極室で塩化アルカリ
濃度は、低下する。
However, even if a saturated or nearly saturated aqueous alkali chloride solution is supplied to the anode chamber, the alkali chloride concentration in the anode chamber decreases because the alkali chloride is decomposed and consumed by electrolysis.

その九本発明者は、陽極液の滞留時間を短くし、具体的
には、陽極室に単位時間当り供給する飽和又は飽和に近
い塩化アルカリ水溶液のの容量を大きくすることにより
、陽極室における塩化アルカリの分解率を押え、陽極液
の塩化アルカリ濃度を上昇させることを試みた。
Part 9: The present inventor has achieved the goal of reducing the chloride concentration in the anode chamber by shortening the residence time of the anolyte and, specifically, by increasing the volume of the saturated or nearly saturated aqueous alkali chloride solution supplied to the anode chamber per unit time. An attempt was made to suppress the decomposition rate of alkali and increase the alkali chloride concentration in the anolyte.

しかしながらか)る方法は、塩化アルカリの分解率低下
に従い塩化アルカリ水溶液供給設備(ポンプ、配管等)
の負担が大きくなつたり、何よりも、供給塩化アルカリ
水溶液の精製負担が大きくなるため、分解率を過度に下
げることはむずかしく、従つて陽極液の塩化アルカリ濃
度を上げるには限度があることが判つた。よつて本発明
者は、上記欠点が生じることなく、良好に陽極液の塩化
アルカリ濃度を上げることを目的として研究を重ねた結
果本発明を提供する。本発明は、隔膜て陽極と陰極とを
仕切り、陽極室、陰極室を形成してなる電解槽を用いて
、塩化アルカリ水溶液を電解する方法において、陽極室
に固形の塩化アルカリを含む飽和又は飽和に近い塩化ア
ルカリ水溶液を供給する隔膜法塩化アルカリ電解方法に
ある。
However, this method requires the use of alkali chloride aqueous solution supply equipment (pumps, piping, etc.) as the decomposition rate of alkali chloride decreases.
It is difficult to reduce the decomposition rate excessively, as this increases the burden of refining the supplied aqueous alkali chloride solution and, above all, increases the burden of refining the supplied aqueous alkali chloride solution. Ivy. Therefore, the present inventors have conducted extensive research with the aim of successfully increasing the alkali chloride concentration of the anolyte without causing the above-mentioned drawbacks, and have therefore provided the present invention. The present invention relates to a method for electrolyzing an aqueous alkali chloride solution using an electrolytic cell formed by partitioning an anode and a cathode with a diaphragm and forming an anode chamber and a cathode chamber. The diaphragm method is an alkali chloride electrolysis method that supplies an aqueous alkali chloride solution close to that of the diaphragm method.

本発明によれば、供給する飽和又は飽和に近い塩化アル
カリ水溶液に固形の塩化アルカリが含まれている為、陽
極室において、溶存している塩化アルカリが電解により
消費され塩化アルカリ濃度が低下すると、共存する固形
の塩化アルカリが液中に溶解し、陽極液の塩化アルカリ
濃度は、高く維持される。
According to the present invention, since solid alkali chloride is contained in the supplied saturated or nearly saturated aqueous alkali chloride solution, when the dissolved alkali chloride is consumed by electrolysis in the anode chamber and the alkali chloride concentration decreases, The coexisting solid alkali chloride is dissolved in the liquid, and the alkali chloride concentration of the anolyte is maintained at a high level.

本発明において固形の塩化アルカリとは、固形のアルカ
リ金属の塩化物であり具体例には、固形のNaCl..
KClである。
In the present invention, solid alkali chloride refers to solid alkali metal chloride, and specific examples include solid NaCl. ..
It is KCl.

この固形の塩化アルカリは、Ca分、Mg分等の不純物
を含まない純粋な塩化アルカリであることが好ましいが
、これに限られることなく、隔膜に悪影響を及ぼさない
程度の微量の不純物を含んでいても差し付かえない。固
形の塩化アルカリは、共存する塩化アルカリ水溶液の濃
度低下に伴い、速かに液に溶解することが好ましく、そ
の為には、その形状が粒状、粉末状、フレーク状であり
、特にその平均粒径が10〜300μであることが好ま
しい。もつとも10pより小粒のものも採用できるが、
これは粉砕に手間が掛るのであまり好ましくない。上記
範囲中更に好ましくは50〜150μである。
This solid alkali chloride is preferably pure alkali chloride that does not contain impurities such as Ca and Mg, but is not limited to this, and may contain trace amounts of impurities that do not have a negative effect on the diaphragm. I can't replace it. It is preferable that the solid alkali chloride dissolves quickly in the liquid as the concentration of the coexisting aqueous alkali chloride solution decreases.For this purpose, the shape of the solid alkali chloride should be granular, powdery, or flaky. It is preferable that the diameter is 10 to 300μ. Although it is possible to use particles smaller than 10p,
This is not very preferable because it takes time and effort to grind. Within the above range, it is more preferably 50 to 150μ.

又、固形の塩化アルカリは、溶解性の点から水和物化し
たものを採用することが好ましい。塩化アルカリ水溶液
は、アルカリ金属の塩化物水溶液であり、具体的にはN
aCl水溶液、KCl水溶液である。飽和又は飽和に近
い塩化アルカリ水溶液は、一般には原料塩を水に溶解さ
せ、塩化アルカリ飽和又は飽和に近く[7た後、これを
精製し、液中のCa分、Mg分等の不純物を除去して得
ることができる。
Further, from the viewpoint of solubility, it is preferable to use a hydrated form of the solid alkali chloride. The aqueous alkali chloride solution is an aqueous solution of alkali metal chloride, specifically N
They are aCl aqueous solution and KCl aqueous solution. A saturated or nearly saturated aqueous aqueous solution of alkali chloride is generally prepared by dissolving the raw material salt in water to reach a saturated or nearly saturated alkali chloride solution [7] After that, it is purified to remove impurities such as Ca and Mg in the solution. You can get it.

その他、精製されてはいるが塩化アルカリ濃度の低い、
塩化アルカリ水溶液に前述の固形の塩化アルカリを加え
ることにより得ることもできる。尚、飽和に近い塩化ア
ルカリ水溶液とは、これに固形の塩化アルカリを共存さ
せても、か)る塩化アルカリが固形状態を維持できる位
の塩化アルカリ飽和に近いものである。本発明は、前述
の固形の塩化アルカリを含む飽和又は飽和に近い塩化ア
ルカリ水溶液を陽極室に供給するものである。
Others are refined but have a low alkali chloride concentration.
It can also be obtained by adding the solid alkali chloride mentioned above to an aqueous alkali chloride solution. It should be noted that an aqueous alkali chloride solution that is nearly saturated is one that is so saturated with alkali chloride that even if solid alkali chloride is allowed to coexist therein, the alkali chloride can maintain its solid state. In the present invention, a saturated or nearly saturated aqueous aqueous alkali chloride solution containing the solid alkali chloride described above is supplied to the anode chamber.

か)る場合、少なくとも陽極室に入る迄は、固形の塩化
アルカリが共存している。
In this case, solid alkali chloride coexists at least until it enters the anode chamber.

陽極室内においては、陽極液に溶存している塩化アルカ
リが電解により消費されるので、理論的には、その消費
された塩化アルカリの量に相当する量だけ、固形の塩化
アルカリが溶解する。従つて、単位時間当り供給される
固形の塩化アルカリの重量が、陽極室において単位時間
当り電解により分解され消費される塩化アルカリの量に
ほぼ等しいか、それ以下の場合で、固形の塩化アルカリ
の溶解が速かに行なわれるときは、陽極液中には、固形
の塩化アルカリはほとんど存在しない。
In the anode chamber, alkali chloride dissolved in the anolyte is consumed by electrolysis, so theoretically, solid alkali chloride is dissolved in an amount corresponding to the amount of consumed alkali chloride. Therefore, if the weight of solid alkali chloride supplied per unit time is approximately equal to or less than the amount of alkali chloride decomposed and consumed by electrolysis per unit time in the anode chamber, When dissolution occurs quickly, there is almost no solid alkali chloride present in the anolyte.

もつとも、固形の塩化アルカリが速かに溶解しない場合
もあり、か)る場合は陽極液中に固形の塩化アルカリが
存在する。
However, there are cases in which solid alkali chloride does not dissolve quickly, and in such cases, solid alkali chloride is present in the anolyte.

陽極液中に固形の塩化アルカリが多量に存在すると、隔
膜特にアスベスト膜のような濾隔膜は、目詰りが生じる
ため、前述したように固形の塩化アルカリの供給量、塩
化アルカリの粒径等を特定して、できる限り速かに陽極
液に溶解することが好ましい。
If a large amount of solid alkali chloride is present in the anolyte, the diaphragm, especially a filter diaphragm such as an asbestos membrane, will become clogged. It is preferable to specifically dissolve it in the anolyte as quickly as possible.

固形塩化アルカリの供給方法は、種々の方法が採用でき
る。
Various methods can be used to supply the solid alkali chloride.

理解し易いように塩化アルカリがNaClとして説明す
る。
For ease of understanding, alkali chloride will be explained as NaCl.

例えば、陽極室に供給される被電解液即ち、原料塩を水
に溶解させ、精製してなる飽和又は飽和に近い塩水に固
形の食塩を添加し、これを陽極室に供給したり、陽極室
に直接食塩を供給することができる。
For example, solid salt may be added to the electrolyte solution supplied to the anode chamber, that is, saturated or nearly saturated salt water obtained by dissolving raw material salt in water and purifying it, and then supplying this to the anode chamber. salt can be supplied directly to

又他の方法として、陽極室に飽和又は飽和に近い塩水を
供給しつつ、陽極液の一部を陽極室外に抜き出し、これ
に固形の食塩を添加して固形の塩化アルカリを含む飽和
又は飽和に近い塩水とし、これを陽極室に再循環するこ
とも採用できる。
Another method is to supply saturated or nearly saturated salt water to the anode chamber, draw out a portion of the anolyte outside the anode chamber, and add solid salt to it to make it saturated or saturated, including solid alkali chloride. It is also possible to use nearly salt water and recirculate it to the anode chamber.

後者の方法即ち陽極液を再循環する方法において、食塩
の添加量は抜き出された陽極液を飽和又は飽和に近くす
るに必要な量か、それ以上の量であることが必要である
。特に後者の場合、陽極液の再循環の過程で、固形食塩
が溶解し始め、陽極室に入るときは、粒径もかなり小さ
くなつており、前者の方法に比べ、固形の食塩が陽極室
内で溶解し易い状態になるので好ましい。
In the latter method, which involves recycling the anolyte, the amount of common salt added must be at or above the amount necessary to bring the extracted anolyte to saturation or near saturation. Especially in the latter case, during the process of recirculating the anolyte, the solid salt begins to dissolve, and when it enters the anode chamber, the particle size is also much smaller, compared to the former method. This is preferable because it becomes easily soluble.

これらの方法において、固形の食塩は、連続的に加えて
もよいし、回分的に加えてもよい。
In these methods, solid salt may be added continuously or in batches.

又固形食塩の添加方法は、精製塩水、陽極液に固形のま
)で加えることはもちろんであるが、スラリー状にして
添加してもさしつかえない。本発明の方法は、アスベス
ト膜等の濾隔膜、イオン交換膜のような隔膜を用いた塩
化アルカリ電解法に適用できるが、特にアスベスト膜等
の濾隔膜を用いた塩化アルカリ電解法に適用することが
好ましい。例えばアスベスト隔膜電解においては、陰極
室から得られる電解生成液には、苛性アルカリの外塩化
アルカリが含まれており、か)る電解生成液,を蒸発に
付して煮詰め、溶存している大部分の塩化アルカリを析
出させ、これを分離している。そして、必要に応じ、大
部分の塩化アルカリを分離した苛性アルカリ水溶液を冷
却して、残存する塩化アルカリを水和物結晶として析出
させ、これを.分離している。これら析出した塩化アル
カリは、隔膜に悪影響を及ぼすCa分、Mg分等をほと
んど含んでいない。
As for the method of adding solid salt, it goes without saying that it can be added in solid form to purified salt water or the anolyte, but it can also be added in the form of a slurry. The method of the present invention can be applied to an alkali chloride electrolysis method using a diaphragm such as an asbestos membrane or an ion exchange membrane, but is particularly applicable to an alkali chloride electrolysis method using a filtration diaphragm such as an asbestos membrane. is preferred. For example, in asbestos diaphragm electrolysis, the electrolytic solution obtained from the cathode chamber contains caustic alkali and alkali chloride. A portion of the alkali chloride is precipitated and separated. Then, if necessary, the aqueous caustic alkali solution from which most of the alkali chloride has been separated is cooled to precipitate the remaining alkali chloride as hydrate crystals. Separated. These precipitated alkali chlorides hardly contain Ca, Mg, etc., which have a negative effect on the diaphragm.

従つて、これら析出した塩化アルカリを本発明の固形の
塩化アルカリとして用いることができ,る。このように
濾隔膜電解法に本発明を適用すると、陰極室から得られ
る電解生成液中の塩化アルカリを有効に利用することが
できる。次に本発明の実施の一例を挙げて説明する。
Therefore, these precipitated alkali chlorides can be used as the solid alkali chloride of the present invention. When the present invention is applied to the filtration diaphragm electrolysis method in this way, the alkali chloride in the electrolyzed solution obtained from the cathode chamber can be effectively utilized. Next, an example of implementing the present invention will be described.

実施例1アスベスト膜で陽極(チタンに酸化ルテニウム
をメッキしたエクスパンドメタル)と陰極(鉄製エクス
パンドメタル)とを仕切り、陽極室、陰極室を有する電
解槽の陽極室にNaCl濃度が325y/eの精製塩水
を1000e/Hrの割合で供給し該供給塩水には平均
粒径75μの固形NaClを3k9ずつ回分的に(1紛
毎)加え電解を行つた。
Example 1 An anode (expanded metal made of titanium plated with ruthenium oxide) and a cathode (expanded metal made of iron) are separated by an asbestos film, and the anode chamber of an electrolytic cell having an anode chamber and a cathode chamber is purified to a NaCl concentration of 325 y/e. Salt water was supplied at a rate of 1000 e/hr, and solid NaCl having an average particle size of 75 μm was added in batches (3k9 per powder) to the supplied salt water to perform electrolysis.

陽極室から塩素ガス(Cl2:98.4%、02:1.
6%)を29.53NdAr1陰極室から苛性ソーダ水
溶液を790′/Hrの割合で取り出した。か)る液を
蒸発罐で煮詰めNaClを析出させこれを分離した。
Chlorine gas (Cl2:98.4%, 02:1.
A caustic soda aqueous solution was taken out from the cathode chamber at a rate of 790'/Hr. The resulting solution was boiled down in an evaporation can to precipitate NaCl, which was separated.

この固形NaClは前述の固形NaClとして利用した
。か)る場合、陽極室内の液のNaCl濃度は290y
/e1温度は94℃、摺電圧は3.48V1電流効率は
98%であつた。
This solid NaCl was used as the solid NaCl described above. ), the NaCl concentration of the solution in the anode chamber is 290y.
/e1 temperature was 94°C, sliding voltage was 3.48V1, and current efficiency was 98%.

比較例1 実施例1と同り電解槽を用い、陽極室にNaCl濃度3
25y/eの精製塩水を1000e/Hr供給して電解
を行つた。
Comparative Example 1 Using the same electrolytic cell as in Example 1, the anode chamber had a NaCl concentration of 3.
Electrolysis was carried out by supplying 25 y/e of purified salt water at 1000 e/hr.

(固形NaClは添加しない)陽極室から塩素ガスが2
9.5N7T1/Hrの割合で得られその組成はCl。
97.8%、022.2%であつた。
(Do not add solid NaCl) Chlorine gas from the anode chamber
It was obtained at a ratio of 9.5N7T1/Hr and its composition was Cl.
They were 97.8% and 022.2%.

か)る場合陽極室内の液のNaCl濃度は275g/′
、温度は94℃、摺電圧は3.50V1電流効率は95
.5%であつた。実施例2実施例1と同じ電解槽の陽極
室に325J/eの精製塩水を1000e/Hr供給し
、陽極室からその内の液の一部を槽外のタンクに100
0e/Hrの割合で抜き出し、か)るタンクで固形Na
Clを30kg/Hrの割合で加えた後陽極室に循環し
た。
), the NaCl concentration of the solution in the anode chamber is 275 g/'
, temperature is 94℃, sliding voltage is 3.50V1, current efficiency is 95
.. It was 5%. Example 2 Purified salt water of 325 J/e was supplied to the anode chamber of the same electrolytic cell as in Example 1 at 1000 e/hr, and a part of the liquid was transferred from the anode chamber to the tank outside the tank for 1000 e/hr.
Solid Na is extracted at a rate of 0e/Hr, and
After adding Cl at a rate of 30 kg/Hr, it was circulated to the anode chamber.

塩素ガスの組成はCl298.5%、021.5%であ
つた。
The composition of the chlorine gas was Cl298.5% and Cl21.5%.

か)る場合陽極室内の液のNaCl濃度は2901/e
1温度は94℃、摺電圧は3.48V1電流効率は98
.0%であつた。
), the NaCl concentration of the solution in the anode chamber is 2901/e.
1 temperature is 94℃, sliding voltage is 3.48V1 current efficiency is 98
.. It was 0%.

Claims (1)

【特許請求の範囲】 1 隔膜で陽極と陰極とを仕切り、陽極室、陰極室を形
成してなる電解槽を用いて、塩化アルカリ水溶液を電解
する方法において、陽極室の固形の塩化アルカリを含む
飽和又は飽和に近い塩化アルカリ水溶液を供給する隔膜
法塩化アルカリ電解方法。 2 陽極室に、飽和又は飽和に近い塩化アルカリ水溶液
を供給しつつ、陽極室から陽極液の一部を取り出し、こ
れに固形の塩化アルカリを添加して、固形の塩化アルカ
リを含む飽和又は飽和に近い塩化アルカリ水溶液とし、
これを陽極室に再循環する特許請求の範囲1の隔膜法塩
化アルカリ電解方法。 3 隔膜として濾隔膜を用い、陽極室に固形の塩化アル
カリを含む飽和又は飽和に近い塩化アルカリ水溶液を供
給して電解を行い、陰極室から得られる電解生成液を蒸
発に付し、液中の塩化アルカリを析出させ、この析出し
た塩化アルカリを、陽極室に供給する塩化アルカリ水溶
液に存在させる固形の塩化アルカリとして用いる特許請
求の範囲1又は2の隔膜法塩化アルカリ電解方法。 4 固形の塩化アルカリの平均粒径が10〜300μで
ある特許請求の範囲1の隔膜法塩化アルカリ電解方法。 5 固形の塩化アルカリの単位時間当りの供給重量が、
陽極室で単位時間当り電解消費される溶存塩化アルカリ
の重量にほぼ等しいか、それ以下である特許請求の範囲
1の隔膜法塩化アルカリ電解方法。
[Scope of Claims] 1. A method for electrolyzing an aqueous alkali chloride solution using an electrolytic cell in which an anode and a cathode are separated by a diaphragm and an anode chamber and a cathode chamber are formed, including solid alkali chloride in the anode chamber. A diaphragm alkaline chloride electrolysis method that supplies a saturated or nearly saturated aqueous alkali chloride solution. 2. While supplying a saturated or nearly saturated aqueous alkali chloride solution to the anode chamber, take out a portion of the anolyte from the anode chamber, add solid alkali chloride to it, and make it saturated or saturated, including the solid alkali chloride. As an aqueous alkali chloride solution,
The diaphragm method alkali chloride electrolysis method according to claim 1, wherein this is recycled to the anode chamber. 3 Using a filter diaphragm as a diaphragm, electrolysis is performed by supplying a saturated or nearly saturated aqueous aqueous alkali chloride solution containing solid alkali chloride to the anode chamber, and the electrolyzed solution obtained from the cathode chamber is evaporated. 3. The diaphragm method for alkali chloride electrolysis according to claim 1 or 2, wherein alkali chloride is precipitated and the precipitated alkali chloride is used as a solid alkali chloride present in an aqueous alkali chloride solution supplied to the anode chamber. 4. The diaphragm alkali chloride electrolysis method according to claim 1, wherein the solid alkali chloride has an average particle size of 10 to 300μ. 5 The weight of solid alkali chloride supplied per unit time is
The membrane method alkali chloride electrolysis method according to claim 1, wherein the weight is approximately equal to or less than the weight of dissolved alkali chloride electrolytically consumed per unit time in the anode chamber.
JP52109452A 1977-09-13 1977-09-13 Diaphragm method Alkali chloride electrolysis method Expired JPS6046188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52109452A JPS6046188B2 (en) 1977-09-13 1977-09-13 Diaphragm method Alkali chloride electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52109452A JPS6046188B2 (en) 1977-09-13 1977-09-13 Diaphragm method Alkali chloride electrolysis method

Publications (2)

Publication Number Publication Date
JPS5443197A JPS5443197A (en) 1979-04-05
JPS6046188B2 true JPS6046188B2 (en) 1985-10-15

Family

ID=14510585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52109452A Expired JPS6046188B2 (en) 1977-09-13 1977-09-13 Diaphragm method Alkali chloride electrolysis method

Country Status (1)

Country Link
JP (1) JPS6046188B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1388466A (en) * 1920-08-05 1921-08-23 Hooker Electrochemical Co Electrolysis of solutions and apparatus thepefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1388466A (en) * 1920-08-05 1921-08-23 Hooker Electrochemical Co Electrolysis of solutions and apparatus thepefor

Also Published As

Publication number Publication date
JPS5443197A (en) 1979-04-05

Similar Documents

Publication Publication Date Title
JP2520085B2 (en) Chlorine dioxide production method
SE500107C2 (en) Process for the production of chlorine dioxide
JP3878674B2 (en) Electrochemical production method combining sodium peroxodisulfate and caustic soda solution
JPH0776789A (en) Electrolysis of aqueous potassium chloride solution
US4839003A (en) Process for producing alkali hydroxide, chlorine and hydrogen by the electrolysis of an aqueous alkali chloride solution in a membrane cell
CN102628105B (en) Method for comprehensively recycling and using baric waste slag in refined aluminum production process
US3785942A (en) Process for the recovery of mercury from waste solids
EP3475470B1 (en) Process for treating a solid carbonaceous material containing aluminum, fluorides and sodium ions
PL82400B1 (en)
GB1154420A (en) Process for Recovering Mercury From a Sludge produced during Electrolysis of Alkali Chloride in a Mercury Cell
US3801480A (en) Process for reducing losses of mercury in the alkali metal chloride electrolysis according to the amalgamation process
JPS6046188B2 (en) Diaphragm method Alkali chloride electrolysis method
US3454478A (en) Electrolytically reducing halide impurity content of alkali metal dichromate solutions
US3690845A (en) Crystallization of a metal chlorate from a chlorate-chloride containing solution
US3755110A (en) Process for the recovery of mercury from the brine filter sludge obtained in the electrolysis of alkali metal chlorides by the amalgam process
JPS6330991B2 (en)
JP2757537B2 (en) How to remove chlorate in salt water
JPS58199882A (en) Electrolytical production of chlorine and sodium hydroxide from sulfate containing salts
US3364127A (en) Method for producing caustic soda and chlorine by means of electrolysis of sea water or other similar saltish water
US2810685A (en) Electrolytic preparation of manganese
JPS592754B2 (en) Electrolytic recovery method for antimony, arsenic, mercury and tin
JPH11293484A (en) Production of ammonium persulfate
US2315830A (en) Production of alkali metals and their amides
EP2655692A1 (en) Electrolytic process
JP2839156B2 (en) Process for producing alkali metal dichromate and chromic acid