JPS6045925B2 - Manufacturing method of magnetic filter element - Google Patents

Manufacturing method of magnetic filter element

Info

Publication number
JPS6045925B2
JPS6045925B2 JP52074469A JP7446977A JPS6045925B2 JP S6045925 B2 JPS6045925 B2 JP S6045925B2 JP 52074469 A JP52074469 A JP 52074469A JP 7446977 A JP7446977 A JP 7446977A JP S6045925 B2 JPS6045925 B2 JP S6045925B2
Authority
JP
Japan
Prior art keywords
stretching
filter element
magnetic
magnetic field
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52074469A
Other languages
Japanese (ja)
Other versions
JPS5410477A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP52074469A priority Critical patent/JPS6045925B2/en
Publication of JPS5410477A publication Critical patent/JPS5410477A/en
Publication of JPS6045925B2 publication Critical patent/JPS6045925B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【発明の詳細な説明】 本発明は、高分子化合物を所定の板又は膜に延伸し、磁
石の、又は磁界を加えて磁力を発生する材料の粉粒体、
細片、線片、繊維片等を添加混合し均一に分散介在させ
た有孔のフィルタエレメントを、磁界を加えないで若し
くは加えて又は該磁界を制御して加えて製造し、又前記
エレメントを、磁界を加えないで若しくは加えて又は該
磁界を制御して加えて用いるフィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a powder or granule of a material that generates magnetic force by applying a magnetic field or a magnet by stretching a polymer compound into a predetermined plate or film.
A perforated filter element in which fine pieces, wire pieces, fiber pieces, etc. are added and mixed and uniformly dispersed therein is manufactured without applying a magnetic field, or by applying the magnetic field in a controlled manner. , relates to a filter that is used without or with the addition of a magnetic field, or with a controlled magnetic field.

従来、発泡体をフィルタとして用いることは常用されて
いる。又、磁性体を向合した発泡体を磁界制御下で使用
するフィルタも提案されている。これらは、すでに有孔
なフィルタとして実用されている。そのキャピラリ性と
磁気性とにより、又磁界制御性とにより、捕集濾過、清
掃等に於て高効率てあり良好な作業性を有する。しカル
万能てはない。例えば、発泡体の支持及び占有体積に於
て困難性を伴い、又発泡体内の連通流路ほどに複雑なも
のを要しない、板又は膜状のものが適してJいる場合が
ある。でき得れば発泡体でなく有孔空間体であつて、発
泡反応も簡便に行なうことができ、なるべくは、特に必
要な場合に補助的に発泡剤を用いた発泡はやむを得ない
としても、発泡させないで、有孔で制御可能な微細な空
間を所定の5割合で均一に分散させた板又は膜に、磁性
体を含有せしめ、フィルタエレメントとして用いると効
果がよい場合がある。本発明は、前記した課題を解決す
ることを目的とする。
Conventionally, foams have been commonly used as filters. Also, a filter has been proposed in which a foam body with a magnetic material facing it is used under magnetic field control. These are already in practical use as perforated filters. Due to its capillary properties, magnetic properties, and magnetic field controllability, it has high efficiency and good workability in collection, filtration, cleaning, etc. However, there is no one-size-fits-all solution. For example, a plate or membrane may be suitable, which presents difficulties in supporting and occupying the foam, and does not require as complex a communication channel within the foam. If possible, it should be a porous space body rather than a foam, so that the foaming reaction can be easily carried out, and if possible, foaming using an auxiliary foaming agent is particularly preferable, even if it is unavoidable. Instead, it may be effective to use a plate or film containing a magnetic material as a filter element, in which porous and controllable fine spaces are uniformly dispersed at a predetermined ratio of 5. The present invention aims to solve the above-mentioned problems.

又、高分子化合物の性質によつて、その強度と耐食性を
生かして用いることを目的とする。又、キャピラリ性と
磁性とをも生かしたフィルタを得る板又は膜を提供する
ことを目的とする。又、在来、ベーパを用いていた分野
に於て、在来のベーパに代えて顕著に良好なフィルタ効
果をもたらすものを提供することを目的とする。高分子
材料を一定の方向に延伸すると分子鎖を延伸する方向に
沿つて配向させることができる。このとき高分子材料内
部では非晶鎖の緊張が起り、微結晶間及び微結晶内(結
晶の破壊を伴う)のすベリ、微結晶の回転(部分的)、
アンフオールデイング(折りたたまれていた分子が解き
ほぐされること)等が次々と起こり、分子が延伸方向に
配向するが、高分子ガラス移転温度以下の(低温)冷延
伸では非結晶高分子の延伸による伸長は均一ではなく、
延伸部分と未延伸に近い部分との境界に於て巨視的にも
はつきりしたくびれが生じる、所謂ネツキング現象を示
す。このような現象は結晶性高分子材料に於てはガラス
転移点以上でも生ずる。
Also, the purpose is to utilize the strength and corrosion resistance of the polymer compound. Another object of the present invention is to provide a plate or film that provides a filter that takes advantage of both capillary properties and magnetism. Another object of the present invention is to provide a device that can replace conventional vapors and provide a significantly better filtering effect in fields where vapors have traditionally been used. When a polymeric material is stretched in a certain direction, the molecular chains can be oriented along the stretching direction. At this time, tension in the amorphous chains occurs inside the polymer material, causing tension between and within the microcrystals (accompanied by crystal destruction), rotation of the microcrystals (partially),
Unfolding (unfolding of folded molecules) occurs one after another, and the molecules become oriented in the stretching direction. However, in cold stretching (low temperature) below the polymer glass transition temperature, the stretching of amorphous polymers Elongation is not uniform;
It exhibits a so-called netting phenomenon in which a macroscopically sharp constriction occurs at the boundary between the stretched portion and the nearly unstretched portion. Such a phenomenon occurs even above the glass transition point in crystalline polymer materials.

結晶性高分子は分子間力が強いので繊維又は薄層状にな
りやすく、融点がみられるものも多いが全体が結晶化す
ることは少ない。
Crystalline polymers have strong intermolecular forces, so they tend to form fibers or thin layers, and although many have a melting point, they rarely crystallize as a whole.

結晶化度は高分子固体の生成条件又は熱処理により大き
く変化し、一般に0.1〜0.9くらいの範囲にある。
The degree of crystallinity varies greatly depending on the production conditions or heat treatment of the polymer solid, and is generally in the range of about 0.1 to 0.9.

鎖状高分子に於ては延伸する分子が延伸方向に配向して
結晶化度が増加する。即ち、この結晶性高分子材料をガ
ラス転移点直.上の温度て延伸すると延伸方向に配向し
た分子は結晶化が促進され繊維層状化する。
In chain polymers, molecules that are stretched are oriented in the stretching direction, increasing crystallinity. In other words, this crystalline polymer material has a temperature close to the glass transition point. When stretched at the above temperature, crystallization of molecules oriented in the stretching direction is promoted and the fibers become layered.

多軸方向に延伸する場合には、夫々網目状となり、延伸
方向に分子が配向し、結晶化し、繊維層状化する。
When stretched in multiple directions, the fibers each form a network, molecules are oriented in the stretching direction, crystallized, and formed into fiber layers.

そしてこれら繊維層は相互にからみ合、い繊維層状間相
互に微細な孔が生成される。本発明は、上記のような結
晶性高分子の延伸による結晶化作用を利用したもので、
溶融状態の結晶性高分子化合物に磁性材の微粒子を混合
すると共に磁界を加えながらガラス移転点直上の温度に
で加熱しながら2軸延伸して磁気フィルタエレメントを
製造するものである。次に、本発明の概要を述べる。
These fiber layers are intertwined with each other, and fine pores are generated between the fiber layers. The present invention utilizes the crystallization effect of stretching a crystalline polymer as described above.
A magnetic filter element is manufactured by mixing fine particles of a magnetic material into a molten crystalline polymer compound and biaxially stretching the mixture while applying a magnetic field and heating it to a temperature just above the glass transition point. Next, an outline of the present invention will be described.

本発明は、磁気フィルタエレメントを得るのに、磁性材
料の細片を含有せしめた有孔の板又は膜を用いる。
The invention uses a perforated plate or membrane containing strips of magnetic material to obtain a magnetic filter element.

更に詳しく述べれば、永久磁石若しくは磁界を加えて磁
力の発生可能な材料又はこれらの組合せ材料を、粉粒体
、細片、繊維状細片又はこれらの組合せた微細な体片の
任意量を、高分子化合物又は高重合度物質に添加混合し
、加熱して溶融し、又は半溶融状態にし、板又は膜状に
押出し延伸する。混合に際し又は溶融若しくは半溶融の
時に、磁界を加えないで又は加えて、又磁界)を加える
場合には磁界を制御可能に加えて、押出し延伸し凝固せ
しめる。次いて前記板又は膜状体に磁界を作用させると
共にガラス転移点直上の温度に加熱しながら2軸方向に
延伸制御することにより、有孔体であつて・高空間率の
良好なフィルタエレメントを得ることができる。
More specifically, a permanent magnet, a material capable of generating magnetic force by applying a magnetic field, or a combination thereof, an arbitrary amount of powder, particles, fine pieces, fibrous pieces, or a combination of these, It is added to and mixed with a polymeric compound or a highly polymerized substance, heated to melt or semi-molten, and then extruded and stretched into a plate or film. During mixing or when molten or semi-molten, extrusion, stretching and solidification can be effected without or in addition to a magnetic field, and if a magnetic field is applied, a magnetic field can be controllably applied. Next, by applying a magnetic field to the plate or membrane and controlling the stretching in two axial directions while heating it to a temperature just above the glass transition point, a filter element that is a perforated body and has a good porosity is produced. Obtainable.

こうして、有孔体であつて高空間率を得ることを可能に
する延伸方法及び延伸率を制御して有孔の板又は膜を形
成せしめて、フィルタエレメントとして用い、磁気フィ
ルタを構成することを特徴とする。又、要すれば、前記
板又は膜の孔と空間の他に、所定の寸法形状の針をもつ
て機械的に二ードリングをし穿孔を設け、前記有孔空間
と併せて、空間の制御に利用することてきる。次に、本
発明を、若干の実施例について説明する。実施例1 分子量350万のポリエチレン(融点135℃)に対し
、磁性酸化金属粉粒体のサイズが0.025μのものを
、容積で60%を添加混合する。
In this way, it is possible to form a perforated plate or membrane by controlling the stretching method and stretching rate that makes it possible to obtain a high porosity in a perforated body, and use it as a filter element to construct a magnetic filter. Features. In addition, if necessary, in addition to the holes and spaces in the plate or membrane, perforations can be made by mechanical needle ringing with a needle of a predetermined size and shape, and in addition to the perforated spaces, holes can be made to control the spaces. You can use it. Next, the present invention will be described with reference to some embodiments. Example 1 To polyethylene having a molecular weight of 3.5 million (melting point 135° C.), magnetic metal oxide powder particles having a size of 0.025 μm are added and mixed in an amount of 60% by volume.

第1図に正面を示した構想図、第2図に一部平面を示し
た構想図のような装置を用いて、加熱部(図外)で溶融
温度以上、140′Cに加熱溶融し、押出し延伸部3の
ノズルから板状にして出し、磁界形成部2Aを通して磁
性粉に両極の方向性を与えて配列させ、板状体1Aを、
ロール5Bの個所て延伸し1Bとし、ロール6Aの個所
で延伸し1Cとし、次に、ロール6Bとロール6Cの間
で、ヒータ4により加熱され、磁石2の両極2Nと2S
(第2図)により内含磁性粉粒体の方向性を与えて再配
置させ、X,Y2軸延伸する。例えばX方向に1.3倍
、Y方向に1.8倍の引伸しをする。こうして得られる
板を1軸延伸することにより分子が延伸方向に沿つて配
向すると結晶化を起して繊維層状化する。
Using a device such as the conceptual diagram shown in Fig. 1 showing the front view and the conceptual drawing showing a partially plan view in Fig. 2, heating and melting is carried out at a heating part (not shown) to 140'C above the melting temperature. The magnetic powder is taken out in a plate form from the nozzle of the extrusion and stretching part 3, and passed through the magnetic field forming part 2A to give polar directionality to the magnetic powder and to arrange it, to form a plate-like body 1A.
Roll 5B is stretched to 1B, roll 6A is stretched to 1C, and then heated by heater 4 between roll 6B and roll 6C, and both poles 2N and 2S of magnet 2 are stretched.
(FIG. 2), the magnetic particles contained therein are given directionality and rearranged, and stretched in the X and Y axes. For example, the image is enlarged 1.3 times in the X direction and 1.8 times in the Y direction. When the thus obtained plate is uniaxially stretched, the molecules are oriented along the stretching direction, causing crystallization and forming a fiber layer.

本発明は2軸延伸するので、夫々の延伸軸方向に沿つて
結晶化による繊維層が生じ、それらは相互にからみ合い
網目状となり、繊維層間相互に微小な孔が生成される。
Since biaxial stretching is carried out in the present invention, fiber layers are generated by crystallization along each stretching axis direction, and these are entangled with each other to form a network, and minute pores are generated between the fiber layers.

加熱温度と延伸率を調整して行なつて、孔の寸法を正確
に制御することが可能であつた。生成した孔の直径は、
500〜10,000A1空間率は10〜80%、この
間の範囲で、ほぼ正確に制御することができた。第3図
に模型平面図を示した。前記生成有孔板をフィルタエレ
メントとして、磁界を加えないで又は加えて、加えた際
に磁界を制御して加えて、フィルタの使用結果は、極め
て顕著な良好な効果をもたらした。
By adjusting the heating temperature and stretching ratio, it was possible to precisely control the size of the holes. The diameter of the generated pore is
The 500 to 10,000 A1 void ratio could be controlled almost accurately within the range of 10 to 80%. Figure 3 shows a plan view of the model. Using the produced perforated plate as a filter element, without applying a magnetic field or with the addition of a controlled magnetic field when applied, the results of using the filter yielded very noticeable good effects.

例えば、放電加工の超仕上に於て発生する極めて超微粒
である研削粉の混入した仕上液、パルス幅2μ秒て炭素
鋼S55C(日本標準規格)を放電加工した加工液を、
本発明の一実施例である前記ポリエチレン板の帯状をコ
イル巻き(第4図のように)にしたフィルタ(例えば第
6図のようなもの)を用いて試験した結果は、5e/M
inを流した液処理に於ては、3,000cT1の面積
のもので、62日の耐用日(23Hr/田であつた。在
来の紙ベーパのものでは24日(23HV/日)の耐用
日であつたから、約2.皓の寿命期間に改良された。超
仕上の際の実施例てあるから、極めて顕著に効果を向上
させたといえる。実施例2 ポリプロピレンについて、第5図に示したように、磁石
線細片の微細なものをポリプロピレンに対し、容積で6
0%を添加混合し、加熱溶融した。
For example, a finishing fluid mixed with extremely fine grinding powder generated during super-finishing of electric discharge machining, a machining fluid obtained by electric discharge machining of carbon steel S55C (Japanese standard) with a pulse width of 2 μs,
The results of a test using a filter (for example, the one shown in FIG. 6), which is an embodiment of the present invention, in which the strip-shaped polyethylene plate is coil-wound (as shown in FIG. 4), are 5e/M.
In the case of liquid treatment using a 3,000 cT1 area, the service life was 62 days (23Hr/field).The service life of conventional paper vapor was 24 days (23HV/day). Since it was hot for about 2 days, the improvement was achieved within the lifespan of approximately 2.5 days.Since there is an example of super-finishing, it can be said that the effect was extremely improved.Example 2 Regarding polypropylene, the effect was improved as shown in Figure 5. As shown, fine magnetic wire strips are added to polypropylene by volume of 6
0% was added and mixed, and heated and melted.

磁石線細片のサイズは、0.01〜0.005μを用い
た。加熱した融点直上の温度で溶融したものPを、装置
13に設けた押出し円形ノズルから出し、磁界形成装置
Mにより磁石粉に方向性を付与し、壁Wに沿つて、内面
に空気Aを吹込んで冷却し、ニップロール16A間でし
められる。次にヒータ14Aで加熱し、2軸延伸し11
Bとし、ニップロール16B間でしめられ、次に加熱し
アンニールし11Cとし、更に加熱しニップロール16
Dにより接着されヒータ14により加熱され、磁石12
により、磁性粉に方向性を付与し再配列し、接着膜11
Eとし、ローラ17に巻取つて、実施例1と同様に使用
試験をした。平均孔直径は、500〜5,000Aの範
囲て、空間率は10〜80%の範囲に得られた。濾過効
率は、実施例1とほぼ同様に顕著に良好な効果をもたら
した。 又、ポリウレタンエラストマ原料中にほぼ2,
000エルステッド保磁力のフェライト磁石と酸化ご
鉄の微粉体を、容積で60%を添加混合し半溶融軟化状
態のもとで押出し延伸し、極めて薄い板とし、前記形成
の工程中で、わずかに発泡させたものは、フィルタエレ
メントとして良好な濾過効率を示した。
The size of the magnetic wire strip was 0.01 to 0.005μ. The heated material P melted at a temperature just above the melting point is ejected from an extrusion circular nozzle provided in the device 13, the magnetic field forming device M gives directionality to the magnet powder, and air A is blown into the inner surface along the wall W. It is then cooled and compressed between nip rolls 16A. Next, it is heated with a heater 14A and biaxially stretched.
B, tightened between nip rolls 16B, then heated and annealed to 11C, further heated and tightened between nip rolls 16
D and heated by the heater 14, the magnet 12
gives directionality to the magnetic powder, rearranges it, and forms the adhesive film 11.
E, the film was wound around roller 17, and a usage test was conducted in the same manner as in Example 1. The average pore diameter was in the range of 500 to 5,000 A, and the porosity was in the range of 10 to 80%. The filtration efficiency was almost the same as in Example 1, resulting in significantly good effects. In addition, approximately 2,
Ferrite magnet with 000 Oe coercive force and oxidized
Fine iron powder is added and mixed at 60% by volume, extruded and stretched in a semi-molten and softened state to form an extremely thin plate, and slightly foamed during the forming process, which is good as a filter element. It showed high filtration efficiency.

1 このようにして形成させた板又は膜は、単独で
用い、又組合せて用い、更にメッシュと併用し、磁界を
加えないで又は加えて用い、磁界を加えて用いる際は、
磁界を制御して用い、良好な濾過効率を示(7た。
1 The plate or film formed in this way can be used alone or in combination, together with a mesh, without or with a magnetic field applied, and when used with a magnetic field applied.
A controlled magnetic field was used and showed good filtration efficiency (7).

第4図は、本発明のシート、板、フィルムのコイル1
である。
Figure 4 shows a coil 1 of the sheet, plate, or film of the present invention.
It is.

点在するのは、孔8と磁性粉9である。 尚、磁性体等
の混入率は少なすぎると磁界を作用させたときの磁化率
が低くなつてしまい磁気フィルタエレメントとしての作
用が阻害されてしまうので、最低でも容積比率で40%
以上は必要てある。
Scattered are holes 8 and magnetic powder 9. In addition, if the mixing ratio of magnetic materials, etc. is too small, the magnetic susceptibility when a magnetic field is applied will be low and the function as a magnetic filter element will be inhibited, so the volume ratio should be at least 40%.
The above is necessary.

本発明に於て、高分子化合物に混入する強磁性材又は
永久磁石のサイズは、0.01〜0.005μの超微細
材料を用いているので上限は容積比率て70%まで混入
可能である。
In the present invention, the size of the ferromagnetic material or permanent magnet mixed into the polymer compound is ultrafine material with a size of 0.01 to 0.005μ, so the upper limit can be mixed up to 70% by volume. .

第6図は、本発明のフィルタエレメントを組込んだフ
ィルタ10一実施例を示した。
FIG. 6 shows an embodiment of a filter 10 incorporating the filter element of the present invention.

筒状に巻いたエレメント1を耐圧容器10内に挿入し、
エレノメント1の内外面は剛性メッシュで補強し、磁界
形成磁石N,Sを設け高勾配磁場を形成する。被濾過流
体はエレメント1の外周Aから加圧流入し、磁石N,S
の作用下にあるエレメント1の層を通り、濾過されて清
浄になつた流体は、中心通5路Bに集められ、外部に流
出する。この間、本発明のフィルタの、キャピラリ性と
磁性と、メッシュ等による物理的且つ機械的選別性によ
つて、有効な濾過効率を示した。勿論流体の濾過は中央
Bから周囲Aに向けてフィルタエレメント1を流通Oし
濾過されてもよい。 既に述べたように、本発明の磁性
エレメントを用いたフィルタは、顕著に良好な濾過性を
示し、濾過体として深さを有し、フィルタエレメントの
キャピラリ性と高勾配磁力により、流体内の介在物をよ
く捕集し、イオン化物までも濾過する。
Insert the element 1 wound into a cylindrical shape into the pressure container 10,
The inner and outer surfaces of the element 1 are reinforced with rigid mesh, and field forming magnets N and S are provided to form a high gradient magnetic field. The fluid to be filtered flows under pressure from the outer periphery A of element 1, and magnets N and S
The filtered and purified fluid that passes through the layers of the element 1 under the action of is collected in the central passage 5 B and flows out to the outside. During this period, the filter of the present invention showed effective filtration efficiency due to its capillary properties, magnetic properties, and physical and mechanical selection properties using meshes and the like. Of course, the fluid may be filtered by flowing through the filter element 1 from the center B toward the periphery A. As already mentioned, the filter using the magnetic element of the present invention exhibits significantly good filterability, has a depth as a filter body, and due to the capillary nature of the filter element and the high gradient magnetic force, it is possible to prevent the presence of particles in the fluid. It collects substances well and even filters ionized substances.

又、磁性体の種類又は添加量を変化させ、又押出し延伸
に際し磁界の作用を制御して加え、フィルタとして使用
する際に、磁界の作用を制御して加えることを可能にし
て、良好な濾過効率を示した。又、ビートパイプにも、
又熱交換装置にも、組込んで用いる得ることができ、又
、気体フィルタにも利用でき、その際、除塵フィルタと
して、多目的に利用し得ることが明らかてある。このよ
うに、本発明は、種々多様な有用性を顕示し、多くの期
待をよせることができる。
In addition, it is possible to change the type or amount of magnetic material added, control the effect of the magnetic field during extrusion and stretching, and control the effect of the magnetic field when using it as a filter, resulting in good filtration. Demonstrated efficiency. Also, for beat pipes,
It can also be used by incorporating it into a heat exchanger, and it can also be used as a gas filter, in which case it is clear that it can be used for multiple purposes as a dust removal filter. As described above, the present invention exhibits a wide variety of usefulness and can raise many expectations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のフィルタエレメントを製造する構想
正面図。 第2図は一部拡大構想平面図。第3図はエレメントの例
示平面図。第4図は本発明のエレメントコイルの斜視図
。第5図本発明のエレメントを製造する構想正面図。第
6図は本発明のエレメントを組込んだフィルタの平断面
図。1,11,11E・・・・エレメント板又は膜、3
,13・・・・・・押出し延伸ノズル部、1S,1N,
2S,2N,S,N・・・・・・磁石の極、1A,1B
,1C,1D,11A,11B,11C,11D・・・
・中間体、6A,6B,6C・・・・延伸ロール、16
A,16B,16C,16D・・・・ニップロール、4
,14,14A,14B・・・・・・ヒータ、2A,2
,12,14,M・・・・・・磁界を与える装置。
FIG. 1 is a conceptual front view of manufacturing the filter element of the present invention. Figure 2 is a partially enlarged conceptual plan. FIG. 3 is an exemplary plan view of the element. FIG. 4 is a perspective view of the element coil of the present invention. FIG. 5 is a conceptual front view of manufacturing the element of the present invention. FIG. 6 is a plan sectional view of a filter incorporating the element of the present invention. 1, 11, 11E...Element plate or membrane, 3
, 13...Extrusion stretching nozzle part, 1S, 1N,
2S, 2N, S, N... Magnet pole, 1A, 1B
, 1C, 1D, 11A, 11B, 11C, 11D...
・Intermediate body, 6A, 6B, 6C...Stretching roll, 16
A, 16B, 16C, 16D...Nip roll, 4
, 14, 14A, 14B... Heater, 2A, 2
, 12, 14, M... Device that provides a magnetic field.

Claims (1)

【特許請求の範囲】 1 ガラス転移点直上の温度にて2軸方向に延伸するこ
とにより、分子が夫々の延伸方向に配向すると共に結晶
化を起して繊維状層化し、該繊維状層間相互に微小な孔
が生成されるような結晶性高分子化合物に、強磁性材若
しくは永久磁石又はこれらの組合わせ材料の粉粒体、細
片、若しくは繊維状又はこれらの組合わせ体片を容積比
で40%乃至70%添加混入すると共に加熱溶融し、該
溶融物質を所望の厚さのフィルム状に押出成形し、該フ
ィルム状体に磁界を作用させると共にガラス転移点直上
の温度で加熱しながら2軸方向に延伸制御することによ
り、前記フィルム状体に空間率10%乃至80%、孔径
100Å乃至10,000Åの孔を形成せしめることを
特徴とする磁気フィルタエレメントの製造方法。 2 前記結晶性高分子化合物に所定量の発泡材を添加し
、2軸延伸により任意の有孔数と空間率を付与せしめる
と共に、発泡度を制御することを特徴とする特許請求の
範囲第1項記載の磁気フィルタエレメントの製造方法。 3 前記強磁性材若しくは永久磁石又はこれらの組合わ
せ材料の粉粒体、細片、若しくは繊維状又はこれらの組
合わせ体片のサイズが0.01乃至0.005μである
ことを特徴とする特許請求の範囲第1項記載の磁気フィ
ルタエレメントの製造方法。
[Claims] 1 By stretching in two axial directions at a temperature just above the glass transition point, the molecules are oriented in the respective stretching directions and crystallized to form fibrous layers, and the fibrous layers are mutually separated. A crystalline polymer compound in which minute pores are formed is mixed with a ferromagnetic material, a permanent magnet, or a combination of these materials in the form of powder, granules, fine pieces, fibers, or a combination of these materials in a volume ratio. 40% to 70% of the mixture is mixed in and heated and melted, and the molten material is extruded into a film of a desired thickness, while applying a magnetic field to the film and heating at a temperature just above the glass transition point. A method for producing a magnetic filter element, characterized in that pores with a porosity of 10% to 80% and a pore diameter of 100 Å to 10,000 Å are formed in the film-like body by controlling the stretching in two axial directions. 2. Claim 1, characterized in that a predetermined amount of foaming material is added to the crystalline polymer compound, and the desired number of pores and porosity are imparted to the crystalline polymer compound by biaxial stretching, and the degree of foaming is controlled. A method for manufacturing a magnetic filter element as described in . 3. A patent characterized in that the size of the ferromagnetic material, permanent magnet, or a combination of these materials in the form of powder, granules, strips, or fibers, or a combination thereof, is 0.01 to 0.005μ. A method for manufacturing a magnetic filter element according to claim 1.
JP52074469A 1977-06-24 1977-06-24 Manufacturing method of magnetic filter element Expired JPS6045925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52074469A JPS6045925B2 (en) 1977-06-24 1977-06-24 Manufacturing method of magnetic filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52074469A JPS6045925B2 (en) 1977-06-24 1977-06-24 Manufacturing method of magnetic filter element

Publications (2)

Publication Number Publication Date
JPS5410477A JPS5410477A (en) 1979-01-26
JPS6045925B2 true JPS6045925B2 (en) 1985-10-12

Family

ID=13548135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52074469A Expired JPS6045925B2 (en) 1977-06-24 1977-06-24 Manufacturing method of magnetic filter element

Country Status (1)

Country Link
JP (1) JPS6045925B2 (en)

Also Published As

Publication number Publication date
JPS5410477A (en) 1979-01-26

Similar Documents

Publication Publication Date Title
JP2581994B2 (en) High precision cartridge filter and method of manufacturing the same
EP0227832B1 (en) Composite hollow yarn and a process for producing the same
MX2009000989A (en) Molded monocomponent monolayer respirator.
US6659751B1 (en) Apparatus for radiation-induced graft polymerization treatment of fabric webs
JPS6099058A (en) Composite fiber and its web
JP2009545440A (en) Pleated filter using bimodal single-layer single-component media
US20070045175A1 (en) Preparation of asymmetric polyethylene hollow fiber membrane
US5711878A (en) Cylindrical filter
JP2014505147A (en) Thin macroporous polymer film
WO1998013123A1 (en) High-precision filter
JP2628788B2 (en) Method for producing microporous membrane and fusing resistant microporous membrane produced by the method
JPS6045925B2 (en) Manufacturing method of magnetic filter element
JPS62155912A (en) Filter element for precision filtration
JPH1136169A (en) Production of melt-blown nonwoven fabric and cylindrical filter comprising melt-blown nonwoven fabric
JPH0596110A (en) Cylindrical filter and its production
KR20180035962A (en) Nonwoven having adsorption of radioactivity and manufacturing method thereof
PL172113B1 (en) Method of making tubular filtering structures of non-woven fabrics
JPH11262764A (en) Water purifier
JPH06257045A (en) Polyimide fibrous form and its production
JP2022548758A (en) Spiral separation membrane module and manufacturing method thereof
JP3309320B2 (en) Filter and manufacturing method thereof
JP3353405B2 (en) Manufacturing method of cylindrical filter
JP3373877B2 (en) Nonwoven fabric having pore diameter gradient and method for producing the same
JP2004267813A (en) Cartridge type filter and manufacturing method therefor
JPH04215812A (en) Cylindrical filter for precise filtration